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The abc conjecture
Three natural numbers a , b, c are said to be an abc triple
if they do not share a common factor and

a + b = c.

The abc conjecture says that if a , b, c is a large abc triple
then abc cannot be ‘very composite’.
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Example abc triples
A typical abc triple:

310 · 109+ 1 = 2 · 11 · 292561

An exceptional abc triple:

310 · 109+ 2 = 235
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How to measure ‘compositeness’
Define the radical of abc to be the product of the primes in
abc:

rad(abc) :=
∏
p|abc

p

Exceptional abc examples have relatively small radical.
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The formal statement
The abc conjecture states that every abc triple satisfies

c = O
(
rad(abc)1+ε

)
for every ε > 0.
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Family of exceptional examples

Note that 32m ≡ 1 (mod 2m+1), so

2m+1k + 1 = 32m

is a family of abc triples, where k is a positive integer.

Here rad(abc) 6 2 · 3 · k , and k = c−1
2m+1 <

c
2m+1 , so

2m

3
rad(abc) < c.
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Conjecture is false for ε = 0
Thus there are infinitely many abc triples which satisfy

N rad(abc) < c

for every N > 0.
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Better exceptional examples
We’ll use arguments from the geometry of numbers to
construct infinitely many abc triples which satisfy

exp
( 6√log c
log log c

)
rad(abc) < c.
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S -units
Let S be a set of prime numbers.

An S-unit is defined to be a rational number whose
numerator and denominator in lowest terms are only
divisible by primes in S .

S -units :=
{
±
∏
pi∈S

pei
i : ei ∈ Z

}

The height of an S -unit p/q is h(p/q) := max{|p|, |q |}.
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The odd prime number lattice
Consider the lattice Ln generated by the rows b1, . . . , bn of
the matrix

b1

b2

b3
...
bn

 =


log 3

log 5
log 7

. . .
log pn


where pi denotes the ith odd prime number.
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Relationship between Ln and S -units
There is an isomorphism

n∑
i=1

eibi ↔
n∏

i=1

pei
i

between the points of Ln and the positive {p1, . . . , pn }-units.
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Lemma 1
Let x =

∑n
i=1 eibi and let

∏n
i=1 pei

i = p/q be expressed in
lowest terms. Then:

‖x‖1 =

n∑
i=1

∣∣ei log pi
∣∣

=
∑
ei>0

ei log pi −
∑
ei<0

ei log pi

= log p + log q

> max{log p, log q}

= log h(p/q)
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Lemma 2
The determinant of Ln has a simple form:

det(Ln) =

n∏
i=1

log pi
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The kernel sublattice
Let P be the set of positive {p1, . . . , pn }-units.

Consider the homomorphism ϕ : P → (Z/2mZ)∗ of
reduction mod 2m .

The subgroup kerϕ of P is isomorphic to a sublattice Ln ,m

of Ln :

Ln ,m :=

{ n∑
i=1

eibi :

n∏
i=1

pei
i ≡ 1 (mod 2m)

}
.
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Ln ,m really is a lattice
Discrete as it is a subset of Ln .

Contains the n linearly independent vectors ord2m (pi )bi .

If
∑

eibi and
∑

fibi are in Ln ,m , then so is
∑

(ei ± fi )bi :∏
pei±fi
i ≡

∏
pei
i ·
∏

p±fi
i ≡ 1 (mod 2m)
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What does Ln ,m look like?
For m = 1, reducing an S -unit mod 2m necessarily gives 1,
since all primes in S = {p1, . . . , pn } are odd.

Thus Ln,1 is the full lattice Ln .

When n = 2, we can plot Ln ,m in the plane. . .
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L2,1
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L2,2
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L2,3
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L2,4
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L2,5
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L2,6
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L2,7
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L2,8
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L2,9
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L2,10
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Short vectors in Ln ,m give good abc triples
We just saw (−22 log 3, 2 log 5) ∈ L2,10, i.e.,

3−22 · 52 ≡ 1 (mod 210)

which can be rewritten as

210k + 52 = 322

for some positive integer k . This abc triple satisfies

c ≈ 3.1 · 1010

rad(abc) ≈ 4.6 · 108.
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The index of Ln ,m in Ln

3 and 5 generate (Z/2mZ)∗, so ϕ(P) = (Z/2mZ)∗ when
n > 2.

Since Ln ∼= P and Ln ,m ∼= kerϕ, we have

Ln/Ln ,m ∼= (Z/2mZ)∗

by the first isomorphism theorem.

Thus the index of Ln ,m in Ln is |(Z/2mZ)∗| = 2m−1.
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Hermite’s constant
Hermite’s constant is the smallest positive γn such that a
lattice of rank n always contains a nonzero vector x with

‖x‖2 6 γn det(L)2/n .
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Bounds on Hermite’s constant
By Minkowski’s theorem,

γn 6 4ω−2/n
n ∼

2n
πe
≈ 0.234n

where ωn is the volume of the n-dimensional unit sphere.

Kabatiansky & Levenshtein showed

γn 6
2n

40.599πe
≈ 0.102n

for sufficiently large n .
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Hermite’s constant in Manhattan
The one-norm hermite constant is the smallest positive δn
such that a lattice of rank n always contains a nonzero
vector x with

‖x‖1 6 δn det(L)1/n .

Since ‖x‖1 6
√

n‖x‖2, one has that δn 6
√

nγn = O(n).
Let δ be a constant such that δn 6 n/δ for all sufficiently
large n .

