Extremal examples in the $a b c$ conjecture

Curtis Bright

University of Waterloo
March 27, 2014

The abc conjecture

- Three natural numbers a, b, c are said to be an abc triple if they do not share a common factor and

$$
a+b=c .
$$

- The $a b c$ conjecture says that if a, b, c is a large $a b c$ triple then $a b c$ cannot be 'very composite'.

Example abc triples

- A typical $a b c$ triple:

$$
3^{10} \cdot 109+1=2 \cdot 11 \cdot 292561
$$

- An exceptional $a b c$ triple:

$$
3^{10} \cdot 109+2=23^{5}
$$

How to measure 'compositeness'

- Define the radical of $a b c$ to be the product of the primes in $a b c$:

$$
\operatorname{rad}(a b c):=\prod_{p \mid a b c} p
$$

- Exceptional $a b c$ examples have relatively small radical.

The formal statement

- The $a b c$ conjecture states that every $a b c$ triple satisfies

$$
c=O\left(\operatorname{rad}(a b c)^{1+\epsilon}\right)
$$

for every $\epsilon>0$.

Family of exceptional examples

- Note that $3^{2^{m}} \equiv 1\left(\bmod 2^{m+1}\right)$, so

$$
2^{m+1} k+1=3^{2^{m}}
$$

is a family of $a b c$ triples, where k is a positive integer.

- Here $\operatorname{rad}(a b c) \leqslant 2 \cdot 3 \cdot k$, and $k=\frac{c-1}{2^{m+1}}<\frac{c}{2^{m+1}}$, so

$$
\frac{2^{m}}{3} \operatorname{rad}(a b c)<c
$$

Conjecture is false for $\epsilon=0$

- Thus there are infinitely many $a b c$ triples which satisfy

$$
N \operatorname{rad}(a b c)<c
$$

for every $N>0$.

Better exceptional examples

- We'll use arguments from the geometry of numbers to construct infinitely many $a b c$ triples which satisfy

$$
\exp \left(\frac{6 \sqrt{\log c}}{\log \log c}\right) \operatorname{rad}(a b c)<c
$$

S-units

- Let S be a set of prime numbers.
- An S-unit is defined to be a rational number whose numerator and denominator in lowest terms are only divisible by primes in S.

$$
S \text {-units }:=\left\{ \pm \prod_{p_{i} \in S} p_{i}^{e_{i}}: e_{i} \in \mathbb{Z}\right\}
$$

- The height of an S-unit p / q is $h(p / q):=\max \{|p|,|q|\}$.

The odd prime number lattice

- Consider the lattice L_{n} generated by the rows $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}$ of the matrix

$$
\left[\begin{array}{c}
\boldsymbol{b}_{1} \\
\boldsymbol{b}_{2} \\
\boldsymbol{b}_{3} \\
\vdots \\
\boldsymbol{b}_{n}
\end{array}\right]=\left[\begin{array}{lllll}
\log 3 & & & & \\
& \log 5 & & & \\
& & \log 7 & & \\
& & & \ddots & \\
& & & & \log p_{n}
\end{array}\right]
$$

where p_{i} denotes the i th odd prime number.

Relationship between L_{n} and S-units

- There is an isomorphism

$$
\sum_{i=1}^{n} e_{i} \boldsymbol{b}_{i} \leftrightarrow \prod_{i=1}^{n} p_{i}^{e_{i}}
$$

between the points of L_{n} and the positive $\left\{p_{1}, \ldots, p_{n}\right\}$-units.

Lemma 1

- Let $\boldsymbol{x}=\sum_{i=1}^{n} e_{i} \boldsymbol{b}_{i}$ and let $\prod_{i=1}^{n} p_{i}^{e_{i}}=p / q$ be expressed in lowest terms. Then:

$$
\begin{aligned}
\|\boldsymbol{x}\|_{1} & =\sum_{i=1}^{n}\left|e_{i} \log p_{i}\right| \\
& =\sum_{e_{i}>0} e_{i} \log p_{i}-\sum_{e_{i}<0} e_{i} \log p_{i} \\
& =\log p+\log q \\
& \geqslant \max \{\log p, \log q\} \\
& =\log h(p / q)
\end{aligned}
$$

Lemma 2

- The determinant of L_{n} has a simple form:

$$
\operatorname{det}\left(L_{n}\right)=\prod_{i=1}^{n} \log p_{i}
$$

The kernel sublattice

- Let P be the set of positive $\left\{p_{1}, \ldots, p_{n}\right\}$-units.
- Consider the homomorphism $\varphi: P \rightarrow\left(\mathbb{Z} / 2^{m} \mathbb{Z}\right)^{*}$ of reduction $\bmod 2^{m}$.
- The subgroup $\operatorname{ker} \varphi$ of P is isomorphic to a sublattice $L_{n, m}$ of L_{n} :

$$
L_{n, m}:=\left\{\sum_{i=1}^{n} e_{i} \boldsymbol{b}_{i}: \prod_{i=1}^{n} p_{i}^{e_{i}} \equiv 1 \quad\left(\bmod 2^{m}\right)\right\}
$$

