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SAT:
Boolean satisfiability problem

Is ( x ∨ y ) ∧ ( ¬x ∨ ¬y ) satisfiable?
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SAT:
Boolean satisfiability problem

Is ( x ∨ y ) ∧ ( ¬x ∨ ¬y ) satisfiable?

Yes (x = T , y = F )

SAT solvers use clever trial-and-error to search for solutions
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Effectiveness of SAT solvers
SAT solvers can be freakishly effective at solving problems that
have nothing to do with logic.1

▶ Scheduling
▶ Discrete optimization
▶ Hardware and software verification
▶ Combinatorial problems like

colouring the positive integers as
far as possible so that a, b, and
a+ b are never all the same colour2

SAT solvers also produce verifiable certificates when problems have
no solutions.

1C. Bright, J. Gerhard, I. Kotsireas, V. Ganesh. Effective Problem Solving Using
SAT Solvers. Maple in Mathematics Education and Research, 2019.

2M. Heule. Schur Number Five. AAAI 2018.
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CAS:
Computer algebra system

Is 5915587277 prime?
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CAS:
Computer algebra system

Is 5915587277 prime?

isprime(5915587277); ⇒ true

CASs use clever algorithms to solve many mathematical problems
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Effectiveness of CASs

Computer algebra systems can perform calculations and
manipulate expressions from many branches of mathematics:

▶ Evaluating sums, integrals, and transforms
▶ Finding the shortest path between two vertices in a graph
▶ Computing symmetries of combinatorial objects

For example, are these two graphs isomorphic?
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Effectiveness of CASs
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Yes—and a computer algebra system can determine this.
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The MathCheck system

Since 2016, I’ve led the development of the first SAT+CAS system
MathCheck. It has been used at Waterloo, Toronto, Windsor,
Carleton, and Wilfrid Laurier.

I will now discuss some successful applications of MathCheck from
the last 2 years:

▶ Answering a 75-year-old open problem about the existence of
Williamson matrices and disproving a conjecture about perfect
quaternion sequences.

▶ Providing the first verifiable solution to the centuries-old
Lam’s Problem from finite geometry.3

3Best Paper Award in Memory of Jacques Calmet, Applicable Algebra in
Engineering, Communication and Computing, 2021.
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Application I:
Williamson Matrices
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Hadamard matrices

Hadamard matrices are square matrices with ±1 entries whose
rows are mutually orthogonal.

1 1 1 1

−1 1 −1 1

−1 1 1 −1

−1 −1 1 1

In 1893, Jacques Hadamard studied these matrices. They have
applications in error-correcting codes and many other areas.
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Order 92 example
In 1961, scientists from NASA searched for Hadamard matrices
while developing codes for communicating with spacecraft and
they found the first known Hadamard matrix of order 92.4

4L. Baumert, S. Golomb, M. Hall. Discovery of an Hadamard matrix of order 92.
Bulletin of the American Mathematical Society, 1962.
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Williamson’s construction

In 1944, John Williamson discovered a method of constructing
Hadamard matrices in many orders like this order 8 example:

1 1 1 1 1 −1 1 −1

1 1 1 1 −1 1 −1 1

−1 −1 1 1 −1 1 1 −1

−1 −1 1 1 1 −1 −1 1

−1 1 1 −1 1 1 −1 −1

1 −1 −1 1 1 1 −1 −1

−1 1 −1 1 1 1 1 1

1 −1 1 −1 1 1 1 1
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Williamson matrices

Williamson’s construction relies on finding a quadruple
(A,B,C ,D) of {±1}-matrices for which all of the off-diagonal
entries of A2 + B2 + C 2 + D2 are zero.

The matrices are said to be Williamson matrices if they are
symmetric and each row is a cyclic shift of the previous row; the
first rows are known as Williamson sequences.

Williamson matrices of order 5.
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The Williamson conjecture

Researchers in the field expected Williamson matrices to exist in all
orders5 and this became known as the Williamson conjecture.

Williamson found examples in orders n = 2k for k ≤ 5 and he
expressed interest in if this could be generalized:

5S. Golomb, L. Baumert. The Search for Hadamard Matrices. American
Mathematical Monthly, 1963.
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Williamson matrices of order 2k for 2 ≤ k ≤ 5
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Williamson matrices of order 2k

The question of if Williamson matrices exist in all orders 2k was
open for 75 years.

We ran exhaustive searches for Williamson matrices in all even
orders n ≤ 70. We found that Williamson matrices do exist for
n = 70 and many Williamson matrices exist in order 64.6

The search results showed that Williamson’s method generalizes to
all orders 2k .7

6C. Bright, I. Kotsireas, V. Ganesh. Applying computer algebra systems with SAT
solvers to the Williamson conjecture. Journal of Symbolic Computation, 2020.

7——. New Infinite Families of Perfect Quaternion Sequences and Williamson
Sequences. IEEE Transactions on Information Theory, 2020.
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Construction

If A, B are sequences of even length n, A is a Williamson
sequence, and B is an antipalindromic nega Williamson sequence,
then the perfect shuffle of

[A;A] and [B;−B]

is a Williamson sequence of length 4n.

The construction applies recursively to generate Williamson
sequences of all orders 2k .

It also generates perfect sequences over the quaternion group Q8.
A sequence (a0, . . . , an−1) is perfect if

∑n−1
i=0 aia

∗
i+k = 0 for all

k ̸≡ 0 (mod n).
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Previous searches (even orders)

In 2006, a computer algebra approach found Williamson matrices
in all even orders n ≤ 22.8

In 2016, a satisfiability approach found Williamson matrices in all
even orders n ≤ 30.9

The search space for order n = 70 is twenty-five orders of
magnitude larger than the search space for order n = 30.

8I. Kotsireas, C. Koukouvinos. Constructions for Hadamard matrices of Williamson
type. Journal of Combinatorial Mathematics and Combinatorial Computing, 2006.

9C. Bright, V. Ganesh, A. Heinle, I. Kotsireas, S. Nejati, K. Czarnecki.
MathCheck2: A SAT+CAS verifier for combinatorial conjectures. CASC 2016.
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SAT encoding

Let the Boolean variable ai represent the ith entry in the initial
row of the matrix A contains a 1.

a0
true

a1
true

a2
false

a3
false

a4
true

Using similar variables for B, C , and D, one can express that the
off-diagonal entries of A2 + B2 + C 2 + D2 are zero using
arithmetic circuits (which can be converted into a SAT instance).
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Simple setup

Encoding that Williamson
matrices of order n exist

SAT solver

Williamson matrices
or counterexample

However, this does not perform well, since a SAT solver will not
exploit mathematical facts about Williamson matrices.
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Power spectral density (PSD) filtering

If A is a Williamson sequence of length n then

PSDA(k) ≤ 4n

where PSDA(k) is the squared magnitude of the kth entry of the
Fourier transform of A = [a0, . . . , an−1].

In other words,
∣∣∑n−1

j=0 ajω
kj
∣∣2 ≤ 4n where ω is a primitive nth root

of unity.
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Search with PSD filtering

We will structure our search to efficiently

(1) compute PSD values; and
(2) block matrices with large PSD values.

 CASs excel at (1) and SAT solvers excel at (2).
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SAT+CAS learning for Williamson matrices

During the search the SAT solver will find partial solutions by
finding complete definitions for A, B, C , or D. . .

SAT solver CAS
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SAT+CAS learning for Williamson matrices

During the search the SAT solver will find partial solutions by
finding complete definitions for A, B, C , or D. . .

SAT solver CAS
PSD of A

PSDA(k) > 4n
for some k

block the matrix A (new constraint)
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Encoding comparison

The SAT+CAS method was significantly faster than the simple
SAT encoding and the speedup improved as the order increased:
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Results

MathCheck found over 100,000 new sets of Williamson matrices.
Fewer than 200 had previously been found by computers.

MathCheck also proved that n = 35 is the minimal counterexample
of the Williamson conjecture.10

These results lead us to propose the conjecture that Williamson
matrices exist in all even orders n. This is still open.

10Computer search had previously determined the minimal odd counterexample:
D. Ðoković. Williamson matrices of order 4n for n = 33, 35, 39. Discrete
Mathematics, 1993.
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Application II:
Lam’s Problem
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History

For over two thousand years, mathematicians tried to derive
Euclid’s “parallel postulate” from his other axioms for geometry.

The discovery of non-Euclidean geometries
in the 1800s showed this is impossible!
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History

For over two thousand years, mathematicians tried to derive
Euclid’s “parallel postulate” from his other axioms for geometry.

The discovery of non-Euclidean geometries
in the 1800s showed this is impossible!
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Finite projective planes

Finite projective planes satisfy the following axioms:
▶ Every pair of points define a unique line.
▶ Every pair of lines meet at a unique point.
▶ Every line contains n + 1 points for some order n.

order 1 order 2 order 3
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Projective planes of small orders

1 2 3 4 5 6 7 8 9 10
✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ?

Lam’s problem

Somehow, this problem has a
beauty that fascinates me as well
as many other mathematicians.

