Computing the Galois group of a polynomial

Curtis Bright

University of Waterloo

April 8, 2013

What is a Galois group?

- Let $f \in \mathbb{Q}[x]$ have roots $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$. Then the Galois group of f is defined to be

$$
\operatorname{Gal}(f):=\operatorname{Gal}\left(\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right) / \mathbb{Q}\right) .
$$

That is, the group of automorphisms of the splitting field of f over \mathbb{Q}.

What do the automorphisms $\sigma \in \operatorname{Gal}(f)$ look like?

- The values $\sigma\left(\alpha_{1}\right), \ldots, \sigma\left(\alpha_{n}\right)$ completely determine σ.
- $\sigma\left(\alpha_{i}\right)$ is also a root of f :

$$
f\left(\sigma\left(\alpha_{i}\right)\right)=\sigma\left(f\left(\alpha_{i}\right)\right)=\sigma(0)=0
$$

Similarly, $\sigma^{-1}\left(\alpha_{i}\right)$ is a root of f.

- In other words, σ permutes the roots of f, and we can consider $\sigma \in S_{n}$.

Example: $\operatorname{Gal}\left(x^{3}-2\right)$

Example: $\operatorname{Gal}\left(x^{3}-4 x-1\right)$

Example: $\operatorname{Gal}\left(x^{3}-3 x-1\right)$

Why aren't there any transpositions in $\operatorname{Gal}\left(x^{3}-3 x-1\right)$?

- The discriminant of $x^{3}-3 x-1$ is

$$
\Delta:=(-1)^{3(3-1) / 2} \prod_{i \neq j}\left(\alpha_{i}-\alpha_{j}\right)=81
$$

So σ fixes $\sqrt{\Delta}=9 \in \mathbb{Q}$, as well as

$$
\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)= \pm \sqrt{\Delta}
$$

Therefore

$$
\begin{equation*}
\prod_{i<j}\left(\sigma\left(\alpha_{i}\right)-\sigma\left(\alpha_{j}\right)\right)=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right) \tag{*}
\end{equation*}
$$

- If σ was a transposition, (*) would not hold.
$S_{3} \supset \operatorname{Gal}\left(x^{3}-3 x-1\right)$ acting on $\sqrt{\Delta}$

- If $\sqrt{\Delta} \in \mathbb{Z}$ then this is necessarily fixed by every automorphism, so the second mapping is not an automorphism.
$\because \because+$
$\otimes+0$
\square

For simplicity...

- We assume that f is irreducible.
- Then f is separable (has distinct roots) since f^{\prime} has smaller degree and is nonzero (as char $(\mathbb{Q})=0)$ so $\operatorname{gcd}\left(f, f^{\prime}\right)=1$.
- Then $\operatorname{Gal}(f)$ is transitive (for all α_{i}, α_{j} there is some $\sigma \in \operatorname{Gal}(f)$ which sends α_{i} to $\left.\alpha_{j}\right)$ since by Thm. 4 there is an embedding of $\mathbb{Q}\left(\alpha_{i}\right)$ in \mathbb{C} with $\alpha_{i} \mapsto \alpha_{j}$.
- Intuitively: $\mathbb{Q}\left(\alpha_{i}\right) \cong \mathbb{Q}\left(\alpha_{j}\right)$
- But we can't necessarily specify $\alpha_{i} \mapsto \alpha_{j}$ and $\alpha_{j} \mapsto \alpha_{k}$ simultaneously.

In general. . .

$$
\operatorname{Gal}(g h) \subseteq \operatorname{Gal}(g) \times \operatorname{Gal}(h)
$$

Furthermore...

- We assume f is monic and has integer coefficients.
- The general case reduces to this by applying transformations of the form (for nonzero $c \in \mathbb{Q}$)

$$
\begin{aligned}
& f(x) \mapsto c f(x) \\
& f(x) \mapsto f(c x)
\end{aligned}
$$

which do not change the splitting field of f.

- If $f(x):=\frac{1}{b} \sum_{i=0}^{n} a_{i} x^{i}$ for $a_{i}, b \in \mathbb{Z}$ then we apply

$$
f(x) \mapsto b a_{n}^{n-1} f\left(x / a_{n}\right) .
$$

Symmetric polynomials

- A polynomial $p \in R\left[x_{1}, \ldots, x_{n}\right]$ is symmetric if

$$
p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

for all permutations $\sigma \in S_{n}$.

Example

- The polynomial

$$
x_{1}^{2}+\cdots+x_{n}^{2}
$$

is symmetric in $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$, but not in $\mathbb{Q}\left[x_{1}, \ldots, x_{n+1}\right]$.

Elementary symmetric polynomials

- The polynomials $s_{1}, \ldots, s_{n} \in R\left[x_{1}, \ldots, x_{n}\right]$ defined by

$$
\begin{aligned}
s_{1} & :=x_{1}+x_{2}+\cdots+x_{n} \\
s_{2} & :=x_{1} x_{2}+x_{1} x_{3}+\cdots+x_{n-1} x_{n} \\
& \vdots \\
& \vdots \\
s_{n} & :=x_{1} x_{2} \cdots x_{n}
\end{aligned}
$$

are known as the elementary symmetric polynomials.

- They appear as the coefficients of the general polynomial of degree n : $\prod_{i=1}^{n}\left(x-x_{i}\right)=x^{n}-s_{1} x^{n-1}+\cdots+(-1)^{n} s_{n}$.

The fundamental theorem of symmetric polynomials

- Every symmetric polynomial in $R\left[x_{1}, \ldots, x_{n}\right]$ can be written as a polynomial in s_{1}, \ldots, s_{n} with coefficients in R.

Orbit of a polynomial under S_{n}

- The orbit of $p \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ under S_{n} is the set of polynomials that p can be sent to by permuting the x_{i}.
- Measures "how close" a polynomial is to being symmetric.
- If $\operatorname{orb}(p)=\{p\}$ then p is symmetric.
- If $|\operatorname{orb}(p)|=n$! then every permutation of the x_{i} yields a new polynomial, so p is as far from being symmetric as possible.

Examples

- The orbit of $x_{1}+x_{2}$ is $\left\{x_{1}+x_{2}\right\}$ under S_{2}, but is $\left\{x_{1}+x_{2}, x_{1}+x_{3}, x_{2}+x_{3}\right\}$ under S_{3}.
- The orbit of $x_{1}-x_{2}$ is $\left\{x_{1}-x_{2}, x_{2}-x_{1}\right\}$ under S_{2} and is $\left\{x_{1}-x_{2}, x_{2}-x_{1}, x_{1}-x_{3}, x_{3}-x_{1}, x_{2}-x_{3}, x_{3}-x_{2}\right\}$ under S_{3}.

The resolvent polynomial

- The resolvent polynomial of $p \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ and $f \in \mathbb{Z}[x]$ with roots $\alpha_{1}, \ldots, \alpha_{n}$ is

$$
R_{p, f}(y):=\prod_{p_{i} \in \operatorname{orb}(p)}\left(y-p_{i}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right) .
$$

- A new polynomial whose roots are combinations (determined by p) of f 's roots.

Example

- With $p\left(x_{1}, x_{2}, x_{3}\right):=x_{1}+x_{2}$ and $f(x):=x^{3}-2$ we have

$$
\begin{aligned}
R_{p, f}(y) & =\left(y-\left(\alpha_{1}+\alpha_{2}\right)\right)\left(y-\left(\alpha_{1}+\alpha_{3}\right)\right)\left(y-\left(\alpha_{2}+\alpha_{3}\right)\right) \\
& =y^{3}+2
\end{aligned}
$$

Example

- With $p\left(x_{1}, x_{2}, x_{3}, x_{4}\right):=x_{1}+x_{2}$ we have

$f(x)$	$R_{p, f}(y)$
$x^{4}+1$	$y^{6}-4 y^{2}$
$x^{4}+x^{3}+x^{2}+x+1$	$y^{6}+3 y^{5}+5 y^{4}+5 y^{3}-2 y-1$

Example

- With $p:=\prod_{i>j}\left(x_{i}-x_{j}\right)$ we have $\operatorname{orb}(p)=\{p,-p\}$ and

$$
\begin{aligned}
R_{p, f}(y) & =\left(y-\prod_{i>j}\left(\alpha_{i}-\alpha_{j}\right)\right)\left(y+\prod_{i>j}\left(\alpha_{i}-\alpha_{j}\right)\right) \\
& =y^{2}-\operatorname{disc}(f)
\end{aligned}
$$

The coefficients of the resolvent polynomial

- By construction, the coefficients of the resolvent polynomial are symmetric polynomials in $\alpha_{1}, \ldots, \alpha_{n}$.
- Thus they can be written in terms of the elementary symmetric polynomials in $\alpha_{1}, \ldots, \alpha_{n}$.
- The elementary symmetric polynomials in $\alpha_{1}, \ldots, \alpha_{n}$ are (up to sign) the coefficients of f.
- Therefore,

$$
R_{p, f}(y) \in \mathbb{Z}[y]
$$

when $p \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ and $f \in \mathbb{Z}[x]$.

- This also gives a method of computing the resolvent polynomial. (In practice, one can also approximate its roots and calculate it numerically.)

Example: $f:=x^{4}+1, p:=x_{1}+x_{2}$

$\sigma \in \operatorname{Gal}(f)$ acts on the zeros of $R_{p, f}(y)$

Example: $f:=x^{4}+x^{3}+x^{2}+x+1, p:=x_{1}+x_{2}$

$\sigma \in \operatorname{Gal}(f)$ acts on the zeros of $R_{p, f}(y)$

Observation

- In each case, the action of $\sigma \in \operatorname{Gal}(f) \subseteq S_{n}$ on the m roots of $R_{p, f}(y)$ actually gives $\operatorname{Gal}\left(R_{p, f}\right) \subseteq S_{m}$.
- Let $\phi: S_{n} \rightarrow S_{m}$ be defined so that $\phi(\sigma)$ is the action of σ on the roots of $R_{p, f}(y)$.
- If the roots of $R_{p, f}(y)$ are distinct (so ϕ is unambiguous) then

$$
\operatorname{Gal}\left(R_{p, f}\right)=\phi(\operatorname{Gal}(f))
$$

- Idea: use knowledge of $\operatorname{Gal}\left(R_{p, f}\right)$ to determine $\operatorname{Gal}(f)$.

