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The abc conjecture

@ Three natural numbers a, b, c are said to be an abc triple
if they do not share a common factor and

a+b=c.

@ The abc conjecture says that if a, b, c is a large abc triple
then abc cannot be ‘very composite’.
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Example abc triples
@ A typical abc triple:

310.109 +1=2-11-292561
@ An exceptional abc triple:

310.1090+2=123°
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How to measure ‘compositeness’

@ Define the radical of abc to be the product of the primes in

abc:
rad(abc) H D
plabe

o Exceptional abc examples have relatively small radical.
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The formal statement

@ The abc conjecture states that every abc triple satisfies
c = O(rad(abc)' ™€)

for every € > 0.
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Family of exceptional examples

@ Note that 32" =1 (mod 2™*1), so
oMl +1=3%"

is a family of abc triples, where k is a positive integer.
@ Here rad(abc) <2-3-k, and k = zcm;fl < 1) SO

m

5 rad(abc) < c.
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Conjecture is false for e =0

@ Thus there are infinitely many abc triples which satisfy
N rad(abc) < ¢

for every N > 0.
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Better exceptional examples

o We'll use arguments from the geometry of numbers to
construct infinitely many abc triples which satisfy

< (6\/log c

b .
loglogc) rad(abc) < ¢
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S-units
o Let S be a set of prime numbers.

@ An S-unitis defined to be a rational number whose
numerator and denominator in lowest terms are only
divisible by primes in S.

S-units == {j: H e € Z}
DiES

@ The height of an S-unit p/q is h(p/q) = max{|p|, |q|}.
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The odd prime number lattice

@ Consider the lattice L, generated by the rows by, ...

the matrix
b;

b2
b3

br

_log 3

logh
log 7

log p, |

where p; denotes the :th odd prime number.

, by, of
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Relationship between L, and S-units
@ There is an isomorphism

n n
€;

)_ebio ] [P

1=1 1=1

between the points of L, and the positive {py, ...

, Pn -units.
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o Letx =) 7 eb;andlet [[} , p =p/q be expressed in
lowest terms. Then:

n

|zl =D _|eilog pi
i—1
=) elogp,— ) elogp

e; >0 e; <0
= log p + log q
> max{log p, log g}
=logh(p/q)
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@ The determinant of L,, has a simple form:

det(L H log p;
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The kernel sublattice
o Let P be the set of positive {p1, ..., p,}-units.

@ Consider the homomorphism ¢: P — (Z/2™7Z)* of
reduction mod 2™.

@ The subgroup ker ¢ of P is isomorphic to a sublattice Ly n,
of Ly:

{Zezb 1_[1062 =1 (mod2™) }
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L,, m, really is a lattice

@ Discrete as it is a subset of L,,.
@ Contains the n linearly independent vectors ordam (p;)b;.
o If ) eb; and ) fib; arein Ly ,, thensois ) (e; £+ f;)b;

Hpeiif' = Hp Hpif' =1 (mod 2™)
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What does Ly, , look like?

@ For m =1, reducing an S-unit mod 2™ necessarily gives 1,
since all primes in S = {py,..., p,} are odd.

o Thus L, is the full lattice L.

@ When n = 2, we can plot Ly , in the plane. ..
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Short vectors in Ly, ,, give good abc triples

o We just saw (—22log3,2log5) € Ly 10, i€,
3722.52=1 (mod 2!9)
which can be rewritten as
2% + 5% = 3%
for some positive integer k. This abc triple satisfies

c~3.1-10%
rad(abc) ~ 4.6 - 108.
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The index of Ly, , in Ly,
@ 3 and 5 generate (Z/2™7Z)*, so ¢ (P) = (Z/2™Z)* when
n > 2.

@ Since L, = P and Ly, = ker @, we have
Ln/Lnm = (Z/2™7)"

by the first isomorphism theorem.
@ Thus the index of Ly, , in Ly, is |(Z/2mZ)*| = 2™ L.
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Hermite’s constant

@ Hermite’s constant is the smallest positive v, such that a
lattice of rank n always contains a nonzero vector  with

||| < vn det(L)%/™.
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Bounds on Hermite’s constant

@ By Minkowski’s theorem,

Coim 2
Yo < 4wn 2™ ~ 2~ 0.234n
Tte

where w,, is the volume of the n-dimensional unit sphere.

o Kabatiansky & Levenshtein showed

2
Yo < —20 _ ~0.102n
405990

for sufficiently large n.
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Hermite’s constant in Manhattan

@ The one-norm hermite constant is the smallest positive &,
such that a lattice of rank n always contains a nonzero
vector  with

|2||: < 8, det(L)Y/™.

e Since ||z||; < v/n||z||2, one has that 5, < \/ny, = O(n).

