
PhD Research Proposal
A SAT+CAS system for checking math conjectures

Curtis Bright

University of Waterloo

March 14, 2016

1 / 50

Motivation

The research areas of SMT [SAT-Modulo-Theories]
solving and symbolic computation are quite
disconnected. On the one hand, SMT solving has its
strength in efficient techniques for exploring
Boolean structures, learning, combining solving
techniques, and developing dedicated heuristics, but
its current focus lies on easier theories and it makes
use of symbolic computation results only in a rather
naive way.

Erica Ábrahám1

1Building bridges between symbolic computation and satisfiability
checking. ISSAC 2015.

2 / 50

Satisfiability checking

Problem statement
Given a logical formula, determine if it is satisfiable.

I A logical formula is an expression involving Boolean
variables and logical connectives such as ∧, ∨, ¬.

I A formula is satisfiable if there exists an assignment to the
variables which make the formula true.

3 / 50

Satisfiability checking

Example
Is (x ∨ y ∨ ¬z)∧ (¬x ∨ ¬y)∧ z satisfiable?

Yes, as shown by a tree of possible assignments:

x

y

z

E

T

E

F

T

z

X

T

E

F

F

T

y

z

X

T

E

F

T

z

E

T

E

F

F

F

4 / 50

Satisfiability checking

Example
Is (x ∨ y ∨ ¬z)∧ (¬x ∨ ¬y)∧ z satisfiable?

Yes, as shown by a tree of possible assignments:

x

y

z

E

T

E

F

T

z

X

T

E

F

F

T

y

z

X

T

E

F

T

z

E

T

E

F

F

F

4 / 50

DPLL algorithm

I Deduce: Simplify clauses to detect conflicts and infer new
values of variables.

I Decide: Choose an unassigned variable and assign it a value.
I Resolve: If a conflict occurs, learn a clause prohibiting the

current assignment and backjump (undo variable choices
leading to the conflict).

Deduce

Input

Conflict?

Decide

Done? Resolve
Top Level
Conflict?

Backjump

Return SAT Return UNSAT

no

yes yes

no

no yes

5 / 50

DPLL algorithm
Example
Is (x ∨ y ∨ ¬z)∧ (¬x ∨ ¬y ∨ ¬u)∧ z ∧ (¬y ∨ u) satisfiable?

Deduce

Input

Conflict?

Decide

Done? Resolve
Top Level
Conflict?

Backjump

Return SAT Return UNSAT

no

yes yes

no

no yes

Initial clauses

I x ∨ y ∨ ¬z
I ¬x ∨ ¬y ∨ ¬u
I z
I ¬y ∨ u

Deduce
From clause 3, z must be true. Simplified clauses:

I x ∨ y
I ¬x ∨ ¬y ∨ ¬u
I ¬y ∨ u

6 / 50

DPLL algorithm
Example
Is (x ∨ y ∨ ¬z)∧ (¬x ∨ ¬y ∨ ¬u)∧ z ∧ (¬y ∨ u) satisfiable?

Deduce

Input

Conflict?

Decide

Done? Resolve
Top Level
Conflict?

Backjump

Return SAT Return UNSAT

no

yes yes

no

no yes

Initial clauses

I x ∨ y ∨ ¬z
I ¬x ∨ ¬y ∨ ¬u
I z
I ¬y ∨ u

Deduce
From clause 3, z must be true. Simplified clauses:

I x ∨ y
I ¬x ∨ ¬y ∨ ¬u
I ¬y ∨ u

6 / 50

DPLL algorithm
Example
Is (x ∨ y ∨ ¬z)∧ (¬x ∨ ¬y ∨ ¬u)∧ z ∧ (¬y ∨ u) satisfiable?

Deduce

Input

Conflict?

Decide

Done? Resolve
Top Level
Conflict?