$L_{n, m}$ really is a lattice

- Discrete as it is a subset of L_{n}.
- Contains the n linearly independent vectors $\operatorname{ord}_{2^{m}}\left(p_{i}\right) \boldsymbol{b}_{i}$.
- If $\sum e_{i} \boldsymbol{b}_{i}$ and $\sum f_{i} \boldsymbol{b}_{i}$ are in $L_{n, m}$, then so is $\sum\left(e_{i} \pm f_{i}\right) \boldsymbol{b}_{i}$:

$$
\prod p_{i}^{e_{i} \pm f_{i}} \equiv \prod p_{i}^{e_{i}} \cdot \prod p_{i}^{ \pm f_{i}} \equiv 1 \quad\left(\bmod 2^{m}\right)
$$

What does $L_{n, m}$ look like?

- For $m=1$, reducing an S-unit $\bmod 2^{m}$ necessarily gives 1 , since all primes in $S=\left\{p_{1}, \ldots, p_{n}\right\}$ are odd.
- Thus $L_{n, 1}$ is the full lattice L_{n}.
- When $n=2$, we can plot $L_{n, m}$ in the plane...

$L_{2,2}$

$L_{2,3}$

$L_{2,4}$

Short vectors in $L_{n, m}$ give good abc triples

- We just saw $(-22 \log 3,2 \log 5) \in L_{2,10}$, i.e.,

$$
3^{-22} \cdot 5^{2} \equiv 1 \quad\left(\bmod 2^{10}\right)
$$

which can be rewritten as

$$
2^{10} k+5^{2}=3^{22}
$$

for some positive integer k. This $a b c$ triple satisfies

$$
\begin{aligned}
c & \approx 3.1 \cdot 10^{10} \\
\operatorname{rad}(a b c) & \approx 4.6 \cdot 10^{8}
\end{aligned}
$$

The index of $L_{n, m}$ in L_{n}

- 3 and 5 generate $\left(\mathbb{Z} / 2^{m} \mathbb{Z}\right)^{*}$, so $\varphi(P)=\left(\mathbb{Z} / 2^{m} \mathbb{Z}\right)^{*}$ when $n \geqslant 2$.
- Since $L_{n} \cong P$ and $L_{n, m} \cong \operatorname{ker} \varphi$, we have

$$
L_{n} / L_{n, m} \cong\left(\mathbb{Z} / 2^{m} \mathbb{Z}\right)^{*}
$$

by the first isomorphism theorem.

- Thus the index of $L_{n, m}$ in L_{n} is $\left|\left(\mathbb{Z} / 2^{m} \mathbb{Z}\right)^{*}\right|=2^{m-1}$.

Hermite's constant

- Hermite's constant is the smallest positive γ_{n} such that a lattice of rank n always contains a nonzero vector \boldsymbol{x} with

$$
\|\boldsymbol{x}\|^{2} \leqslant \gamma_{n} \operatorname{det}(L)^{2 / n}
$$

Bounds on Hermite's constant

- By Minkowski's theorem,

$$
\gamma_{n} \leqslant 4 \omega_{n}^{-2 / n} \sim \frac{2 n}{\pi e} \approx 0.234 n
$$

where ω_{n} is the volume of the n-dimensional unit sphere.

- Kabatiansky \& Levenshtein showed

$$
\gamma_{n} \leqslant \frac{2 n}{4^{0.599} \pi e} \approx 0.102 n
$$

for sufficiently large n.

Hermite's constant in Manhattan

- The one-norm hermite constant is the smallest positive δ_{n} such that a lattice of rank n always contains a nonzero vector \boldsymbol{x} with

$$
\|\boldsymbol{x}\|_{1} \leqslant \delta_{n} \operatorname{det}(L)^{1 / n}
$$

- Since $\|\boldsymbol{x}\|_{1} \leqslant \sqrt{n}\|\boldsymbol{x}\|_{2}$, one has that $\delta_{n} \leqslant \sqrt{n \gamma_{n}}=O(n)$.
- Let δ be a constant such that $\delta_{n} \leqslant n / \delta$ for all sufficiently large n.
- By Minkowski's theorem, one can take $\delta:=e$.

Lemma 3

- For all $m \geqslant 1$ and sufficiently large n, there exists an $a b c$ triple satisfying:

$$
\begin{gathered}
\frac{2^{m-1}}{\prod_{i=1}^{n} p_{i}} \operatorname{rad}(a b c) \leqslant c \\
\log c \leqslant \frac{n}{\delta}\left(2^{m-1} \prod_{i=1}^{n} \log p_{i}\right)^{1 / n}
\end{gathered}
$$

Proof of Lemma 3

- By definition of δ, for all sufficiently large n there exists a nonzero $\boldsymbol{x} \in L_{n, m}$ with

$$
\|\boldsymbol{x}\|_{1} \leqslant \frac{n}{\delta}\left(\operatorname{det}\left(L_{n, m}\right)\right)^{1 / n} .
$$

- Let $\boldsymbol{x}=\sum_{i=1}^{n} e_{i} \boldsymbol{b}_{i}$ and let $\prod_{i=1}^{n} p_{i}^{e_{i}}=p / q$ be expressed in lowest terms. By construction of the kernel sublattice,

$$
p / q \equiv 1 \quad\left(\bmod 2^{m}\right)
$$

Proof of Lemma 3

- Let $c:=\max \{p, q\}, b:=\min \{p, q\}$, and $a:=c-b$. Then

$$
2^{m} k+b=c
$$

for some positive integer $k=a / 2^{m} \leqslant c / 2^{m}$.

- Examining the prime factorizations of a, b, c :

$$
\begin{gathered}
\operatorname{rad}(a) \leqslant 2 k \leqslant c / 2^{m-1} \\
\quad \operatorname{rad}(b c) \leqslant \prod_{i=1}^{n} p_{i}
\end{gathered}
$$

- The first inequality follows.

Proof of Lemma 3

- The second inequality follows using Lemmas 1 and 2:

$$
\begin{aligned}
\log c & =\log \max \{p, q\} \\
& =\log h(p / q) \\
& \leqslant\|x\|_{1} \\
& \leqslant \frac{n}{\delta}\left(\operatorname{det}\left(L_{n, m}\right)\right)^{1 / n} \\
& =\frac{n}{\delta}\left(2^{m-1} \prod_{i=1}^{n} \log p_{i}\right)^{1 / n}
\end{aligned}
$$

How to choose m optimally?

- For convenience, let R denote the upper bound on the second inequality. Rewriting the inequalities in terms of R :

$$
\begin{gathered}
\frac{(\delta R / n)^{n}}{\prod_{i=1}^{n} p_{i} \log p_{i}} \operatorname{rad}(a b c) \leqslant c \\
\log c \leqslant R
\end{gathered}
$$

Taking the log...

$$
n \log \left(\frac{\delta R}{n}\right)-\sum_{i=1}^{n} \log p_{i}-\sum_{i=1}^{n} \log \log p_{i}+\log \operatorname{rad}(a b c) \leqslant \log c
$$

- Using the asymptotic expansions
- $n \sim p_{n} / \log p_{n}$
- $\sum_{i=1}^{n} \log p_{i} \sim n \log p_{n}-n$
- $\sum_{i=1}^{n} \log \log p_{i} \sim n \log \log p_{n}$
this becomes

$$
n \log \left(\frac{e \delta R}{p_{n}^{2}}\right)+\log \operatorname{rad}(a b c) \lesssim \log c
$$

- Being more careful, one can show the inequality is strict.

Optimal choice of R

- Need to maximize

$$
n \log \left(\frac{e \delta R}{p_{n}^{2}}\right)
$$

- Need $R>p_{n}^{2} /(e \delta)$ for the log to be positive.
- With $R:=k p_{n}^{2}$ for some constant k this becomes

$$
n \log (k e \delta)=\Theta\left(\frac{\sqrt{R}}{\log R}\right)
$$

Optimal choice of k

- Need to maximize

$$
\begin{aligned}
n \log (k e \delta) & \sim \frac{p_{n}}{\log p_{n}} \log (k e \delta) \\
& =\frac{\sqrt{R / k}}{\log \sqrt{R / k}} \log (k e \delta) \\
& \sim \frac{2 \sqrt{R / k}}{\log R} \log (k e \delta) \\
& =\frac{4 \sqrt{(\delta / e) R}}{\log R} \quad(\text { take } k:=e / \delta)
\end{aligned}
$$

Putting it together

- Using $\log c \leqslant R$,

$$
\frac{4 \sqrt{(\delta / e) \log c}}{\log \log c}+\log \operatorname{rad}(a b c)<\log c
$$

- With $\delta:=e$,

$$
\exp \left(\frac{4 \sqrt{\log c}}{\log \log c}\right) \operatorname{rad}(a b c)<c
$$

Improvement

- Modify the odd prime number lattice L_{n} to have basis

$$
B:=\left[\begin{array}{c}
\boldsymbol{b}_{1} \\
\boldsymbol{b}_{2} \\
\boldsymbol{b}_{3} \\
\vdots \\
\boldsymbol{b}_{n}
\end{array}\right]=\left[\begin{array}{cccccc}
\log 3 & & & & & \log 3 \\
& \log 5 & & & & \log 5 \\
& & \log 7 & & & \log 7 \\
& & & \ddots & & \vdots \\
& & & & \log p_{n} & \log p_{n}
\end{array}\right] .
$$

