Extremal examples in the *abc* conjecture

Curtis Bright

University of Waterloo

March 27, 2014

The *abc* conjecture

• Three natural numbers a, b, c are said to be an *abc triple* if they do not share a common factor and

$$a+b=c.$$

• The *abc* conjecture says that if *a*, *b*, *c* is a large *abc* triple then *abc* cannot be 'very composite'.

Example *abc* triples

• A typical *abc* triple:

$$3^{10} \cdot 109 + 1 = 2 \cdot 11 \cdot 292561$$

• An exceptional *abc* triple:

$$3^{10} \cdot 109 + 2 = 23^5$$

How to measure 'compositeness'

• Define the *radical* of *abc* to be the product of the primes in *abc*:

$$\operatorname{rad}(abc) \coloneqq \prod_{p \mid abc} p$$

• Exceptional *abc* examples have relatively small radical.

The formal statement

• The *abc* conjecture states that every *abc* triple satisfies

$$c = O(\operatorname{rad}(abc)^{1+\epsilon})$$

for every $\varepsilon > 0$.

Family of exceptional examples

• Note that $3^{2^m} \equiv 1 \pmod{2^{m+1}}$, so

$$2^{m+1}k + 1 = 3^{2^m}$$

is a family of abc triples, where k is a positive integer.

• Here $\operatorname{rad}(abc) \leqslant 2 \cdot 3 \cdot k$, and $k = \frac{c-1}{2^{m+1}} < \frac{c}{2^{m+1}}$, so

$$\frac{2^m}{3}\operatorname{rad}(abc) < c$$

Conjecture is false for $\varepsilon=0$

• Thus there are infinitely many *abc* triples which satisfy

 $N \operatorname{rad}(abc) < c$

for every N > 0.

Better exceptional examples

• We'll use arguments from the geometry of numbers to construct infinitely many *abc* triples which satisfy

$$\exp\Bigl(\frac{6\sqrt{\log c}}{\log\log c}\Bigr)\operatorname{rad}(abc) < c.$$

S-units

- Let S be a set of prime numbers.
- An *S*-unit is defined to be a rational number whose numerator and denominator in lowest terms are only divisible by primes in *S*.

$$S ext{-units}\coloneqq \left\{\pm\prod_{p_i\in S}p_i^{e_i}: e_i\in\mathbb{Z}
ight\}$$

• The *height* of an S-unit p/q is $h(p/q) \coloneqq \max\{|p|, |q|\}$.

The odd prime number lattice

• Consider the lattice L_n generated by the rows b_1, \ldots, b_n of the matrix

$$\begin{bmatrix} \boldsymbol{b}_1 \\ \boldsymbol{b}_2 \\ \boldsymbol{b}_3 \\ \vdots \\ \boldsymbol{b}_n \end{bmatrix} = \begin{bmatrix} \log 3 & & & \\ & \log 5 & & \\ & & \log 7 & \\ & & & \ddots & \\ & & & & \log p_n \end{bmatrix}$$

where p_i denotes the *i*th odd prime number.

Relationship between L_n and S-units

• There is an isomorphism

$$\sum_{i=1}^n e_i oldsymbol{b}_i \leftrightarrow \prod_{i=1}^n p_i^{e_i}$$

between the points of L_n and the positive $\{p_1, \ldots, p_n\}$ -units.

Lemma 1

• Let $x = \sum_{i=1}^{n} e_i b_i$ and let $\prod_{i=1}^{n} p_i^{e_i} = p/q$ be expressed in lowest terms. Then:

$$egin{aligned} \|x\|_1 &= \sum_{i=1}^n ig| e_i \log p_i ig| \ &= \sum_{e_i > 0} e_i \log p_i - \sum_{e_i < 0} e_i \log p_i \ &= \log p + \log q \ &\geqslant \max\{\log p, \log q\} \ &= \log h(p/q) \end{aligned}$$

