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What is a Galois group?
Let f ∈ Q[x ] have roots α1, . . . , αn ∈ C. Then the Galois
group of f is defined to be

Gal(f ) := Gal(Q(α1, . . . ,αn)/Q).

That is, the group of automorphisms of the splitting field of
f over Q.
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What do the automorphisms σ ∈ Gal(f ) look like?
The values σ(α1), . . . , σ(αn) completely determine σ.

σ(αi ) is also a root of f :

f (σ(αi )) = σ(f (αi )) = σ(0) = 0

Similarly, σ−1(αi ) is a root of f .

In other words, σ permutes the roots of f , and we can
consider σ ∈ Sn .
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Example: Gal(x 3 − 2)
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Example: Gal(x 3 − 4x − 1)
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Example: Gal(x 3 − 3x − 1)
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Why aren’t there any transpositions in Gal(x 3 − 3x − 1)?

The discriminant of x 3 − 3x − 1 is

∆ := (−1)3(3−1)/2
∏
i 6=j

(αi − αj ) = 81.

So σ fixes
√
∆ = 9 ∈ Q, as well as∏

i<j

(αi − αj ) = ±
√
∆.

Therefore ∏
i<j

(
σ(αi ) − σ(αj )

)
=

∏
i<j

(αi − αj ). (∗)

If σ was a transposition, (∗) would not hold.
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S3 ⊃ Gal(x 3 − 3x − 1) acting on
√
∆

If
√
∆ ∈ Z then this is necessarily fixed by every

automorphism, so the second mapping is not an
automorphism.
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Example: Gal(x 4 + 1)
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Example: Gal(x 4 + x 3 + x 2 + x + 1)
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For simplicity. . .
We assume that f is irreducible.

Then f is separable (has distinct roots) since f ′ has smaller
degree and is nonzero (as char(Q) = 0) so gcd(f , f ′) = 1.
Then Gal(f ) is transitive (for all αi , αj there is some
σ ∈ Gal(f ) which sends αi to αj ) since by Thm. 4 there is
an embedding of Q(αi ) in C with αi 7→ αj .

Intuitively: Q(αi ) ∼= Q(αj )

But we can’t necessarily specify αi 7→ αj and αj 7→ αk

simultaneously.

In general. . .

Gal(gh) ⊆ Gal(g)×Gal(h)
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Furthermore. . .
We assume f is monic and has integer coefficients.

The general case reduces to this by applying
transformations of the form (for nonzero c ∈ Q)

f (x ) 7→ cf (x )

f (x ) 7→ f (cx )

which do not change the splitting field of f .

If f (x ) := 1
b
∑n

i=0 aix i for ai , b ∈ Z then we apply

f (x ) 7→ ban−1
n f (x/an).
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Symmetric polynomials
A polynomial p ∈ R[x1, . . . , xn ] is symmetric if

p(x1, . . . , xn) = p(xσ(1), . . . , xσ(n))

for all permutations σ ∈ Sn .

Example
The polynomial

x 2
1 + · · ·+ x 2

n

is symmetric in Q[x1, . . . , xn ], but not in Q[x1, . . . , xn+1].
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Elementary symmetric polynomials
The polynomials s1, . . . , sn ∈ R[x1, . . . , xn ] defined by

s1 := x1 + x2 + · · ·+ xn

s2 := x1x2 + x1x3 + · · ·+ xn−1xn

...

sn := x1x2 · · · xn

are known as the elementary symmetric polynomials.

They appear as the coefficients of the general polynomial
of degree n :

∏n
i=1(x − xi ) = xn − s1xn−1 + · · ·+ (−1)nsn .

The fundamental theorem of symmetric polynomials
Every symmetric polynomial in R[x1, . . . , xn ] can be written
as a polynomial in s1, . . . , sn with coefficients in R.
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Orbit of a polynomial under Sn

The orbit of p ∈ Z[x1, . . . , xn ] under Sn is the set of
polynomials that p can be sent to by permuting the xi .
Measures “how close” a polynomial is to being symmetric.