Backjump

Return SAT Return UNSAT

no

yes yes

no

no yes

Initial clauses

I x ∨ y ∨ ¬z
I ¬x ∨ ¬y ∨ ¬u
I z
I ¬y ∨ u

Deduce
From clause 3, z must be true. Simplified clauses:

I x ∨ y
I ¬x ∨ ¬y ∨ ¬u
I ¬y ∨ u

6 / 50

DPLL algorithm

Decide
Choose x to be true.

Deduce

Input

Conflict?

Decide

Done? Resolve
Top Level
Conflict?

Backjump

Return SAT Return UNSAT

no

yes yes

no

no yes

I x ∨ y
I ¬x ∨ ¬y ∨ ¬u
I ¬y ∨ u

Deduce
Propagate the fact that x is true. Simplified clauses:

I ¬y ∨ ¬u
I ¬y ∨ u

7 / 50

DPLL algorithm

Decide
Choose x to be true.

Deduce

Input

Conflict?

Decide

Done? Resolve
Top Level
Conflict?

Backjump

Return SAT Return UNSAT

no

yes yes

no

no yes

I x ∨ y
I ¬x ∨ ¬y ∨ ¬u
I ¬y ∨ u

Deduce
Propagate the fact that x is true. Simplified clauses:

I ¬y ∨ ¬u
I ¬y ∨ u

7 / 50

DPLL algorithm

Decide
Choose y to be true. Deduce

Input

Conflict?

Decide

Done? Resolve
Top Level
Conflict?

Backjump

Return SAT Return UNSAT

no

yes yes

no

no yes

I ¬y ∨ ¬u
I ¬y ∨ u

Deduce
Propagate the fact that y is true. Simplified clauses:

I ¬u
I u

Resolve
Conflict: No way to choose u . At least one variable assignment
must change, so we learn the clause ¬z ∨ ¬x ∨ ¬y .

8 / 50

DPLL algorithm

Decide
Choose y to be true. Deduce

Input

Conflict?

Decide

Done? Resolve
Top Level
Conflict?

Backjump

Return SAT Return UNSAT

no

yes yes

no

no yes

I ¬y ∨ ¬u
I ¬y ∨ u

Deduce
Propagate the fact that y is true. Simplified clauses:

I ¬u
I u

Resolve
Conflict: No way to choose u . At least one variable assignment
must change, so we learn the clause ¬z ∨ ¬x ∨ ¬y .

8 / 50

DPLL algorithm

Decide
Choose y to be true. Deduce

Input

Conflict?

Decide

Done? Resolve
Top Level
Conflict?

Backjump

Return SAT Return UNSAT

no

yes yes

no

no yes

I ¬y ∨ ¬u
I ¬y ∨ u

Deduce
Propagate the fact that y is true. Simplified clauses:

I ¬u
I u

Resolve
Conflict: No way to choose u . At least one variable assignment
must change, so we learn the clause ¬z ∨ ¬x ∨ ¬y .

8 / 50

DPLL algorithm

Backjump
Clauses after undoing the last variable choice:

Deduce

Input

Conflict?

Decide

Done? Resolve
Top Level
Conflict?

Backjump

Return SAT Return UNSAT

no

yes yes

no

no yes

I ¬y ∨ ¬u
I ¬y ∨ u
I ¬z ∨ ¬x ∨ ¬y

Deduce
Since x and z are true, clause 3 simplifies to ¬y and y must be
false. Simplified clauses: ∅

Satisfying assignment
Take x true, y false, and z true.

9 / 50

DPLL algorithm

Backjump
Clauses after undoing the last variable choice:

Deduce

Input

Conflict?

Decide

Done? Resolve
Top Level
Conflict?

Backjump

Return SAT Return UNSAT

no

yes yes

no

no yes

I ¬y ∨ ¬u
I ¬y ∨ u
I ¬z ∨ ¬x ∨ ¬y

Deduce
Since x and z are true, clause 3 simplifies to ¬y and y must be
false. Simplified clauses: ∅

Satisfying assignment
Take x true, y false, and z true.

9 / 50

DPLL algorithm

Backjump
Clauses after undoing the last variable choice:

Deduce

Input

Conflict?

Decide

Done? Resolve
Top Level
Conflict?

Backjump

Return SAT Return UNSAT

no

yes yes

no

no yes

I ¬y ∨ ¬u
I ¬y ∨ u
I ¬z ∨ ¬x ∨ ¬y

Deduce
Since x and z are true, clause 3 simplifies to ¬y and y must be
false. Simplified clauses: ∅

Satisfying assignment
Take x true, y false, and z true.

9 / 50

SAT-Modulo-Theories (SMT)

It is possible to consider the satisfiability problem for different
types of logical formulas, e.g., those of first-order logic over
various theories.

I theory of strings
I array theory
I bitvector theory
I theories of arithmetic

I integer or real
I linear or nonlinear

10 / 50

SAT-Modulo-Theories (SMT)

Example
Is the formula x 2 < 0∨ x 2 > 1 satisfiable in the integer theory of
arithmetic?

Yes, by taking x = 2.

11 / 50

SAT-Modulo-Theories (SMT)

Example
Is the formula x 2 < 0∨ x 2 > 1 satisfiable in the integer theory of
arithmetic?

Yes, by taking x = 2.

11 / 50

SMT Solvers
First, translate the given formula into a propositional one:

a︷ ︸︸ ︷
x 2 < 0∨

b︷ ︸︸ ︷
x 2 > 1 becomes a ∨ b

A SAT solver can then find a satisfying assignment (set a true).
A theory solver needs to be queried to determine if the
assignment yields a solution of the original formula (and if not,
why not).
Here the theory solver can produce the clause ¬a (i.e., x 2 > 0).

Input SAT/Theory
Interface

SAT solver

Theory solver

SAT UNSAT

Boolean abstraction

UNSAT/Solution

UNSAT + Reason/SolutionClauses

12 / 50

The MathCheck System

I Uses SAT and CAS functionality to finitely verify or
counterexample conjectures in mathematics2.

I Verified two conjectures in graph theory to new bounds.
I Similar to a SMT solver with the theory solver replaced by

a CAS.

Input SAT/CAS
Interface

SAT solver

CAS

SAT UNSAT

Learned clauses

UNSAT/Solution

Graph ConstraintsGraph Predicates

Authors
Edward Zulkoski, Vijay Ganesh, Krzysztof Czarnecki

2MathCheck: A Math Assistant via a Combination of Computer
Algebra Systems and SAT Solvers. CADE 2015.

13 / 50

The MathCheck2 System

I Also uses SAT and CAS functionality to finitely verify or
counterexample conjectures in mathematics3.

I Used to study conjectures in combinatorial design theory
about the existence of Hadamard matrices.

Problem Generator SAT

CAS

SAT UNSAT

SAT instance

SAT solver result
(Solution / UNSAT core)

Authors
Curtis Bright, Vijay Ganesh, Albert Heinle, Ilias Kotsireas,
Saeed Nejati, Krzysztof Czarnecki

3MathCheck2: A SAT+CAS Verifier for Combinatorial Conjectures.
Submitted to IJCAR 2016.

14 / 50

Contributions

I Demonstration of usefulness of employing SAT to
combinatorial conjectures.

I Three general techniques for improving the search.
I Verification that Williamson matrices of order 35 do not

exist.
I Description of an algorithm for finding Williamson matrices

of a given order (or showing none exist).
I Found 160 Hadamard matrices not in the library of the CAS

Magma.

15 / 50

Experimental Results

The result that Williamson matrices of order 35 do not exist was
shown in under 9 hours of computation time on SHARCNET4.
This was first shown by Ðoković5, who requested an independent
verification.

MathCheck2 was also able to find Williamson matrices for all
orders n < 35.

464-bit AMD Opteron processors running at 2.2 GHz
5Williamson matrices of order 4n for n = 33, 35, 39. Discrete

Mathematics.
16 / 50

Hadamard matrices

I square matrix with ±1 entries
I any two distinct rows are orthogonal

Example

H =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
−1 1 1 −1


Conjecture
An n × n Hadamard matrix exists for any n a multiple of 4.