Lemma 2

• The determinant of L_n has a simple form:

$$\det(L_n) = \prod_{i=1}^n \log p_i$$

The kernel sublattice

- Let P be the set of positive $\{p_1, \ldots, p_n\}$ -units.
- Consider the homomorphism $\varphi \colon P \to (\mathbb{Z}/2^m\mathbb{Z})^*$ of reduction mod 2^m .
- The subgroup ker φ of P is isomorphic to a sublattice L_{n,m} of L_n:

$$L_{n,m} \coloneqq \bigg\{ \sum_{i=1}^n e_i b_i : \prod_{i=1}^n p_i^{e_i} \equiv 1 \pmod{2^m} \bigg\}.$$

$L_{n,m}$ really is a lattice

- Discrete as it is a subset of L_n .
- Contains the *n* linearly independent vectors $\operatorname{ord}_{2^m}(p_i)b_i$.
- If $\sum e_i b_i$ and $\sum f_i b_i$ are in $L_{n,m}$, then so is $\sum (e_i \pm f_i) b_i$:

$$\prod p_i^{e_i\pm f_i}\equiv \prod p_i^{e_i}\cdot \prod p_i^{\pm f_i}\equiv 1 \pmod{2^m}$$

What does $L_{n,m}$ look like?

• For m = 1, reducing an S-unit mod 2^m necessarily gives 1, since all primes in $S = \{p_1, \ldots, p_n\}$ are odd.

• Thus $L_{n,1}$ is the full lattice L_n .

• When n = 2, we can plot $L_{n,m}$ in the plane...

	20-1
•••••••••••••••••	
••••••••••••••••••	••••••••••••••••••••••••••••••
••••••	• • • • • • • • • • • • • • • • • • • •
••••••	
· • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
· • • • • • • • • • • • • • • • • • • •	· 0 · · · · · · · · · · · · · · · · · ·
	· 0 · · · · · · · · · · · · · · · · · ·
-••••••••••••••••••••••••••••••••••••	20 [,]
	· 0 · · · · · · · · · · · · · · · · 20 · · · ·
- 20 - 10 - 10	0 20
	0
	0 20 20
<u>-</u> 20 <u>-</u> 10 	0 20 20 7-
±20 ± 10 ± 10 ± 10 ± 10 ± 10 ± 10 ± 10 ±	0 20 20
	0 20 7-
	0
	0 20 20 -
	0 20 0- 0-
±20 ±10 ±10 ±10 ±10 ±10 ±10 ±10 ±10 ±10 ±1	0 20 7-
	0 20 10- 10-

 $L_{2,1}$

٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	÷ •	•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	30	÷ •	•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	40-	•	•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	• •	•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	• •	•	•	•	٠	٠	٠	٠	٠	•	٠	•
٠	•	•	٠	٠	٠	٠	٠	٠	٠	•	• •	•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠
٠	•	•	٠	٠	٠	٠	٠	٠	٠	•	• •	•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	• •	•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠
٠	•	•	٠	٠	٠	٠	٠	٠	٠	10-	• •	•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠
٠	•	•	٠	٠	٠	٠	٠	٠	٠	•	÷ .	•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	÷ .	•	•	٠	٠	٠	٠	٠	٠	•	٠	٠
٠	٠	•	•	•	٠	٠	٠	٠	٠	•	• •	•	•	•	٠	•	٠	•	•	•	•	•
٠	•	•	٠	٠	٠	٠	٠	٠	٠	•	÷ .	•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠
٠	٠	•	٠	٠	٠	٠	٠	٠	٠	•	• •	•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠
	•	•	•	•	•	•	•	•		•		•	•	•	•	•	•		•	•	•	•
٠	• .	-20	•	٠	٠	٠	10	٠	٠	• 0	•	•	٠	٠	•1	0•	٠	٠	٠	20	٠	٠
٠	٠	•	٠	٠	٠	٠	•	٠	٠	•	÷ •	•	٠	٠	•	•	٠	٠	٠	•	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	• .	÷ •	•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠
٠	•	•	٠	•	٠	٠	٠	٠	٠	•	÷ •	•	•	٠	٠	٠	٠	٠	٠	•	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	÷ •	•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	- f 0 -	÷ •	•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠
٠	•	•	٠	•	٠	٠	•	٠	٠	•	÷ •	•	٠	٠	٠	٠	٠	٠	٠	•	٠	•
٠	•	•	٠	٠	٠	٠	٠	٠	٠	•	÷ •	•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠
٠	٠	•	٠	٠	٠	٠	٠	٠	٠	•	÷ •	•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠
٠	•	•	٠	٠	٠	٠	٠	٠	٠	•	÷ •	•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠
٠	•	•	٠	٠	٠	٠	٠	٠	٠	80	÷ .	•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	-40-	•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
•	•	•	•	•	٠	٠	٠	٠	٠	•	÷ -	•	•	•	٠	•	٠	•	•	•	•	•
٠	•	•	•	•	٠	٠	٠	•	•	•	•	•	•	٠	٠	٠	٠	•	•	•	•	٠
											•											
										-												

 $L_{2,2}$

•	•	•	•	•	•	•	•	•	•	•].	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•		20-		•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	••	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	10 -	• •	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	••	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	••	•	•	•	•	•	•	•	•	•	•
	•	-20	•	•,	•	•	10	•	-10	0	† •	•	•	•	1. 0	•	•	•	20	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
• • •	• • •	• • •	• • •	• • •	•	• • •	•	•	•	- 10 -		•	•	•	•	•	•	• • •	•	• • •	• • •
• • •	• • •	• • • •	• • • •	• • • •	• • •	• • •	•	• • •	• • •	- 10 -		• • •	• • •	•	•	• • •	• • • •	• • • •	• • •	• • • •	• • •
• • • •	•	• • • •	• • • •	- 10 -		• • • •	• • • •	•	•	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •						
• • • •	•	• • • •	• • • •	- 10 - - 20 -		• • •	• • • •	•	•	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •						
• • • •	•	• • • •	• • • •	- f0 - - 20 -		• • • •	• • • •	•	•	• • • •	• • • •	• • • •	• • • •	• • • •	• • • •						

Short vectors in $L_{n,m}$ give good *abc* triples

• We just saw $(-22\log 3, 2\log 5) \in L_{2,10}$, i.e.,

$$3^{-22} \cdot 5^2 \equiv 1 \pmod{2^{10}}$$

which can be rewritten as

$$2^{10}k + 5^2 = 3^{22}$$

for some positive integer k. This *abc* triple satisfies

 $cpprox 3.1\cdot 10^{10}\ {
m rad}(abc)pprox 4.6\cdot 10^8.$

The index of $L_{n,m}$ in L_n

- 3 and 5 generate $(\mathbb{Z}/2^m\mathbb{Z})^*$, so $\varphi(P) = (\mathbb{Z}/2^m\mathbb{Z})^*$ when $n \ge 2$.
- Since $L_n \cong P$ and $L_{n,m} \cong \ker \varphi$, we have

$$L_n/L_{n,m} \cong (\mathbb{Z}/2^m\mathbb{Z})^*$$

by the first isomorphism theorem.

• Thus the index of $L_{n,m}$ in L_n is $|(\mathbb{Z}/2^m\mathbb{Z})^*| = 2^{m-1}$.

Hermite's constant

• Hermite's constant is the smallest positive γ_n such that a lattice of rank n always contains a nonzero vector x with

 $\|\boldsymbol{x}\|^2 \leqslant \gamma_n \det(L)^{2/n}.$

Bounds on Hermite's constant

• By Minkowski's theorem,

$$\gamma_n \leqslant 4\omega_n^{-2/n} \sim \frac{2n}{\pi e} \approx 0.234n$$

where ω_n is the volume of the *n*-dimensional unit sphere.

• Kabatiansky & Levenshtein showed

$$\gamma_n \leqslant rac{2n}{4^{0.599}\pi e} pprox 0.102n$$

for sufficiently large n.

Hermite's constant in Manhattan

• The one-norm hermite constant is the smallest positive δ_n such that a lattice of rank n always contains a nonzero vector x with

 $\|\boldsymbol{x}\|_1 \leqslant \delta_n \det(L)^{1/n}.$

- Since $\|x\|_1 \leqslant \sqrt{n} \|x\|_2$, one has that $\delta_n \leqslant \sqrt{n\gamma_n} = O(n)$.
- Let δ be a constant such that $\delta_n \leq n/\delta$ for all sufficiently large n.
 - By Minkowski's theorem, one can take $\delta \coloneqq e$.