Proof idea

- If σ is an automorphism, $\phi(\sigma)$ is also an automorphism, so $\phi(\operatorname{Gal}(f)) \subseteq \operatorname{Gal}\left(R_{p, f}\right)$.
- The opposite containment follows from applying ϕ to $\operatorname{Gal}\left(R_{p, f}\right) \subseteq \operatorname{Gal}(f)$, since ϕ fixes $\operatorname{Gal}\left(R_{p, f}\right)$.

'Local' transitivity

- Consider the previous non-transitive $\operatorname{Gal}\left(R_{p, f}\right)$:

\rightarrow	
$\triangle \square$	\rightarrow
\checkmark	
\rightarrow	

- The orbits of $R_{p, f}$'s roots under $\operatorname{Gal}(f)$ form a partition of $R_{p, f}$'s roots into two subsets (of size 4 and 2):

- This can be determined by factoring $R_{p, f}$ into irreducibles.

'Local' transitivity (cont'd)

- This info can be used to limit the possibilities for $\operatorname{Gal}(f)$.
- The roots of $R_{p, f}$ are:

$$
\begin{array}{lll}
\alpha_{1}+\alpha_{2} & \alpha_{1}+\alpha_{3} & \alpha_{1}+\alpha_{4} \\
\alpha_{2}+\alpha_{3} & \alpha_{2}+\alpha_{4} & \alpha_{3}+\alpha_{4}
\end{array}
$$

- Their orbits under the Klein four-group

$$
V_{4}:=\{1,(12)(34),(13)(24),(14)(23)\} \text { are: }
$$

$$
\begin{array}{lll}
\alpha_{1}+\alpha_{2} & \alpha_{1}+\alpha_{3} & \alpha_{1}+\alpha_{4} \\
\alpha_{2}+\alpha_{3} & \alpha_{2}+\alpha_{4} & \alpha_{3}+\alpha_{4}
\end{array}
$$

- That is, the orbit-length partition of $R_{p, f}$'s roots under V_{4} is $\{2,2,2\}$.

Using the orbit-length partition

- The following table gives the orbit-length partitions of $x_{1}+x_{2}$ under the five transitive subgroups of S_{4} (up to relabeling indices):

$$
\begin{array}{ccccc}
S_{4} & A_{4} & D_{4} & V_{4} & C_{4} \\
\{6\} & \{6\} & \{4,2\} & \{2,2,2\} & \{4,2\}
\end{array}
$$

- Thus $\operatorname{Gal}(f)$ is either D_{4} or C_{4}.

Trying a new resolvent polynomial

- With $p:=x_{1}-x_{2}$ we find that

$$
\begin{aligned}
R_{p, f}(y) & =y^{12}+5 y^{10}+15 y^{8}+25 y^{6}-50 y^{4}+125 \\
& =\left(y^{4}+5 y^{2}+5\right)\left(y^{4}+5 y+5\right)\left(y^{4}-5 y+5\right)
\end{aligned}
$$

and we find the orbits of $R_{p, f}$'s roots under $\operatorname{Gal}(f)$ to be:

- Thus the orbit-length partition of $x_{1}-x_{2}$ under $\operatorname{Gal}(f)$ is $\{4,4,4\}$.

Using the orbit-length partition

- The following table gives the orbit-length partitions of $x_{1}-x_{2}$ under the five transitive subgroups of S_{4} (up to relabeling indices):

S_{4}	A_{4}	D_{4}	V_{4}	C_{4}
$\{12\}$	$\{12\}$	$\{8,4\}$	$\{4,4,4\}$	$\{4,4,4\}$

- Thus $\operatorname{Gal}(f)$ is either V_{4} or C_{4}. Comparing with our previous result, we find that $\operatorname{Gal}(f)$ is C_{4}.

In general

- The orbit-length partition of small linear polynomials under $\operatorname{Gal}(f)$ is often enough to completely distinguish $\operatorname{Gal}(f)$.

A general algorithm

- To determine if $\operatorname{Gal}(f) \subseteq G$ one can select p which is fixed by exactly the permutations in G (i.e., $G=\operatorname{stab}(p))$. For example, one can take

$$
p:=\sum_{\sigma \in G} x_{\sigma(1)} x_{\sigma(2)}^{2} x_{\sigma(3)}^{3} \cdots x_{\sigma(n)}^{n} .
$$

- $R_{p, f}$ has a linear factor if and only if

$$
\operatorname{Gal}(f) \subseteq \operatorname{stab}\left(p\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)
$$

for some ordering of the α_{i}.

A general algorithm (cont'd)

- Find all transitive subgroups $G \subseteq S_{n}$ and work your way through the subgroup lattice by testing if $\operatorname{Gal}(f) \subseteq G$ as necessary.
- For example, the subgroup lattice of S_{4} is:

