Computing the Galois group of a polynomial

Curtis Bright

University of Waterloo

April 8, 2013

What is a Galois group?

• Let $f \in \mathbb{Q}[x]$ have roots $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$. Then the *Galois* group of f is defined to be

$$\operatorname{Gal}(f) \coloneqq \operatorname{Gal}(\mathbb{Q}(\alpha_1,\ldots,\alpha_n)/\mathbb{Q}).$$

That is, the group of automorphisms of the splitting field of f over $\mathbb{Q}.$

What do the automorphisms $\sigma \in Gal(f)$ look like?

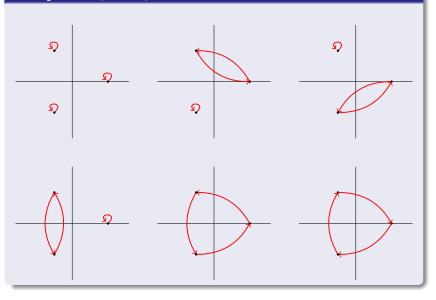
- The values $\sigma(\alpha_1), \ldots, \sigma(\alpha_n)$ completely determine σ .
- $\sigma(\alpha_i)$ is also a root of f:

$$f(\sigma(\alpha_i)) = \sigma(f(\alpha_i)) = \sigma(0) = 0$$

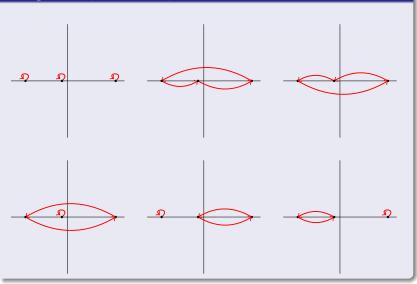
Similarly, $\sigma^{-1}(\alpha_i)$ is a root of f.

• In other words, σ permutes the roots of f, and we can consider $\sigma \in S_n$.

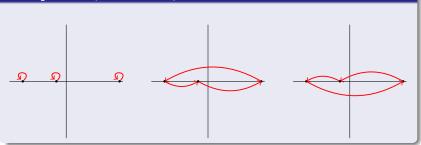
Example: $Gal(x^3 - 2)$



Example: $Gal(x^3 - 4x - 1)$



Example: $Gal(x^3 - 3x - 1)$



Why aren't there any transpositions in $Gal(x^3 - 3x - 1)$?

• The discriminant of $x^3 - 3x - 1$ is

$$\Delta \coloneqq (-1)^{3(3-1)/2} \prod_{i \neq j} (\alpha_i - \alpha_j) = 81.$$

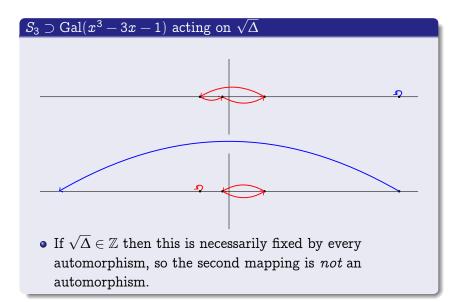
So σ fixes $\sqrt{\Delta} = 9 \in \mathbb{Q}$, as well as

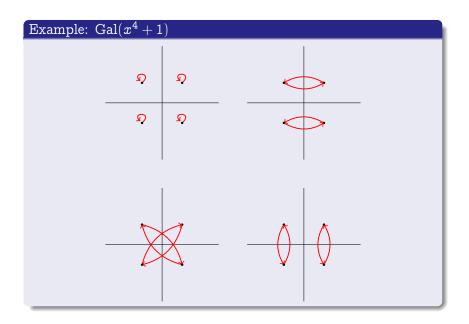
$$\prod_{i < j} (\alpha_i - \alpha_j) = \pm \sqrt{\Delta}.$$

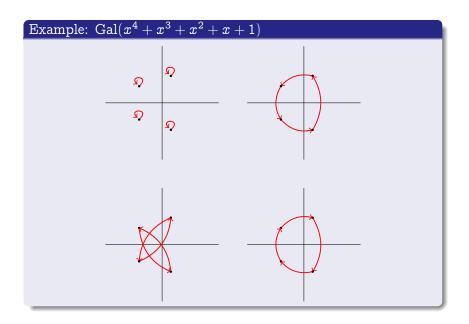
Therefore

$$\prod_{i < j} (\sigma(\alpha_i) - \sigma(\alpha_j)) = \prod_{i < j} (\alpha_i - \alpha_j).$$
(*)

• If σ was a transposition, (*) would not hold.