By Minkowski’s theorem, one can take δ := e .
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Lemma 3
For all m > 1 and sufficiently large n , there exists an abc
triple satisfying:

2m−1∏n
i=1 pi

rad(abc) 6 c

log c 6
n
δ

(
2m−1

n∏
i=1

log pi

)1/n
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Proof of Lemma 3
By definition of δ, for all sufficiently large n there exists a
nonzero x ∈ Ln ,m with

‖x‖1 6
n
δ
(det(Ln ,m))1/n .

Let x =
∑n

i=1 eibi and let
∏n

i=1 pei
i = p/q be expressed in

lowest terms. By construction of the kernel sublattice,

p/q ≡ 1 (mod 2m).
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Proof of Lemma 3
Let c := max{p, q}, b := min{p, q}, and a := c − b. Then

2mk + b = c

for some positive integer k = a/2m 6 c/2m .

Examining the prime factorizations of a , b, c:

rad(a) 6 2k 6 c/2m−1

rad(bc) 6
∏n

i=1 pi

The first inequality follows.
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Proof of Lemma 3
The second inequality follows using Lemmas 1 and 2:

log c = logmax{p, q}

= log h(p/q)

6 ‖x‖1

6 n
δ

(
det(Ln ,m)

)1/n
= n
δ

(
2m−1∏n

i=1 log pi
)1/n
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How to choose m optimally?
For convenience, let R denote the upper bound on the
second inequality. Rewriting the inequalities in terms of R:

(δR/n)n∏n
i=1 pi log pi

rad(abc) 6 c

log c 6 R
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Taking the log. . .

n log
(δR

n

)
−

n∑
i=1

log pi −

n∑
i=1

log log pi + log rad(abc) 6 log c

Using the asymptotic expansions
n ∼ pn/ log pn∑n

i=1 log pi ∼ n log pn − n∑n
i=1 log log pi ∼ n log log pn

this becomes

n log
(eδR

p2
n

)
+ log rad(abc) . log c.

Being more careful, one can show the inequality is strict.
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Optimal choice of R
Need to maximize

n log
(eδR

p2
n

)
.

Need R > p2
n/(eδ) for the log to be positive.

With R := kp2
n for some constant k this becomes

n log(keδ) = Θ
( √R
logR

)
.
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Optimal choice of k
Need to maximize

n log(keδ) ∼
pn

log pn
log(keδ)

=

√
R/k

log
√

R/k
log(keδ)

∼
2
√

R/k
logR

log(keδ)

=
4
√
(δ/e)R
logR

(take k := e/δ)
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Putting it together
Using log c 6 R,

4
√
(δ/e) log c
log log c

+ log rad(abc) < log c.

With δ := e ,

exp
( 4√log c
log log c

)
rad(abc) < c.
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Improvement
Modify the odd prime number lattice Ln to have basis

B :=


b1

b2

b3
...
bn

 =


log 3 log 3

log 5 log 5
log 7 log 7

. . .
...

log pn log pn

 .
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Modified Lemma 1
Let x =

∑n
i=1 eibi and let

∏n
i=1 pei

i = p/q be expressed in
lowest terms. Then:

‖x‖1 =

∣∣∣∣ n∑
i=1

ei log pi

∣∣∣∣+ n∑
i=1

∣∣ei log pi
∣∣

=
∣∣log p − log q

∣∣+∑
ei>0

ei log pi −
∑
ei<0

ei log pi

=
∣∣log p − log q

∣∣+ log p + log q

= 2max{log p, log q}

= 2 log h(p/q)
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Modified Lemma 2
The determinant of Ln has a simple form:

det(Ln) =
√

BBT

=

√
det
([ 1 1. . .

...
1 1

][ 1 . . .
1

1 ··· 1

])
·

n∏
i=1

log pi

=

√
det
([ 1 . . .

1

]
+
[ 1...

1

]
[ 1 ··· 1 ]

)
·

n∏
i=1

log pi

=

√
det
(
[ 1 ] + [ 1 ··· 1 ]

[ 1...
1

])
·

n∏
i=1

log pi

=
√

n + 1 ·
n∏

i=1

log pi
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Modified Lemma 3
For all m > 1 and sufficiently large n , there exists an abc
triple satisfying:

2m−1∏n
i=1 pi

rad(abc) 6 c

2 log c 6
n
δ

(
2m−1√n + 1

n∏
i=1

log pi

)1/n

Errata: δ should be replaced with an upper bound on γn .
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Putting it together
Using 2 log c 6 R,

exp
(4√2(δ/e) log c

log log c

)
rad(abc) < c.

van Frankenhuysen (1999) performs this construction not in
terms of δ, but essentially uses δ ≈ 3.13 and obtains

exp
(6.07√log c

log log c

)
rad(abc) < c.
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Bound on δn
Blichfeldt (1914) showed that

δn 6

√
4(n + 1)(n + 2)

3π(n + 3)

(
2(n + 1)
n + 3

(n
2
+ 1
)
!
)1/n

∼

√
2

3πe
n

Thus, we can take δ ≈ 3.579.
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Bound on δn
Rankin (1948) showed that

δn 6
(2− x
1− x

)x−1(1+ xn
x · x !n

(xn)!
)1/n

n1−x

∼
(2− x
1− x

)x−1 (x/e)x

x !
n

for any x ∈ [1/2, 1]. This has a minimum at x ≈ 0.645.

Thus, we can take δ ≈ 3.659.

47 / 47


