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What is a Galois group?

o Let f € Q[z] have roots o1, ..., &, € C. Then the Galois
group of f is defined to be

Gal(f) = Gal(Q(ay, . .., x,)/Q).

That is, the group of automorphisms of the splitting field of
f over Q.

.
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What do the automorphisms o € Gal(f) look like?
@ The values o(x1), ..., 0(ay,) completely determine o.

@ o(;) is also a root of f:
flo(a)) = o(f(e;)) = a(0) =0

Similarly, o~ !(o;) is a root of f.
@ In other words, o permutes the roots of f, and we can
consider o € S,,.
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Example: Gal(z® — 4z — 1)
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Example: Gal(z3 — 3z — 1)
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Why aren’t there any transpositions in Gal(z® — 3z —1)?

@ The discriminant of z2 — 3z — 1 is

So o fixes VA =9 € Q, as well as
H(O(i — Oc]') = :i:\/Z.

1<J
Therefore

H(O‘(O(i)—(f((xj)) ZH((Xi—(Xj)- (*)

1<j 1<J

e If o was a transposition, (x) would not hold.
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Sz O Gal(z® — 3z — 1) acting on VA

.

o If /A € Z then this is necessarily fixed by every
automorphism, so the second mapping is not an
automorphism.
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Example: Gal(z* + 1)
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Example: Gal(z* + 23+ 22+ + 1)
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For simplicity. ..

@ We assume that f is irreducible.

@ Then f is separable (has distinct roots) since f’ has smaller
degree and is nonzero (as char(Q) = 0) so ged(f,f’) = 1.
o Then Gal(f) is transitive (for all «;, «; there is some
o € Gal(f) which sends «; to «;) since by Thm. 4 there is
an embedding of Q(«;) in C with «; — «;.
o Intuitively: Q(a;) = Q(e;)
o But we can’t necessarily specify o; — oy and o — o,
stmultaneously.

Gal(gh) C Gal(g) x Gal(h)

\
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@ We assume f is monic and has integer coefficients.

@ The general case reduces to this by applying
transformations of the form (for nonzero ¢ € Q)

f(z) = cf(z)
f(z) = f(cz)

which do not change the splitting field of f.
o If f(z) =} > Iy a;z’ for a;, b € Z then we apply

f(z) = bag f(z/an).
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Symmetric polynomials

@ A polynomial p € Rz, ..., z,] is symmetric if

p(xl)"wzn) = p(ro‘[l);"')‘ro‘(n))

for all permutations o € S,.

@ The polynomial

2 2
e+ + T}

is symmetric in Q[z, ..., z,], but not in Q[zy, ..., z, 1]

v
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Elementary symmetric polynomials

@ The polynomials s, ..., s, € Rlxy,...,z,] defined by

S1i=T+ o+ Ty

SO =T+ T3+ -+ Tp_ 1Ty

Sp = T1Tp - - Ty,

are known as the elementary symmetric polynomaials.

@ They appear as the coefficients of the general polynomzial
of degree n: [[r_i(z —z) =z" — 512" L+ -+ (—1)"sp,.

The fundamental theorem of symmetric polynomials

@ Every symmetric polynomial in R[z;, ..., Z,] can be written
as a polynomial in s3, ..., s, with coefficients in R.
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Orbit of a polynomial under S,

@ The orbit of p € Z[xy, ..., z,] under S, is the set of
polynomials that p can be sent to by permuting the z;.

@ Measures “how close” a polynomial is to being symmetric.

o If orb(p) = {p} then p is symmetric.
o If orb(p)| = m! then every permutation of the z; yields a new
polynomial, so p is as far from being symmetric as possible.

@ The orbit of z; + x5 is {z; + z»} under S,, but is
{z1 + 22, 71 + 23, T2 + 23} under Ss.

@ The orbit of z; — 2 is {z; — @, & — 1} under Sy and is

{1 — 22, 220 — 71, 21 — 23, T3 — T1, Ty — T3, T3 — Tp) under Ss.
v
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The resolvent polynomial

@ The resolvent polynomial of p € Zlzy, ..., z,] and f € Z[z]
with roots «q, ..., «, is
Ros()= ] (v—milea,..., ).
p;Eorb(p)

@ A new polynomial whose roots are combinations
(determined by p) of f’s roots.

e With p(z, 23, 23) == o1 + 25 and f(z) = 3 — 2 we have

Ry(y) = (y — (o1 + o2)) (y — (o1 + x3)) (y — (02 + ox3))
=y +2
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o With p(zy, 2o, 23, T1) = 71 + 2, We have

f(z) | Ry z(y)

zt 4+ 1 y® — 4y?
i+ 23+ +z+1 |y +3y5 + 5yt +5y3 —2y—1

e With p = Hi>]-(a:¢ — x;) we have orb(p) ={p, —p} and
Rpfly) = (y—H( o — & )(er—[ o — & )
1>7 1>7

= y® — disc(f)
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The coefficients of the resolvent polynomial

By construction, the coefficients of the resolvent polynomial

are symmetric polynomials in &, ..., &y.

Thus they can be written in terms of the elementary
symmetric polynomials in &3, ..., &y.

The elementary symmetric polynomials in «q, ..., &, are

(up to sign) the coefficients of f.
Therefore,

Ry r(y) € Zly]
when p € Z[zy,...,z,] and f € Z[z].

This also gives a method of computing the resolvent
polynomial. (In practice, one can also approximate its roots
and calculate it numerically.)
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Example: f =23 -2, p=xz +
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o € Gal(f) acts on the zeros of R, f(y)
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Example: f=z*+ 1, p=xz +
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o € Gal(f) acts on the zeros of Ry f(y
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Example: f =z*+ 23+ 22 +z2+1,p =21 +

o € Gal(f) acts on the zeros of R, f(y)
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@ In each case, the action of 0 € Gal(f) C S, on the m roots
of R, f(y) actually gives Gal(R,f) C Sp.

o Let ¢: S, — S, be defined so that ¢(o) is the action of o
on the roots of Ry ¢(y).

o If the roots of Ry, f(y) are distinct (so ¢ is unambiguous)
then
Gal(R,.s) = (Gal(f)):

o Idea: use knowledge of Gal(Ry f) to determine Gal(f).

4

o If 0 is an automorphism, ¢ (o) is also an automorphism, so
$(Gal(f)) C Gal(Ryp ).

@ The opposite containment follows from applying ¢ to
Gal(Rp,r) C Gal(f), since ¢ fixes Gal( R, f).

A\

22/29



‘Local’ transitivity

@ Consider the previous non-transitive Gal(R

o

@ The orbits of R, ;’s roots under Gal(f) form a partition of
R, ¢'s Toots into two subsets (of size 4 and 2):

@ This can be determined by factoring R, ; into irreducibles.

4
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‘Local’ transitivity (cont’d)

@ This info can be used to limit the possibilities for Gal(f).

@ The roots of R, s are:

XK1 + X2 x] + X3 K1 + g

Ko + X3 Ko + Xg 3 + Xa

@ Their orbits under the Klein four-group
Ve ={1,(12)(34), (13)(24), (14)(23)} are:

oK1 + X2 x] + &3 X1 + Xgq

Ko + K3 Ko + Xg K3 + Xg

o That is, the orbit-length partition of R, ¢’s roots under Vy
is {2,2,2}.

v
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Using the orbit-length partition
o The following table gives the orbit-length partitions of
z1 + xp under the five transitive subgroups of S; (up to

relabeling indices):

f;4 144 134 ‘/4 614
{6} {6} {4,2} {2,2,2} {4,2}

@ Thus Gal(f) is either Dy or Cjy.
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Trying a new resolvent polynomial

o With p = z; — 2, we find that

R, ¢(y) = y*% + 5y™° + 1598 + 2595 — 50y* + 125
= (y* +5y° +5)(y* + 5y + 5)(y* — 5y +5)

and we find the orbits of R, ¢'s roots under Gal(f) to be:

@ Thus the orbit-length partition of z; — 2z under Gal(f) is
(4,4,4).
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o The following table gives the orbit-length partitions of
z; — xp under the five transitive subgroups of S; (up to
relabeling indices):

5;4 f14 194 ‘/4 CZ4
{12} {12} {8,4} {4,4,4} {4,4,4}

o Thus Gal(f) is either V4 or C,. Comparing with our
previous result, we find that Gal(f) is Cj.

In general

@ The orbit-length partition of small linear polynomials under
Gal(f) is often enough to completely distinguish Gal(f).

27 /29



A general algorithm

@ To determine if Gal(f) C G one can select p which is fixed
by exactly the permutations in G (i.e., G = stab(p)). For
example, one can take

. 2 3
Pi= ) To)Taa)Bas) Tain):
ocG

@ R, has a linear factor if and only if
Gal(f) C stab(p(au, ..., on))

for some ordering of the «;.
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A general algorithm (cont’d)

o Find all transitive subgroups G C S,, and work your way
through the subgroup lattice by testing if Gal(f) C G as
necessary.

@ For example, the subgroup lattice of Sy is:

/\
/\/
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