Clement Lam
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Projective planes of small orders

1 2 3 4 5 6 7 8 9 10
✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗

Lam’s problem
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Resolution of Lam’s problem

Lam et al.11 used custom-written software to show that a
projective plane of order ten does not exist.

We must trust the searches ran to completion—the authors were
upfront that mistakes were a real possibility.

MathCheck generated the first certifiable resolution of Lam’s
problem.12

11C. Lam, L. Thiel, S. Swiercz. The Nonexistence of Finite Projective Planes of
Order 10. Canadian Journal of Mathematics, 1989.

12C. Bright, K. Cheung, B. Stevens, I. Kotsireas, V. Ganesh. A SAT-based
Resolution of Lam’s Problem. AAAI 2021.
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SAT encoding

A projective plane of order n is equivalent to a quad-free
(0, 1)-matrix with n + 1 ones in each row and column. A quad-free
matrix contains no rectangle with 1s in the corners.

1 1 0
1 0 1
0 1 1

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1

1 0 0 0 1 0 0 0 1 1 0 0 0
0 0 1 1 0 0 0 1 0 1 0 0 0
0 1 0 0 0 1 1 0 0 1 0 0 0
1 0 0 0 0 1 0 1 0 0 1 0 0
0 1 0 1 0 0 0 0 1 0 1 0 0
0 0 1 0 1 0 1 0 0 0 1 0 0
1 0 0 1 0 0 1 0 0 0 0 1 0
0 1 0 0 1 0 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 0 1 1 1 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1 0 0 0 1
1 1 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 1 1 1

order 1 order 2 order 3

These constraints can be encoded in Boolean logic, but this is not
sufficient to solve Lam’s problem—it does not exploit the theorems
that make an exhaustive search feasible.
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Enter coding theory

The code generated by a projective plane is the row space of its
incidence matrix over GF(2) = {0, 1}. The weight of a binary word
is the number of 1s it contains.

In 1970, properties about how many words
of each weight must exist in the code
generated by a hypothetical projective
plane of order ten were derived.13

The code must contain words of weight 15,
16, or 19. These constraints can be reduced
to SAT, but the solver still needs help. . .

13E. Assmus. The projective plane of order ten? Combinatorial Aspects of Finite
Geometries, 1970.
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SAT+CAS learning for Lam’s problem

During the search the SAT solver will find partial solutions by
finding complete definitions for the first few lines of the plane. . .

SAT solver CAS
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SAT+CAS learning for Lam’s problem

During the search the SAT solver will find partial solutions by
finding complete definitions for the first few lines of the plane. . .

SAT solver CAS
isomorphism
certificateprev. seen

certificate

block the intermediate object
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Results

Searches for codewords of weight 15, 16, and 19:

Weight SAT-based CAS-based SAT+CAS
15 5 minutes 3–78 minutes 0.1 minutes
16 − 16,000 hours 30 hours
19 − 20,000 hours 16,000 hours

In the final case, a SAT+CAS search exhaustively generates all
possibilities for the first 19 points of the plane 150 times faster
than a pure SAT approach.
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Discrepancies

The lack of verifiable certificates has real
consequences. We found discrepancies with
the intermediate results of both Lam’s search
and an independent verification from 2011.14

On the right is a 51-column partial projective
plane determined not to exist in 2011, but
found by MathCheck.

14D. Roy. Confirmation of the non-existence of a projective plane of order 10.
Master’s thesis, Carleton University, 2011.
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Other MathCheck results (see uwaterloo.ca/mathcheck)

Problem New Result CAS Functionality
Williamson Found smallest counterexample Fourier transform

Even Williamson First verification in orders n ≤ 70 Fourier transform
Lam’s Problem First certifiable solution Graph isomorphism
Good Matrix Found 3 new counterexamples Fourier transform
Best Matrix First solution in order 57 Fourier transform

Complex Golay Verified lengths up to 28 Nonlinear optimizer
Ruskey–Savage First verification in order 5 Travelling salesman solver

Norine First verification in order 6 Shortest path solver
Kochen–Specker Improved lower bound to order 23 Graph isomorphism

SAT+CAS methods have also been used to find small circuits for
matrix multiplication15 and to verify arithmetic circuits.16

15M. Heule, M. Kauers, M. Seidl. New ways to multiply 3 × 3-matrices. Journal of
Symbolic Computation, 2021.

16D. Kaufmann, M. Kauers, A. Biere. SAT, Computer Algebra, Multipliers.
Vampire 2019.
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Conclusion

Searches that were previously out-of-reach have become feasible
due to SAT+CAS methods.

There are many problems where they have yet to be used! Perhaps
even in your own research area? (:
We are hiring research assistants—for more details:

curtisbright.com
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