Lemma 3

 For all m ≥ 1 and sufficiently large n, there exists an abc triple satisfying:

$$rac{2^{m-1}}{\prod_{i=1}^n p_i} \operatorname{rad}(abc) \leqslant c \ \log c \leqslant rac{n}{\delta} \Big(2^{m-1} \prod_{i=1}^n \log p_i \Big)^{1/n}$$

Proof of Lemma 3

• By definition of δ , for all sufficiently large n there exists a nonzero $x \in L_{n,m}$ with

$$\|\boldsymbol{x}\|_1 \leqslant \frac{n}{\delta} (\det(L_{n,m}))^{1/n}.$$

• Let $x = \sum_{i=1}^{n} e_i b_i$ and let $\prod_{i=1}^{n} p_i^{e_i} = p/q$ be expressed in lowest terms. By construction of the kernel sublattice,

 $p/q \equiv 1 \pmod{2^m}$.

Proof of Lemma 3

• Let $c := \max\{p, q\}$, $b := \min\{p, q\}$, and a := c - b. Then

$$2^m k + b = c$$

for some positive integer $k = a/2^m \leqslant c/2^m$.

• Examining the prime factorizations of a, b, c:

 $\operatorname{rad}(a) \leqslant 2k \leqslant c/2^{m-1} \ \operatorname{rad}(bc) \leqslant \prod_{i=1}^n p_i$

• The first inequality follows.

Proof of Lemma 3

• The second inequality follows using Lemmas 1 and 2:

$$egin{aligned} \log c &= \log \max\{p,q\} \ &= \log h(p/q) \ &\leqslant \|m{x}\|_1 \ &\leqslant rac{n}{\delta} ig(\det(L_{n,m})ig)^{1/n} \ &= rac{n}{\delta} ig(2^{m-1}\prod_{i=1}^n\log p_iig)^{1/n} \end{aligned}$$

How to choose m optimally?

• For convenience, let *R* denote the upper bound on the second inequality. Rewriting the inequalities in terms of *R*:

$$rac{(\delta R/n)^n}{\prod_{i=1}^n p_i \log p_i} \operatorname{rad}(abc) \leqslant c \ \log c \leqslant R$$

Taking the log...

$$n \log \Bigl(\frac{\delta R}{n} \Bigr) - \sum_{i=1}^n \log p_i - \sum_{i=1}^n \log \log p_i + \log \operatorname{rad}(abc) \leqslant \log c$$

• Using the asymptotic expansions

•
$$n \sim p_n / \log p_n$$

•
$$\sum_{i=1}^n \log p_i \sim n \log p_n - n$$

•
$$\sum_{i=1}^n \log\log p_i \sim n \log\log p_n$$

this becomes

$$n\log\Bigl(rac{e\delta R}{p_n^2}\Bigr) + \log \mathrm{rad}(abc) \lesssim \log c.$$

• Being more careful, one can show the inequality is strict.

Optimal choice of R

• Need to maximize

$$n\log\Bigl(\frac{e\delta R}{p_n^2}\Bigr).$$

- Need $R > p_n^2/(e\delta)$ for the log to be positive.
- With $R \coloneqq kp_n^2$ for some constant k this becomes

$$n\log(ke\delta) = \Theta\left(rac{\sqrt{R}}{\log R}
ight).$$

Optimal choice of k

• Need to maximize

Putting it together

• Using $\log c \leq R$,

$$\frac{4\sqrt{(\delta/e)\log c}}{\log\log c} + \log \operatorname{rad}(abc) < \log c.$$

• With
$$\delta \coloneqq e$$

$$\exp\Bigl(\frac{4\sqrt{\log c}}{\log\log c}\Bigr)\operatorname{rad}(abc) < c.$$