@ Let 0 be a constant such that 6, < n/0 for all sufficiently
large n.

o By Minkowski’s theorem, one can take 6 := e.
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Lemma 3

@ For all m > 1 and sufficiently large n, there exists an abc
triple satisfying:

m—1

H?:l Di

n
n 1 1/n
log c < 5 <2m il_ll log pi>

rad(abc) < ¢
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Proof of Lemma 3

o By definition of §, for all sufficiently large n there exists a
nonzero * € Ly, with
n

el < 3

(det(Ln,m))¥™.

o Let x =31, eb; and let [[]; p* = p/q be expressed in

i
lowest terms. By construction of the kernel sublattice,

p/qg=1 (mod 2™).
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Proof of Lemma 3

o Let ¢ := max{p, q}, b .= min{p, g}, and a .= c— b. Then
2"k+b=c

for some positive integer k = a/2™ < c¢/2™.

o Examining the prime factorizations of a, b, c:

rad(a) < 2k < ¢/2™m !
rad(bc) < [[7; pi

o The first inequality follows.
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Proof of Lemma 3

@ The second inequality follows using Lemmas 1 and 2:

log ¢ = log max{p, q}

=logh(p/q)
< lzfl

< 2 (det(Ln,m)) "

(2™ [T log ps) v

X3 o
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How to choose m optimally?

@ For convenience, let R denote the upper bound on the
second inequality. Rewriting the inequalities in terms of R:

(OR/m)"

logc <R

rad(abc) < ¢
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Taking the log. .

OR
nlog( ) Zlog;m Zloglogpl—i—lograd(abc) log c

o Using the asymptotlc expansions
° n~ pn/logpy
o Y 7 logp;~nlogp, —n
o 31 loglogp; ~ nloglog p,
this becomes

n 10g< e;2R> + lograd(abc) < log c.

n

@ Being more careful, one can show the inequality is strict.
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Optimal choice of R

@ Need to maximize

edR
3 )
@ Need R > p2/(ed) for the log to be positive.

nlog(

e With R := kp2 for some constant k this becomes

JE
logRR) '

nlog(ked) = @(
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Optimal choice of &

@ Need to maximize

n log(ked) ~

log(keé)

logv\/ﬁlog ked)
R/k
logR
4./(8/e)R
B log R

~

log(ked)

(take k == e/d)
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Putting it together
@ Using log ¢ < R,

4./(6/e)log c
loglog c
e With § = e,

4./log c

eXp (log log ¢

+ lograd(abc) < log c.

)rad(abc) <ec.
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@ Modify the odd prime number lattice L,, to have basis

by
b

_log 3

log5b

log 7

log 3 1
log b
log 7

log pn,  log pn |
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Modified Lemma 1

o Letx =) 7 eb;andlet [[} , p =p/q be expressed in
lowest terms. Then:

n n
D elogpi| + ) |e:logpil
i—1 i—1

= [logp—logg|+ ) eilogpi— ) e;logp;

e;>0 e;<0
= |logp—logq‘ +logp +logg
= 2max{log p, log q}
= 2logh(p/q)

[+ =
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Modified Lemma 2

@ The determinant of L,, has a simple form:

det(Ly) = VBBT
= \/det<[1 ] E %D -i]jlogpi
\/det([l 1] + m[l 1) -f[llogpi
(1+t - 1[}]) sz
1=1

n
=\/n—|—1-Hlogpi
1=1
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Modified Lemma 3

@ For all m > 1 and sufficiently large n, there exists an abc
triple satisfying:

2m71

H?:l p;
n 1 n 1/n
2log c < 3(2’”* vn+ 1H10gpi)
i=1

rad(abc) < ¢

Errata: & should be replaced with an upper bound on vy,.
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Putting it together

o Using 2log c < R,

4./2(5/e)log c
xp( Y S

TogIog ¢ ) rad(abc) < ¢

@ van Frankenhuysen (1999) performs this construction not in
terms of 0, but essentially uses § ~ 3.13 and obtains

exp<6 07@)

b
loglog c d(abe) < c.
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o Blichfeldt (1914) showed that

An+1)(n+2)(2(n+1)/n L/n
6n<\/ 3n(n +3) ( n+3 <§+1>!)

@ Thus, we can take & ~ 3.579.
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o Rankin (1948) showed that

5, < (2— :c)Iﬂ(l + :z:n(:m)!>l/nn1ﬂ

11—z T-zI"
<2—$>$—1(m/e)“’n
11—z z!

for any z € [1/2,1]. This has a minimum at z ~ 0.645.
@ Thus, we can take & ~ 3.659.
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