17 / 50

Verifying H is Hadamard

When H is of order n , want to have

HHT = nIn .

Need to verify that
(n
2

)
inner products are 0.

Example
1 1 1 1
1 −1 1 −1
1 1 −1 −1
−1 1 1 −1




1 1 1 1
1 −1 1 −1
1 1 −1 −1
−1 1 1 −1


T

=


4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4



18 / 50

Williamson Matrices

I n × n matrices A, B , C , D
I entries ±1
I symmetric, circulant
I A2 +B2 +C 2 +D2 = 4nIn

Example

A = B =

[
1 −1
−1 1

]
C = D =

[
1 1
1 1

]

Williamson construction
A Hadamard matrix of order 4n can be constructed from
Williamson matrices.

19 / 50

Symmetric and Circulant Matrices

Such matrices are defined by their first
⌈n+1

2

⌉
entries so we may

refer to them as if they were sequences.

Examples (n = 5 and 6)


a0 a1 a2 a2 a1
a1 a0 a1 a2 a2
a2 a1 a0 a1 a2
a2 a2 a1 a0 a1
a1 a2 a2 a1 a0





a0 a1 a2 a3 a2 a1
a1 a0 a1 a2 a3 a2
a2 a1 a0 a1 a2 a3
a3 a2 a1 a0 a1 a2
a2 a3 a2 a1 a0 a1
a1 a2 a3 a2 a1 a0


symmetric conditions circulant conditions

20 / 50

Naive Hadamard Encoding

The property “H is a Hadamard matrix” can be expressed as a
logical formula.
Each entry of H is represented using a Boolean variable
encoding with BV(1) = true and BV(−1) = false.
Multiplication becomes XNOR under this encoding, i.e.,

BV(x · y) = ¬(BV(x)⊕ BV(y)) for x , y ∈ {±1}.

21 / 50

Naive Hadamard Encoding

Arithmetic formula encoding

n−1∑
k=0

hik · hjk = 0 for all i 6= j .

Boolean variable encoding
Using ‘product’ variables pijk := ¬(BV(hik)⊕ BV(hjk)) this
becomes the cardinality constraints(

pijk true in
{
pijk
}n−1
k=0

)
=

n
2

for all i 6= j .

22 / 50

Naive Hadamard Encoding

A binary adder consumes Boolean values and produces Boolean
values; when thought of as bits, the outputs contain the binary
representation of how many inputs were true.

a
b

s = a ⊕ b

c = a ∧ b

Binary adder encoding
In order to encode the cardinality constraints, we use a network
of binary adders with

{
pijk
}n−1
k=0 as inputs.

The output will be blog2 nc+ 1 new variables which store the
count of how many inputs are true.

23 / 50

Williamson Encoding

Similar to general encoding, but only using the variables{
(ai , bi , ci , di)

}d(n−1)/2e
i=0 .

Because of the symmetric and circulant properties, only need to
verify that the first dn−1

2 e off-diagonal entries of

A2 +B2 +C 2 +D2

are zero. This condition can be rewritten using periodic
autocorrelation.

24 / 50

Periodic Autocorrelation Function

The periodic autocorrelation function of the sequence A is

PAFA(s) :=
n−1∑
k=0

aka(k+s) mod n .

Periodic and symmetric properties

I PAFA(s) = PAFA(s mod n)
I PAFA(s) = PAFA(n − s)

25 / 50

Periodic Autocorrelation Function

Example
The periodic autocorrelation of A = [1, 1,−1,−1, 1] is given by:

PAFA(0) = 12 + 12 + (−1)2 + (−1)2 + 12 = 5

PAFA(1) = 12 + (−1) + (−1)2 + (−1) + 12 = 1

PAFA(2) = (−1) + (−1) + (−1) + (−1) + 12 = −3

PAFA(3) = (−1) + 12 + (−1) + (−1) + (−1) = −3

PAFA(4) = 12 + 12 + (−1) + (−1)2 + (−1) = 1

26 / 50

Periodic Autocorrelation Function

Example
The periodic autocorrelation of A = [1, 1,−1,−1, 1] is given by:

PAFA(0) = 12 + 12 + (−1)2 + (−1)2 + 12 = 5

PAFA(1) = 12 + (−1) + (−1)2 + (−1) + 12 = 1

PAFA(2) = (−1) + (−1) + (−1) + (−1) + 12 = −3

PAFA(3) = (−1) + 12 + (−1) + (−1) + (−1) = −3

PAFA(4) = 12 + 12 + (−1) + (−1)2 + (−1) = 1

26 / 50

Periodic Autocorrelation Function

Example
The periodic autocorrelation of A = [1, 1,−1,−1, 1] is given by:

PAFA(0) = 12 + 12 + (−1)2 + (−1)2 + 12 = 5

PAFA(1) = 12 + (−1) + (−1)2 + (−1) + 12 = 1

PAFA(2) = (−1) + (−1) + (−1) + (−1) + 12 = −3

PAFA(3) = (−1) + 12 + (−1) + (−1) + (−1) = −3

PAFA(4) = 12 + 12 + (−1) + (−1)2 + (−1) = 1

26 / 50

Periodic Autocorrelation Function

Example
The periodic autocorrelation of A = [1, 1,−1,−1, 1] is given by:

PAFA(0) = 12 + 12 + (−1)2 + (−1)2 + 12 = 5

PAFA(1) = 12 + (−1) + (−1)2 + (−1) + 12 = 1

PAFA(2) = (−1) + (−1) + (−1) + (−1) + 12 = −3

PAFA(3) = (−1) + 12 + (−1) + (−1) + (−1) = −3

PAFA(4) = 12 + 12 + (−1) + (−1)2 + (−1) = 1

26 / 50

Periodic Autocorrelation Function

Example
The periodic autocorrelation of A = [1, 1,−1,−1, 1] is given by:

PAFA(0) = 12 + 12 + (−1)2 + (−1)2 + 12 = 5

PAFA(1) = 12 + (−1) + (−1)2 + (−1) + 12 = 1

PAFA(2) = (−1) + (−1) + (−1) + (−1) + 12 = −3

PAFA(3) = (−1) + 12 + (−1) + (−1) + (−1) = −3

PAFA(4) = 12 + 12 + (−1) + (−1)2 + (−1) = 1

26 / 50

Williamson Encoding

The sth entry of
A2 +B2 +C 2 +D2

is
PAFA(s) + PAFB (s) + PAFC (s) + PAFD(s).

To verify A, B , C , D are Williamson matrices, we want to verify
that this is 0 for s = 1, . . . , dn−1

2 e.

27 / 50

Compression

The m-compression of a sequence A = [a0, . . . , an−1] of length
n = dm is the sequence of length d

A(d) :=
[
a(d)
0 , . . . , a(d)

d−1

]
where a(d)

j :=

m−1∑
k=0

aj+kd .

Example
The sequence A = [a0, a1, a2, a3, a4, a5, a6, a7, a8, a9] has the
5-compression[

a0 + a2 + a4 + a6 + a8, a1 + a3 + a5 + a7 + a9
]

and the 2-compression[
a0 + a5, a1 + a6, a2 + a7, a3 + a8, a4 + a9

]
.

28 / 50

Compression

The m-compression of a sequence A = [a0, . . . , an−1] of length
n = dm is the sequence of length d

A(d) :=
[
a(d)
0 , . . . , a(d)

d−1

]
where a(d)

j :=

m−1∑
k=0

aj+kd .

Example
The sequence A = [a0, a1, a2, a3, a4, a5, a6, a7, a8, a9] has the
5-compression[

a0 + a2 + a4 + a6 + a8, a1 + a3 + a5 + a7 + a9
]

and the 2-compression[
a0 + a5, a1 + a6, a2 + a7, a3 + a8, a4 + a9

]
.