Improvement

• Modify the odd prime number lattice L_n to have basis

$$B \coloneqq \begin{bmatrix} \boldsymbol{b}_1 \\ \boldsymbol{b}_2 \\ \boldsymbol{b}_3 \\ \vdots \\ \boldsymbol{b}_n \end{bmatrix} = \begin{bmatrix} \log 3 & \log 3 \\ \log 5 & \log 5 \\ \log 7 & \log 7 \\ & \ddots & \vdots \\ \log p_n & \log p_n \end{bmatrix}.$$

Modified Lemma 1

• Let $x = \sum_{i=1}^{n} e_i b_i$ and let $\prod_{i=1}^{n} p_i^{e_i} = p/q$ be expressed in lowest terms. Then:

$$\|x\|_1 = \left|\sum_{i=1}^n e_i \log p_i\right| + \sum_{i=1}^n \left|e_i \log p_i\right|$$

= $\left|\log p - \log q\right| + \sum_{e_i > 0} e_i \log p_i - \sum_{e_i < 0} e_i \log p_i$
= $\left|\log p - \log q\right| + \log p + \log q$
= $2 \max\{\log p, \log q\}$
= $2 \log h(p/q)$

Modified Lemma 2

• The determinant of L_n has a simple form:

$$\det(L_n) = \sqrt{BB^T}$$

$$= \sqrt{\det\left(\begin{bmatrix}1 & \ddots & 1\\ 1 & \ddots & 1\end{bmatrix}\begin{bmatrix}1 & \ddots & 1\\ 1 & \cdots & 1\end{bmatrix}\right)} \cdot \prod_{i=1}^n \log p_i$$

$$= \sqrt{\det\left(\begin{bmatrix}1 & \ddots & 1\\ 1 & \cdots & 1\end{bmatrix} + \begin{bmatrix}1\\ 1\\ 1\end{bmatrix}[1 & \cdots & 1]\right)} \cdot \prod_{i=1}^n \log p_i$$

$$= \sqrt{\det\left(\begin{bmatrix}1\end{bmatrix} + \begin{bmatrix}1 & \cdots & 1\end{bmatrix}\begin{bmatrix}1\\ 1\end{bmatrix}\right)} \cdot \prod_{i=1}^n \log p_i$$

$$= \sqrt{n+1} \cdot \prod_{i=1}^n \log p_i$$

Modified Lemma 3

 For all m ≥ 1 and sufficiently large n, there exists an abc triple satisfying:

$$rac{2^{m-1}}{\prod_{i=1}^n p_i} \operatorname{rad}(abc) \leqslant c$$
 $2\log c \leqslant rac{n}{\delta} \Big(2^{m-1} \sqrt{n+1} \prod_{i=1}^n \log p_i \Big)^{1/n}$

Errata: δ should be replaced with an upper bound on γ_n .

Putting it together

• Using $2 \log c \leq R$,

$$\exp\Bigl(\frac{4\sqrt{2(\delta/e)\log c}}{\log\log c}\Bigr)\operatorname{rad}(abc) < c.$$

• van Frankenhuysen (1999) performs this construction not in terms of δ , but essentially uses $\delta \approx 3.13$ and obtains

$$\exp\Bigl(\frac{6.07\sqrt{\log c}}{\log\log c}\Bigr) \operatorname{rad}(abc) < c.$$

Bound on δ_n

• Blichfeldt (1914) showed that

$$\delta_n \leqslant \sqrt{rac{4(n+1)(n+2)}{3\pi(n+3)}} igg(rac{2(n+1)}{n+3}igg(rac{n}{2}+1igg)!igg)^{1/n} \ aggar \sqrt{rac{2}{3\pi e}}n$$

• Thus, we can take $\delta \approx 3.579$.

Bound on δ_n

• Rankin (1948) showed that

$$egin{aligned} \delta_n &\leqslant \Big(rac{2-x}{1-x}\Big)^{x-1} \Big(rac{1+xn}{x\cdot x!^n}(xn)!\Big)^{1/n} n^{1-x} \ &\sim \Big(rac{2-x}{1-x}\Big)^{x-1} rac{(x/e)^x}{x!} n \end{aligned}$$

for any $x \in [1/2, 1]$. This has a minimum at $x \approx 0.645$.

• Thus, we can take $\delta \approx 3.659$.