SAT Solving and Computer Algebra for Combinatorics

Curtis Bright

University of Windsor
Tutte Colloquium
Combinatorics and Optimization
University of Waterloo
April 1, 2022

SAT:

Boolean satisfiability problem

$$
\text { Is }(x \vee y) \wedge(\neg x \vee \neg y) \text { satisfiable? }
$$

SAT:

Boolean satisfiability problem

$$
\begin{gathered}
\text { Is }(x \vee y) \wedge(\neg x \vee \neg y) \text { satisfiable? } \\
\text { Yes }(x=\mathrm{T}, y=\mathrm{F})
\end{gathered}
$$

SAT solvers use clever trial-and-error to search for solutions

Effectiveness of SAT solvers

SAT solvers can be freakishly effective at solving problems that have nothing to do with logic. ${ }^{1}$

- Scheduling
- Discrete optimization
- Hardware and software verification
- Combinatorial problems like colouring the positive integers as far as possible so that a, b, and $a+b$ are never all the same colour ${ }^{2}$

SAT solvers also produce verifiable certificates when problems have no solutions.

[^0]
CAS:

Computer algebra system

Is 5915587277 prime?

CAS:

Computer algebra system

$$
\begin{gathered}
\text { Is } 5915587277 \text { prime? } \\
\text { isprime (5915587277) ; } \Rightarrow \text { true }
\end{gathered}
$$

CASs use clever algorithms to solve many mathematical problems

Effectiveness of CASs

Computer algebra systems can perform calculations and manipulate expressions from many branches of mathematics:

- Evaluating sums, integrals, and transforms
- Finding the shortest path between two vertices in a graph
- Computing symmetries of combinatorial objects

For example, are these two graphs isomorphic?

Effectiveness of CASs

Computer algebra systems can perform calculations and manipulate expressions from many branches of mathematics:

- Evaluating sums, integrals, and transforms
- Finding the shortest path between two vertices in a graph
- Computing symmetries of combinatorial objects

Yes-and a computer algebra system can determine this.

The MathCheck system

Since 2016, I've led the development of the first SAT+CAS system MathCheck. It has been used at Waterloo, Toronto, Windsor, Carleton, and Wilfrid Laurier.

I will now discuss some successful applications of MathCheck from the last 2 years:

- Answering a 75-year-old open problem about the existence of Williamson matrices and disproving a conjecture about perfect quaternion sequences.
- Providing the first verifiable solution to the centuries-old Lam's Problem from finite geometry. ${ }^{3}$

[^1]
Application I:
 Williamson Matrices

Hadamard matrices

Hadamard matrices are square matrices with ± 1 entries whose rows are mutually orthogonal.

1	1	1	1
-1	1	-1	1
-1	1	1	-1
-1	-1	1	1

In 1893, Jacques Hadamard studied these matrices. They have applications in error-correcting codes and many other areas.

Order 92 example

In 1961, scientists from NASA searched for Hadamard matrices while developing codes for communicating with spacecraft and they found the first known Hadamard matrix of order 92. ${ }^{4}$

[^2]
Williamson's construction

In 1944, John Williamson discovered a method of constructing Hadamard matrices in many orders like this order 8 example:

1	1	1	1	1	-1	1	-1
1	1	1	1	-1	1	-1	1
-1	-1	1	1	-1	1	1	-1
-1	-1	1	1	1	-1	-1	1
-1	1	1	-1	1	1	-1	-1
1	-1	-1	1	1	1	-1	-1
-1	1	-1	1	1	1	1	1
1	-1	1	-1	1	1	1	1

Williamson matrices

Williamson's construction relies on finding a quadruple (A, B, C, D) of $\{ \pm 1\}$-matrices for which all of the off-diagonal entries of $A^{2}+B^{2}+C^{2}+D^{2}$ are zero.

The matrices are said to be Williamson matrices if they are symmetric and each row is a cyclic shift of the previous row; the first rows are known as Williamson sequences.

Williamson matrices of order 5.