For simplicity...

- We assume that f is irreducible.
- Then f is separable (has distinct roots) since f' has smaller degree and is nonzero (as char(ℚ) = 0) so gcd(f, f') = 1.
- Then Gal(f) is transitive (for all α_i, α_j there is some σ ∈ Gal(f) which sends α_i to α_j) since by Thm. 4 there is an embedding of Q(α_i) in C with α_i → α_j.
 - Intuitively: $\mathbb{Q}(\alpha_i) \cong \mathbb{Q}(\alpha_j)$
 - But we can't necessarily specify $\alpha_i \mapsto \alpha_j$ and $\alpha_j \mapsto \alpha_k$ simultaneously.

In general...

$\operatorname{Gal}(gh) \subseteq \operatorname{Gal}(g) \times \operatorname{Gal}(h)$

Furthermore...

- We assume f is monic and has integer coefficients.
- The general case reduces to this by applying transformations of the form (for nonzero c ∈ Q)

 $f(x) \mapsto cf(x)$ $f(x) \mapsto f(cx)$

which do not change the splitting field of f.

• If $f(x)\coloneqq rac{1}{b}\sum_{i=0}^n a_ix^i$ for $a_i,\ b\in\mathbb{Z}$ then we apply

 $f(x) \mapsto ba_n^{n-1}f(x/a_n).$

Symmetric polynomials

• A polynomial $p \in R[x_1, \ldots, x_n]$ is symmetric if

$$p(x_1,\ldots,x_n)=p(x_{\sigma(1)},\ldots,x_{\sigma(n)})$$

for all permutations $\sigma \in S_n$.

Example

• The polynomial

$$x_1^2 + \cdots + x_n^2$$

is symmetric in $\mathbb{Q}[x_1, \ldots, x_n]$, but not in $\mathbb{Q}[x_1, \ldots, x_{n+1}]$.

Elementary symmetric polynomials

• The polynomials $s_1, \ldots, s_n \in R[x_1, \ldots, x_n]$ defined by $s_1 \coloneqq x_1 + x_2 + \cdots + x_n$ $s_2 \coloneqq x_1 x_2 + x_1 x_3 + \cdots + x_{n-1} x_n$ \vdots $s_n \coloneqq x_1 x_2 \cdots x_n$

are known as the elementary symmetric polynomials.

• They appear as the coefficients of the general polynomial of degree n: $\prod_{i=1}^{n} (x - x_i) = x^n - s_1 x^{n-1} + \dots + (-1)^n s_n$.

The fundamental theorem of symmetric polynomials

• Every symmetric polynomial in $R[x_1, \ldots, x_n]$ can be written as a polynomial in s_1, \ldots, s_n with coefficients in R.

Orbit of a polynomial under S_n

- The orbit of $p \in \mathbb{Z}[x_1, \ldots, x_n]$ under S_n is the set of polynomials that p can be sent to by permuting the x_i .
- Measures "how close" a polynomial is to being symmetric.
 - If $orb(p) = \{p\}$ then p is symmetric.
 - If |orb(p)| = n! then every permutation of the x_i yields a new polynomial, so p is as far from being symmetric as possible.

Examples

- The orbit of $x_1 + x_2$ is $\{x_1 + x_2\}$ under S_2 , but is $\{x_1 + x_2, x_1 + x_3, x_2 + x_3\}$ under S_3 .
- The orbit of $x_1 x_2$ is $\{x_1 x_2, x_2 x_1\}$ under S_2 and is $\{x_1 x_2, x_2 x_1, x_1 x_3, x_3 x_1, x_2 x_3, x_3 x_2\}$ under S_3 .

The resolvent polynomial

• The resolvent polynomial of $p \in \mathbb{Z}[x_1, \ldots, x_n]$ and $f \in \mathbb{Z}[x]$ with roots $\alpha_1, \ldots, \alpha_n$ is

$$R_{p,f}(y) \coloneqq \prod_{p_i \in \operatorname{orb}(p)} (y - p_i(\alpha_1, \ldots, \alpha_n)).$$

• A new polynomial whose roots are combinations (determined by p) of f's roots.

Example

• With
$$p(x_1, x_2, x_3) \coloneqq x_1 + x_2$$
 and $f(x) \coloneqq x^3 - 2$ we have
 $R_{p,f}(y) = (y - (\alpha_1 + \alpha_2))(y - (\alpha_1 + \alpha_3))(y - (\alpha_2 + \alpha_3))$
 $= y^3 + 2$

Example

Example

• With
$$p\coloneqq \prod_{i>j}(x_i-x_j)$$
 we have $\mathrm{orb}(p)=\{p,-p\}$ and

$$egin{aligned} R_{p,f}(y) &= \Big(y - \prod_{i>j} (lpha_i - lpha_j) \Big) \Big(y + \prod_{i>j} (lpha_i - lpha_j) \Big) \ &= y^2 - \operatorname{disc}(f) \end{aligned}$$

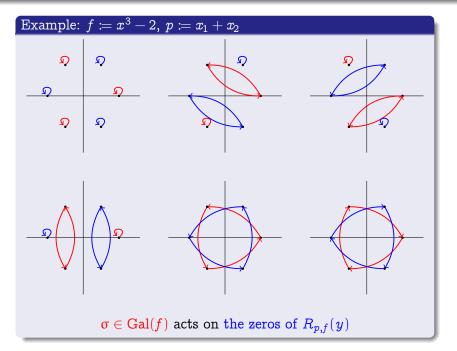
The coefficients of the resolvent polynomial

- By construction, the coefficients of the resolvent polynomial are symmetric polynomials in α₁, ..., α_n.
- Thus they can be written in terms of the elementary symmetric polynomials in α₁, ..., α_n.
- The elementary symmetric polynomials in α₁,..., α_n are (up to sign) the coefficients of f.
- Therefore,

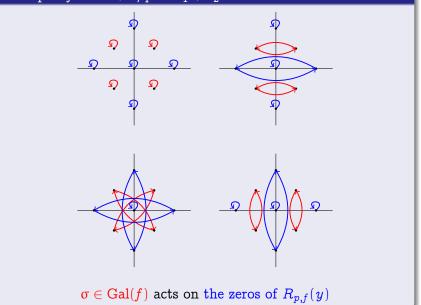
 $R_{p,f}(y)\in\mathbb{Z}[y]$

when $p \in \mathbb{Z}[x_1, \ldots, x_n]$ and $f \in \mathbb{Z}[x]$.

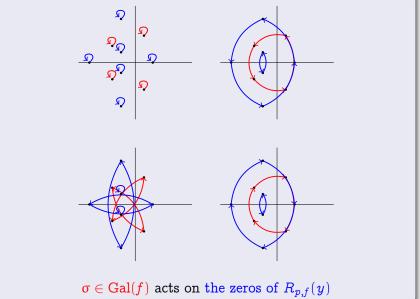
• This also gives a method of computing the resolvent polynomial. (In practice, one can also approximate its roots and calculate it numerically.)



Example: $f \coloneqq x^4 + 1$, $p \coloneqq x_1 + x_2$



Example: $f\coloneqq x^4+x^3+x^2+x+1,\ p\coloneqq x_1+x_2$



Observation

- In each case, the action of $\sigma \in \operatorname{Gal}(f) \subseteq S_n$ on the *m* roots of $R_{p,f}(y)$ actually gives $\operatorname{Gal}(R_{p,f}) \subseteq S_m$.
- Let $\phi: S_n \to S_m$ be defined so that $\phi(\sigma)$ is the action of σ on the roots of $R_{p,f}(y)$.
- If the roots of $R_{p,f}(y)$ are distinct (so ϕ is unambiguous) then

 $\operatorname{Gal}(R_{p,f}) = \phi(\operatorname{Gal}(f)).$

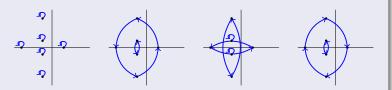
• Idea: use knowledge of $Gal(R_{p,f})$ to determine Gal(f).

Proof idea

- If σ is an automorphism, $\phi(\sigma)$ is also an automorphism, so $\phi(\operatorname{Gal}(f)) \subseteq \operatorname{Gal}(R_{p,f})$.
- The opposite containment follows from applying φ to Gal(R_{p,f}) ⊆ Gal(f), since φ fixes Gal(R_{p,f}).

'Local' transitivity

• Consider the previous non-transitive $Gal(R_{p,f})$:



• The orbits of $R_{p,f}$'s roots under $\operatorname{Gal}(f)$ form a partition of $R_{p,f}$'s roots into two subsets (of size 4 and 2):

• This can be determined by factoring $R_{p,f}$ into irreducibles.

'Local' transitivity (cont'd)

- This info can be used to limit the possibilities for Gal(f).
- The roots of $R_{p,f}$ are:

 $\begin{array}{ccc} \alpha_1 + \alpha_2 & \alpha_1 + \alpha_3 & \alpha_1 + \alpha_4 \\ \alpha_2 + \alpha_3 & \alpha_2 + \alpha_4 & \alpha_3 + \alpha_4 \end{array}$

• Their orbits under the Klein four-group $V_4 := \{1, (12)(34), (13)(24), (14)(23)\}$ are:

 $\begin{array}{ccc} \alpha_1 + \alpha_2 & \alpha_1 + \alpha_3 & \alpha_1 + \alpha_4 \\ \alpha_2 + \alpha_3 & \alpha_2 + \alpha_4 & \alpha_3 + \alpha_4 \end{array}$

• That is, the orbit-length partition of $R_{p,f}$'s roots under V_4 is $\{2, 2, 2\}$.

Using the orbit-length partition

• The following table gives the orbit-length partitions of $x_1 + x_2$ under the five transitive subgroups of S_4 (up to relabeling indices):

• Thus Gal(f) is either D_4 or C_4 .

Trying a new resolvent polynomial

• With $p \coloneqq x_1 - x_2$ we find that

$$egin{aligned} R_{p,f}(y) &= y^{12} + 5y^{10} + 15y^8 + 25y^6 - 50y^4 + 125 \ &= (y^4 + 5y^2 + 5)(y^4 + 5y + 5)(y^4 - 5y + 5))(y^4 - 5y + 5))(y^4 - 5y + 5)(y^4 - 5y + 5))(y^4 - 5y + 5))(y^4 - 5y + 5)(y^4 - 5y + 5))(y^4 - 5))(y^4$$

and we find the orbits of $R_{p,f}$'s roots under Gal(f) to be:

• Thus the orbit-length partition of $x_1 - x_2$ under Gal(f) is $\{4, 4, 4\}$.

Using the orbit-length partition

• The following table gives the orbit-length partitions of $x_1 - x_2$ under the five transitive subgroups of S_4 (up to relabeling indices):

• Thus Gal(f) is either V₄ or C₄. Comparing with our previous result, we find that Gal(f) is C₄.

In general

• The orbit-length partition of small linear polynomials under Gal(f) is often enough to completely distinguish Gal(f).

A general algorithm

 To determine if Gal(f) ⊆ G one can select p which is fixed by exactly the permutations in G (i.e., G = stab(p)). For example, one can take

$$p\coloneqq \sum_{\sigma\in G} x_{\sigma(1)} x_{\sigma(2)}^2 x_{\sigma(3)}^3 \cdots x_{\sigma(n)}^n.$$

• $R_{p,f}$ has a linear factor if and only if

```
\operatorname{Gal}(f) \subseteq \operatorname{stab}(p(\alpha_1,\ldots,\alpha_n))
```

for some ordering of the α_i .

A general algorithm (cont'd)

- Find all transitive subgroups $G \subseteq S_n$ and work your way through the subgroup lattice by testing if $Gal(f) \subseteq G$ as necessary.
- For example, the subgroup lattice of S_4 is:

