/

~

Vector Rational Number Reconstruction

Curtis Bright

August 20, 2009




-

-

~

‘ Modular Arithmetic '

e Recall the notion of congruence modulo M: If integers a and b

share the same remainder upon division by M, we write
a=b (mod M).

e The set of integers reduced modulo M may be thought of as
the set

Zn =1{0,1,2,..., M —1}.

e We can do computations within Z);. We can define addition,

subtraction, multiplication, and (sometimes) even division.
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‘ Modular ‘Division’ '

e The multiplicative inverse of an r € Zj,, denoted r~!, exists if

and only if » and M are coprime (share no common factors).

e Given 7, how can we compute r—'? Need to solve for z in:
re =1 (mod M)

e The classic Frtended FEuclidean Algorithm can find integers s, t
such that:

sr+tM =1
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e For example, if r = 17 € Zos5:

3-17—2-25=1
3.17=1 (mod 25)
3=17"1 (mod 25)

SO 17_1 =3 in 225.




Rational Number Deconstructz’on'

e How can we reduce a rational number modulo M?

e Say a € Q has the lowest-terms representation a =

SHIS

e Assuming d and M are coprime, d~! exists and we say that
a=n-d ' (mod M).

e For example, the rational number -2 = reduces to 15 in Zas:

2 =5-17""'=5-3=15 (mod 25)
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‘Rational Number Reconstruction'
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e Can we go the other way? That is, for some given r € Z),, can

we find an @ = % € Q such that r = % (mod M)?

e One complication: a is not unique...

e However, if we restrict |n| and |d| to be relatively small

compared to M we can guarantee uniqueness.




‘ Reconstruction Uniqueness I

e Say we require solutions to satisfy |n| < N and |d| < D.

e Then if M > 2ND then there is at most one a € Q with a = 5
such that

Z=r (mod M)

for every r € Zyy.
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An Application '

Consider the problem of solving a linear system exactly.

Given a nonsingular matrix A € Z¥** and a vector b € Z*,
find the vector & € QF such that

Ax =b.
Solving via Gaussian elimination may suffer from coeflicient
growth.

Idea: This wouldn’t be a problem if we could do all

computations modulo M.
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Finding £ = A~'b

Do Gaussian elimination modulo M to find A~! (mod M) and
A71b (mod M), then use rational reconstruction to recover .

Caveat: The denominators of x divide det(A), so we would
need M to be coprime with det(A) for  (mod M) to exist.

Can choose N and D (bounds on numerators and

denominators of ) based on Cramer’s rule.
We need to ensure M > 2N D and M coprime to det(A).

Note: Actually more efficient to compute A~! (mod p) (for
some small prime p), and use this to calculate A~1b (mod p*)

for some p* > 2N D.




‘Vector Rational Number Reconstruction'

e We could use rational reconstruction on each entry of x

(mod M), but this ignores the knowledge of a common
denominator.

e Given an integer vector a € Z%, and a size bound N, the vector

rational number reconstruction problem is to solve
da=n (mod M), |[dIn]|<N

for n € Z* and d € Z.
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‘ Lattices '

A

\o {b1,b2} is a basis of the lattice.

Y

e This is the lattice generated by by = [35] and by = [6 0] in Z2.
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‘Good and Bad Bases'
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Lattice Basis Reduction'

e Lattice reduction is the process of finding ‘good’ bases for

lattices.

e That is: bases with short and approximately orthogonal basis

vectors.

e The LLL Algorithm (1982) finds reasonably good bases in
polynomial time in the lattice dimension.
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Using Lattices for Rational Reconstruction'

e Consider the lattice generated by the rows of the matrix

0 M

1 =x

e If [d|n]is an arbitrary element of this lattice, then
dr =n (mod M).

n

e If d is coprime to M then Z is a rational reconstruction of x.

d

e If n and d are sufficiently small then this is the unique short

reconstruction.
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e Similarly, consider the lattice generated by the rows of the

matrix
M
M
M
1 = 22 - X
e Every element of this lattice [d | ni | n2 | - | ni | satisfies

de =n (mod M).

e Finding a short vector in this lattice solves the vector rational

reconstruction problem.
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‘ Conclusion '

e We can run the LLL Algorithm on this lattice to find a short

vector, but this is much too expensive.

e The full lattice has dimension k + 1, but because of its special
form it is possible to run LLL on sublattices of dimension ¢ + 1
instead (for ¢ a small constant).

e For linear system solving with M = p* (i.e., ¢ lifting steps),

e Usual elementwise reconstruction requires ¢ ~ 2 log V.

e The lattice technique requires ¢ ~ (1 + 1)log N.
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