The Williamson conjecture

Researchers in the field expected Williamson matrices to exist in all orders ${ }^{5}$ and this became known as the Williamson conjecture.

Williamson found examples in orders $n=2^{k}$ for $k \leq 5$ and he expressed interest in if this could be generalized:

It would be interesting to determine whether the results of this paper are isolated results or are particular cases of some general theorem. Unfortunately, any efforts in this direction have proved unavailing.

[^3]Williamson matrices of order 2^{k} for $2 \leq k \leq 5$

Williamson matrices of order 2^{k}

The question of if Williamson matrices exist in all orders 2^{k} was open for 75 years.

We ran exhaustive searches for Williamson matrices in all even orders $n \leq 70$. We found that Williamson matrices do exist for $n=70$ and many Williamson matrices exist in order $64 .{ }^{6}$

The search results showed that Williamson's method generalizes to all orders 2^{k}. ${ }^{7}$

[^4]
Construction

If A, B are sequences of even length n, A is a Williamson sequence, and B is an antipalindromic nega Williamson sequence, then the perfect shuffle of

$$
[A ; A] \text { and }[B ;-B]
$$

is a Williamson sequence of length $4 n$.

The construction applies recursively to generate Williamson sequences of all orders 2^{k}.

It also generates perfect sequences over the quaternion group Q_{8}. A sequence $\left(a_{0}, \ldots, a_{n-1}\right)$ is perfect if $\sum_{i=0}^{n-1} a_{i} a_{i+k}^{*}=0$ for all $k \not \equiv 0(\bmod n)$.

Previous searches (even orders)

In 2006, a computer algebra approach found Williamson matrices in all even orders $n \leq 22 .{ }^{8}$

In 2016, a satisfiability approach found Williamson matrices in all even orders $n \leq 30 .{ }^{9}$

The search space for order $n=70$ is twenty-five orders of magnitude larger than the search space for order $n=30$.

[^5]
SAT encoding

Let the Boolean variable a_{i} represent the i th entry in the initial row of the matrix A contains a 1 .

Using similar variables for B, C, and D, one can express that the off-diagonal entries of $A^{2}+B^{2}+C^{2}+D^{2}$ are zero using arithmetic circuits (which can be converted into a SAT instance).

Simple setup

Encoding that Williamson matrices of order n exist

Williamson matrices
or counterexample

However, this does not perform well, since a SAT solver will not exploit mathematical facts about Williamson matrices.

Power spectral density (PSD) filtering

If \boldsymbol{A} is a Williamson sequence of length n then

$$
\operatorname{PSD}_{\boldsymbol{A}}(k) \leq 4 n
$$

where $\operatorname{PSD}_{\boldsymbol{A}}(k)$ is the squared magnitude of the k th entry of the Fourier transform of $\boldsymbol{A}=\left[a_{0}, \ldots, a_{n-1}\right]$.

In other words, $\left|\sum_{j=0}^{n-1} a_{j} \omega^{k j}\right|^{2} \leq 4 n$ where ω is a primitive nth root of unity.

Search with PSD filtering

We will structure our search to efficiently
(1) compute PSD values; and
(2) block matrices with large PSD values.

8 CASs excel at (1) and SAT solvers excel at (2).

SAT+CAS learning for Williamson matrices

During the search the SAT solver will find partial solutions by finding complete definitions for A, B, C, or $D \ldots$

SAT+CAS learning for Williamson matrices

During the search the SAT solver will find partial solutions by finding complete definitions for A, B, C, or $D \ldots$

block the matrix A (new constraint)

Encoding comparison

The SAT+CAS method was significantly faster than the simple SAT encoding and the speedup improved as the order increased:

SAT+CAS speedup in the Williamson matrix search

Results

MathCheck found over 100,000 new sets of Williamson matrices. Fewer than 200 had previously been found by computers.

MathCheck also proved that $n=35$ is the minimal counterexample of the Williamson conjecture. ${ }^{10}$

These results lead us to propose the conjecture that Williamson matrices exist in all even orders n. This is still open.

[^6]
Application II: Lam's Problem

History

For over two thousand years, mathematicians tried to derive Euclid's "parallel postulate" from his other axioms for geometry.

History

For over two thousand years, mathematicians tried to derive Euclid's "parallel postulate" from his other axioms for geometry.

The discovery of non-Euclidean geometries in the 1800s showed this is impossible!

Finite projective planes

Finite projective planes satisfy the following axioms:

- Every pair of points define a unique line.
- Every pair of lines meet at a unique point.
- Every line contains $n+1$ points for some order n.

order 1

order 2

order 3

Projective planes of small orders

$\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \checkmark & \checkmark & \checkmark & \checkmark & \checkmark & x & \checkmark & \checkmark & \checkmark & ?\end{array}$
 Lam's problem

Somehow, this problem has a beauty that fascinates me as well as many other mathematicians.

Clement Lam

Projective planes of small orders

12345678910 \checkmark \checkmark \checkmark \checkmark \checkmark x \checkmark
 \checkmark
 \checkmark
 (x)

Lam's problem

Computer Science team solves centuries-old math problem

And they had to search through a thousand trillion combinations to do it
Charles Bêlanger

$$
\overline{\text { Simply put . . }}
$$

Whew! To complete a mathematical investigation as complicated as the one recently accomplished by a team from the faculty of Engineering and Computer Science, every human being on earth would have to do 50,000 complex calculations.

The team, made up of Computer Science's Clement Lam, John McKay, Larry Thiel and Stanley Swiercz, took three years to solve a problem which had stumped mathematicians since the 1700 s.

The problem: To find out whether "a finite projective plane of the order of 10 " can exist.

Resolution of Lam's problem

Lam et al. ${ }^{11}$ used custom-written software to show that a projective plane of order ten does not exist.

We must trust the searches ran to completion-the authors were upfront that mistakes were a real possibility.

MathCheck generated the first certifiable resolution of Lam's problem. ${ }^{12}$

[^7]
SAT encoding

A projective plane of order n is equivalent to a quad-free (0,1)-matrix with $n+1$ ones in each row and column. A quad-free matrix contains no rectangle with 1 s in the corners.

order 1

1	1	0	1	0	0
0	1	1	0	1	0
0	0	1	1	0	1
0	0	0	1	1	0
1	0	0	0	1	1
0	1	0	0	0	1
1	0	1	0	0	0

order 2

order 3

These constraints can be encoded in Boolean logic, but this is not sufficient to solve Lam's problem-it does not exploit the theorems that make an exhaustive search feasible.

Enter coding theory

The code generated by a projective plane is the row space of its incidence matrix over $\operatorname{GF}(2)=\{0,1\}$. The weight of a binary word is the number of 1 s it contains.

In 1970, properties about how many words of each weight must exist in the code generated by a hypothetical projective plane of order ten were derived. ${ }^{13}$

The code must contain words of weight 15 , 16 , or 19. These constraints can be reduced to SAT, but the solver still needs help...

[^8]
SAT+CAS learning for Lam's problem

During the search the SAT solver will find partial solutions by finding complete definitions for the first few lines of the plane...

SAT+CAS learning for Lam's problem

During the search the SAT solver will find partial solutions by finding complete definitions for the first few lines of the plane...

Results

Searches for codewords of weight 15,16 , and 19:

Weight	SAT-based	CAS-based	SAT + CAS
15	5 minutes	$3-78$ minutes	0.1 minutes
16	-	16,000 hours	30 hours
19	-	20,000 hours	16,000 hours

In the final case, a SAT+CAS search exhaustively generates all possibilities for the first 19 points of the plane 150 times faster than a pure SAT approach.

Discrepancies

The lack of verifiable certificates has real consequences. We found discrepancies with the intermediate results of both Lam's search and an independent verification from 2011. ${ }^{14}$

On the right is a 51-column partial projective plane determined not to exist in 2011, but found by MathCheck.