Modified Lemma 1

- Let $\boldsymbol{x}=\sum_{i=1}^{n} e_{i} \boldsymbol{b}_{i}$ and let $\prod_{i=1}^{n} p_{i}^{e_{i}}=p / q$ be expressed in lowest terms. Then:

$$
\begin{aligned}
\|\boldsymbol{x}\|_{1} & =\left|\sum_{i=1}^{n} e_{i} \log p_{i}\right|+\sum_{i=1}^{n}\left|e_{i} \log p_{i}\right| \\
& =|\log p-\log q|+\sum_{e_{i}>0} e_{i} \log p_{i}-\sum_{e_{i}<0} e_{i} \log p_{i} \\
& =|\log p-\log q|+\log p+\log q \\
& =2 \max \{\log p, \log q\} \\
& =2 \log h(p / q)
\end{aligned}
$$

Modified Lemma 2

- The determinant of L_{n} has a simple form:

$$
\begin{aligned}
\operatorname{det}\left(L_{n}\right) & =\sqrt{B B^{T}} \\
& =\sqrt{\operatorname{det}\left(\left[\begin{array}{lll}
1 & & \\
& \ddots & \\
& & \vdots \\
& & 1
\end{array}\right]\left[\begin{array}{lll}
1 & \ddots & \\
& \ddots & 1 \\
1 & \cdots & 1
\end{array}\right]\right)} \cdot \prod_{i=1}^{n} \log p_{i} \\
& =\sqrt{\operatorname{det}\left(\left[\begin{array}{lll}
1 & \ddots & \\
& \ddots & \\
& & \\
&
\end{array}\right]+\left[\begin{array}{cc}
1 \\
\vdots \\
1
\end{array}\right]\left[\begin{array}{lll}
1 & \cdots & 1
\end{array}\right]\right)} \cdot \prod_{i=1}^{n} \log p_{i} \\
& =\sqrt{\operatorname{det}\left(\left[\begin{array}{lll}
1 & 1
\end{array}\right]+\left[\begin{array}{lll}
1 & \cdots & 1
\end{array}\right]\left[\begin{array}{cc}
1 \\
\vdots \\
i
\end{array}\right]\right)} \cdot \prod_{i=1}^{n} \log p_{i} \\
& =\sqrt{n+1} \cdot \prod_{i=1}^{n} \log p_{i}
\end{aligned}
$$

Modified Lemma 3

- For all $m \geqslant 1$ and sufficiently large n, there exists an $a b c$ triple satisfying:

$$
\begin{gathered}
\frac{2^{m-1}}{\prod_{i=1}^{n} p_{i}} \operatorname{rad}(a b c) \leqslant c \\
2 \log c \leqslant \frac{n}{\delta}\left(2^{m-1} \sqrt{n+1} \prod_{i=1}^{n} \log p_{i}\right)^{1 / n}
\end{gathered}
$$

Errata: δ should be replaced with an upper bound on γ_{n}.

Putting it together

- Using $2 \log c \leqslant R$,

$$
\exp \left(\frac{4 \sqrt{2(\delta / e) \log c}}{\log \log c}\right) \operatorname{rad}(a b c)<c
$$

- van Frankenhuysen (1999) performs this construction not in terms of δ, but essentially uses $\delta \approx 3.13$ and obtains

$$
\exp \left(\frac{6.07 \sqrt{\log c}}{\log \log c}\right) \operatorname{rad}(a b c)<c
$$

Bound on δ_{n}

- Blichfeldt (1914) showed that

$$
\begin{aligned}
\delta_{n} & \leqslant \sqrt{\frac{4(n+1)(n+2)}{3 \pi(n+3)}}\left(\frac{2(n+1)}{n+3}\left(\frac{n}{2}+1\right)!\right)^{1 / n} \\
& \sim \sqrt{\frac{2}{3 \pi e} n}
\end{aligned}
$$

- Thus, we can take $\delta \approx 3.579$.

Bound on δ_{n}

- Rankin (1948) showed that

$$
\begin{aligned}
\delta_{n} & \leqslant\left(\frac{2-x}{1-x}\right)^{x-1}\left(\frac{1+x n}{x \cdot x!^{n}}(x n)!\right)^{1 / n} n^{1-x} \\
& \sim\left(\frac{2-x}{1-x}\right)^{x-1} \frac{(x / e)^{x}}{x!} n
\end{aligned}
$$

for any $x \in[1 / 2,1]$. This has a minimum at $x \approx 0.645$.

- Thus, we can take $\delta \approx 3.659$.