28 / 50

Useful Properties of Compressed Sequences

Lemma 1
Let A be a ±1-sequence of length n = dm .
The entries of the m-compression of A have absolute value at
most m and have the same parity as m .

Lemma 2
The compression of a symmetric sequence is also symmetric.

29 / 50

Technique 1: Sum-of-squares Decomposition

Full compression
Let A, B , C , D be Williamson sequences with n-compressions
A ′, B ′, C ′, D ′. A theorem of Ðoković–Kotsireas6 says that

PAFA ′(0) + PAFB ′(0) + PAFC ′(0) + PAFD ′(0) = 4n

which is just

rowsum(A)2 + rowsum(B)2 + rowsum(C)2 + rowsum(D)2 = 4n .

Also, each rowsum has the same parity as n by Lemma 1.

6Compression of periodic complementary sequences and applications.
Designs, Codes and Cryptography.

30 / 50

Technique 1: Sum-of-squares Decomposition

Why is this useful?
CAS functions exist which can determine all possible solutions of

w2 + x 2 + y2 + z 2 = 4n w , x , y , z ≡ n (mod 2).

This tells us all possibilities for the rowsums of A, B , C , D .
We can then use binary adders to encode the constraints

rowsum(A) = w rowsum(B) = x

rowsum(C) = y rowsum(D) = z .

31 / 50

Technique 1: Sum-of-squares Decomposition

Example
When n = 35, there are exactly three ways to write 4n as a sum
of four positive odd squares in ascending order:

12 + 32 + 32 + 112 = 4 · 35
12 + 32 + 72 + 92 = 4 · 35
32 + 52 + 52 + 92 = 4 · 35

32 / 50

Williamson Equivalence Operations
1. Ordering

The Williamson matrices A, B , C , D can be re-ordered with
impunity.
Given this, we may enforce the constraint

|rowsum(A)| 6 |rowsum(B)| 6 |rowsum(C)| 6 |rowsum(D)|.

33 / 50

Williamson Equivalence Operations
2. Negation

The entries in any Williamson matrix A, B , C , D may be
negated without affecting the Williamson conditions.
Given this, we may enforce the constraint

0 6 rowsum(X) for X = A,B ,C ,D .

Alternatively, when n is odd, we can use

rowsum(X) ≡ n (mod 4) for X = A,B ,C ,D .

In this case, Williamson showed that aibicidi = −1 for all
1 6 i 6 n − 1.

34 / 50

Williamson Equivalence Operations
2. Negation

The entries in any Williamson matrix A, B , C , D may be
negated without affecting the Williamson conditions.
Given this, we may enforce the constraint

0 6 rowsum(X) for X = A,B ,C ,D .

Alternatively, when n is odd, we can use

rowsum(X) ≡ n (mod 4) for X = A,B ,C ,D .

In this case, Williamson showed that aibicidi = −1 for all
1 6 i 6 n − 1.

34 / 50

Technique 2: Divide-and-conquer

For efficiency reasons, we want to partition the search space into
subspaces. An effective way to do this is to have each subspace
contain one possibility for the compressions of A, B , C , D .

The generator script uses Lemmas 1 and 2 to determine all
possible compressions, and the ÐK theorem to remove
possibilities whose uncompressions are necessarily invalid (for
example, because their power spectral density is too large).

35 / 50

Power Spectral Density

The power spectral density of a sequence A is

PSDA(s) := |DFTA(s)|
2

where DFTA is the discrete Fourier transform of A.

Example
The power spectral density of A = [1, 1,−1,−1, 1] is given by:

PSDA(0) = 12 = 1

PSDA(1) ≈ 3.2362 = 10.472

PSDA(2) ≈ (−1.236)2 = 1.528

PSDA(3) ≈ (−1.236)2 = 1.528

PSDA(4) ≈ 3.2362 = 10.472

36 / 50

Ðoković–Kotsireas Theorem

Let A, B , C , D be Williamson sequences. For all s ∈ Z

PSDA(s) + PSDB (s) + PSDC (s) + PSDD(s) = 4n

and these still hold if A, B , C , D are replaced with their
compressions.