[^9]
Other MathCheck results (see uwaterloo.ca/mathcheck)

Problem
Williamson
Even Williamson
Lam's Problem
Good Matrix
Best Matrix
Complex Golay
Ruskey-Savage
Norine
Kochen-Specker

New Result
Found smallest counterexample First verification in orders $n \leq 70$

First certifiable solution
Found 3 new counterexamples
First solution in order 57
Verified lengths up to 28
First verification in order 5
First verification in order 6 Improved lower bound to order 23

CAS Functionality
Fourier transform
Fourier transform
Graph isomorphism
Fourier transform
Fourier transform
Nonlinear optimizer
Travelling salesman solver
Shortest path solver
Graph isomorphism

SAT+CAS methods have also been used to find small circuits for matrix multiplication ${ }^{15}$ and to verify arithmetic circuits. ${ }^{16}$

[^10]
Conclusion

Searches that were previously out-of-reach have become feasible due to SAT+CAS methods.

There are many problems where they have yet to be used! Perhaps even in your own research area?

We are hiring research assistants-for more details:

> curtisbright.com

[^0]: ${ }^{1}$ C. Bright, J. Gerhard, I. Kotsireas, V. Ganesh. Effective Problem Solving Using SAT Solvers. Maple in Mathematics Education and Research, 2019.
 ${ }^{2}$ M. Heule. Schur Number Five. AAAI 2018.

[^1]: ${ }^{3}$ Best Paper Award in Memory of Jacques Calmet, Applicable Algebra in Engineering, Communication and Computing, 2021.

[^2]: ${ }^{4}$ L. Baumert, S. Golomb, M. Hall. Discovery of an Hadamard matrix of order 92. Bulletin of the American Mathematical Society, 1962.

[^3]: ${ }^{5}$ S. Golomb, L. Baumert. The Search for Hadamard Matrices. American Mathematical Monthly, 1963.

[^4]: ${ }^{6}$ C. Bright, I. Kotsireas, V. Ganesh. Applying computer algebra systems with SAT solvers to the Williamson conjecture. Journal of Symbolic Computation, 2020.

 7__. New Infinite Families of Perfect Quaternion Sequences and Williamson Sequences. IEEE Transactions on Information Theory, 2020.

[^5]: ${ }^{8}$ I. Kotsireas, C. Koukouvinos. Constructions for Hadamard matrices of Williamson type. Journal of Combinatorial Mathematics and Combinatorial Computing, 2006.
 ${ }^{9}$ C. Bright, V. Ganesh, A. Heinle, I. Kotsireas, S. Nejati, K. Czarnecki. MathCheck2: A SAT+CAS verifier for combinatorial conjectures. CASC 2016.

[^6]: ${ }^{10}$ Computer search had previously determined the minimal odd counterexample:
 D. Đoković. Williamson matrices of order $4 n$ for $n=33,35,39$. Discrete Mathematics, 1993.

[^7]: ${ }^{11}$ C. Lam, L. Thiel, S. Swiercz. The Nonexistence of Finite Projective Planes of Order 10. Canadian Journal of Mathematics, 1989.
 ${ }^{12}$ C. Bright, K. Cheung, B. Stevens, I. Kotsireas, V. Ganesh. A SAT-based Resolution of Lam's Problem. AAAI 2021.

[^8]: ${ }^{13} \mathrm{E}$. Assmus. The projective plane of order ten? Combinatorial Aspects of Finite Geometries, 1970.

[^9]: ${ }^{14}$ D. Roy. Confirmation of the non-existence of a projective plane of order 10 . Master's thesis, Carleton University, 2011.

[^10]: ${ }^{15}$ M. Heule, M. Kauers, M. Seidl. New ways to multiply 3×3-matrices. Journal of Symbolic Computation, 2021.
 ${ }^{16}$ D. Kaufmann, M. Kauers, A. Biere. SAT, Computer Algebra, Multipliers. Vampire 2019.