Corollary
If PSDX (s) > 4n for some s then X (or any sequence which
compresses to X) cannot be a Williamson sequence.

37 / 50

Technique 2: Divide-and-conquer

For n = 35 with 7-compression, the following is one of 41
compressions which satisfy the ÐK condition:

A(5) = [5, 1,−3,−3, 1]

B(5) = [−3, 3,−3,−3, 3]

C (5) = [−3, 1,−1,−1, 1]

D(5) = [1,−3,−3,−3,−3]

38 / 50

Technique 2: Divide-and-conquer

If n has more than one nontrivial factor it is possible to perform
compression by both factors. This increases the number of
subspaces, but decreases the size of each subspace.

Example
Using 5 and 7-compression on n = 35 lead to the following
number of subspaces for each decomposition type:

Instance type # subspaces

12 + 32 + 32 + 112 6960
12 + 32 + 72 + 92 8424
32 + 52 + 52 + 92 6290

39 / 50

Technique 3: UNSAT Core

When an instance is found to be unsatisfiable, some SAT solvers
can generate an UNSAT core containing which of those
variables lead to the UNSAT result. We can prune instances
which set the same variables to the same values.

Example
The n = 35 instances contained 3376 variables but only 168 were
set differently between instances (those which encode the
rowsum and compression values).

40 / 50

Experimental Results

Timings on SHARCNET for Williamson orders 25 6 n 6 35 are
below. The number of SAT calls which successfully returned a
result is in parenthesis. A hyphen denotes a timeout after 24h.

Order Base Sum-of-squares Divide-and-conquer UNSAT Core
25 317s (1) 1702s (4) 408s (179) 408s (179)
26 865s (1) 3818s (3) 61s (3136) 34s (1592)
27 5340s (1) 8593s (3) 1518s (14994) 1439s (689)
28 7674s (1) 2104s (2) 234s (13360) 158s (439)
29 - 21304s (1) N/A N/A
30 1684s (1) 36804s (1) 139s (370) 139s (370)
31 - 83010s (1) N/A N/A
32 - - 96011s (13824) 95891s (348)
33 - - 693s (8724) 683s (7603)
34 - - 854s (732) 854s (732)
35 - - 31816s (21674) 31792s (19356)

41 / 50

Future Work
1. Extend Hadamard results

I Search larger orders and find new inequivalent Hadamard
matrices.

I Explore different construction types, such as Hadamard
matrices with (one or two) circulant cores. These are
defined with a similar number of variables as the Williamson
construction and the second type is conjectured to exist for
all orders 4n (Kotsireas et al.7).

I Extend our system to find all inequivalent matrices of a
given order. Currently, the number of inequivalent
Williamson matrices is known only for odd n < 60.

7Hadamard ideals and Hadamard matrices with two circulant cores.
European Journal of Combinatorics.

42 / 50

Future Work
2. Support other conjectures

I Search for other combinatorial objects which can be defined
using the autocorrelation function; Kotsireas lists at least 11
different types8:

number/type
of sequences

defining
property name

2 binary aper. autoc. 0 Golay sequences
2 binary per. autoc. 0 Hadamard matrices
2 binary per. autoc. 2 D-optimal matrices
2 binary per. autoc. −2 Hadamard matrices
2 ternary aper. autoc. 0 TCP
2 ternary per. autoc. 0 Weighing matrices
3 binary aper. autoc. const. Normal sequences
4 binary aper. autoc. 0 Base sequences
4 binary aper. autoc. 0 Turyn type sequences
4 ternary aper. autoc. 0 T-sequences

2 . . . 12 binary per. autoc. zero PCS

8Algorithms and Metaheuristics for Combinatorial Matrices. Handbook of
Combinatorial Optimization.

43 / 50

Future Work
2. Support other conjectures

I Some use the aperiodic autocorrelation function, defined by

AAFA(s) :=
n−s−1∑
k=0

ak āk+s for s = 0, . . . , n − 1.

I For example, complex Golay sequences are two sequences
A, B ∈ {±1,±i }n which satisfy

AAFA(s) +AAFB (s) = 0 for s = 1, . . . , n − 1.

44 / 50

Future Work
3. Extend SAT solver programmatically

I Make custom modifications to the SAT solvers used to run
domain-specific code tailored to each conjecture.

I Ganesh et al.9 introduced a special API for
programmatically influencing the behaviour of a SAT solver
by generating problem-specific learned clauses as the search
progresses. This approach was shown to be up to 100 times
more efficient in the context of RNA folding problems.

I Benefits include increased expressiveness, efficiency, and
better leverage of CAS functionality.

9Lynx: A programmatic SAT solver for the RNA-folding problem.
Theory and Applications of Satisfiability Testing–SAT 2012.

45 / 50

Future Work
3. Extend SAT solver programmatically

Example 1
The Williamson instances required encoding constraints like
rowsum(A) = 1 from which we can determine how many of
a0, . . . , an−1 must be true.

We can have the SAT solver keep track of this count and
backjump whenever a partial assignment is inconsistent with the
constraint.

46 / 50

Williamson Equivalence Operations
3. Permuting entries

We can reorder the entries of the generating matrices with the
rule ai 7→ aki mod n where k is any number coprime with n , and
similarly for bi , ci , di (the same reordering must be applied to
each).

47 / 50

Future Work
3. Extend SAT solver programmatically

Example 2
Calling CAS functions from inside the SAT solver will allow
theory-specific lemmas to be learned, such as those detecting
symmetries and pruning isomorphic solutions.

The Williamson equivalence operation of permuting entries
would be difficult to encode using propositional formulae but can
be easily computed by a CAS.

48 / 50

Conclusions

We have. . .
I Presented the advantages of utilizing the power of SAT

solvers in combination with domain specific knowledge and
algorithms provided by computer algebra systems.

I Outlined how such a strategy can be useful for studying a
wide variety of conjectures in combinatorics, and potential
ways to improve such a strategy.

I Performed a requested verification of a nonexistence result
using a new algorithm and techniques which generalize to
other conjectures.

I Submitted new matrices to Magma’s Hadamard database,
including some generated by Williamson matrices of even
order.

49 / 50

References
[1] Erika Ábrahám.

Building bridges between symbolic computation and satisfiability checking.
In Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation,
pages 1–6. ACM, 2015.

[2] Vijay Ganesh, Charles W O’Donnell, Mate Soos, Srinivas Devadas, Martin C Rinard, and
Armando Solar-Lezama.
Lynx: A programmatic SAT solver for the RNA-folding problem.
In Theory and Applications of Satisfiability Testing–SAT 2012, pages 143–156. Springer, 2012.

[3] Ilias S Kotsireas.
Algorithms and metaheuristics for combinatorial matrices.
In Handbook of Combinatorial Optimization, pages 283–309. Springer, 2013.

[4] Ilias S. Kotsireas, Christos Koukouvinos, and Jennifer Seberry.
Hadamard ideals and Hadamard matrices with two circulant cores.
European Journal of Combinatorics, 27(5):658–668, 2006.

[5] Dragomir Ž Ðoković.
Williamson matrices of order 4n for n = 33, 35, 39.
Discrete mathematics, 115(1):267–271, 1993.

[6] Dragomir Ž Ðoković and Ilias S Kotsireas.
Compression of periodic complementary sequences and applications.
Designs, Codes and Cryptography, 74(2):365–377, 2015.

[7] Edward Zulkoski, Vijay Ganesh, and Krzysztof Czarnecki.
MathCheck: A math assistant via a combination of computer algebra systems and SAT
solvers.
In Amy P. Felty and Aart Middeldorp, editors, Automated Deduction - CADE-25, volume 9195
of Lecture Notes in Computer Science, pages 607–622. Springer International Publishing, 2015.

50 / 50