If orb(p) = {p} then p is symmetric.
If |orb(p)| = n ! then every permutation of the xi yields a new
polynomial, so p is as far from being symmetric as possible.

Examples
The orbit of x1 + x2 is {x1 + x2} under S2, but is
{x1 + x2, x1 + x3, x2 + x3} under S3.

The orbit of x1 − x2 is {x1 − x2, x2 − x1} under S2 and is
{x1 − x2, x2 − x1, x1 − x3, x3 − x1, x2 − x3, x3 − x2} under S3.
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The resolvent polynomial
The resolvent polynomial of p ∈ Z[x1, . . . , xn ] and f ∈ Z[x ]
with roots α1, . . . , αn is

Rp,f (y) :=
∏

pi∈orb(p)

(
y − pi (α1, . . . ,αn)

)
.

A new polynomial whose roots are combinations
(determined by p) of f ’s roots.

Example

With p(x1, x2, x3) := x1 + x2 and f (x ) := x 3 − 2 we have

Rp,f (y) = (y − (α1 + α2))(y − (α1 + α3))(y − (α2 + α3))

= y3 + 2
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Example
With p(x1, x2, x3, x4) := x1 + x2 we have

f (x ) Rp,f (y)
x 4 + 1 y6 − 4y2

x 4 + x 3 + x 2 + x + 1 y6 + 3y5 + 5y4 + 5y3 − 2y − 1

Example
With p :=

∏
i>j (xi − xj ) we have orb(p) = {p,−p} and

Rp,f (y) =
(
y −

∏
i>j

(αi − αj )
)(

y +
∏
i>j

(αi − αj )
)

= y2 − disc(f )
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The coefficients of the resolvent polynomial
By construction, the coefficients of the resolvent polynomial
are symmetric polynomials in α1, . . . , αn .

Thus they can be written in terms of the elementary
symmetric polynomials in α1, . . . , αn .

The elementary symmetric polynomials in α1, . . . , αn are
(up to sign) the coefficients of f .

Therefore,
Rp,f (y) ∈ Z[y ]

when p ∈ Z[x1, . . . , xn ] and f ∈ Z[x ].
This also gives a method of computing the resolvent
polynomial. (In practice, one can also approximate its roots
and calculate it numerically.)

18 / 29



Example: f := x 3 − 2, p := x1 + x2

σ ∈ Gal(f ) acts on the zeros of Rp,f (y)
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Example: f := x 4 + 1, p := x1 + x2

σ ∈ Gal(f ) acts on the zeros of Rp,f (y)

20 / 29



Example: f := x 4 + x 3 + x 2 + x + 1, p := x1 + x2

σ ∈ Gal(f ) acts on the zeros of Rp,f (y)
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Observation
In each case, the action of σ ∈ Gal(f ) ⊆ Sn on the m roots
of Rp,f (y) actually gives Gal(Rp,f ) ⊆ Sm .

Let φ : Sn → Sm be defined so that φ(σ) is the action of σ
on the roots of Rp,f (y).

If the roots of Rp,f (y) are distinct (so φ is unambiguous)
then

Gal(Rp,f ) = φ(Gal(f )).

Idea: use knowledge of Gal(Rp,f ) to determine Gal(f ).

Proof idea
If σ is an automorphism, φ(σ) is also an automorphism, so
φ(Gal(f )) ⊆ Gal(Rp,f ).

The opposite containment follows from applying φ to
Gal(Rp,f ) ⊆ Gal(f ), since φ fixes Gal(Rp,f ).
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‘Local’ transitivity
Consider the previous non-transitive Gal(Rp,f ):

The orbits of Rp,f ’s roots under Gal(f ) form a partition of
Rp,f ’s roots into two subsets (of size 4 and 2):

This can be determined by factoring Rp,f into irreducibles.
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‘Local’ transitivity (cont’d)
This info can be used to limit the possibilities for Gal(f ).

The roots of Rp,f are:

α1 + α2 α1 + α3 α1 + α4

α2 + α3 α2 + α4 α3 + α4

Their orbits under the Klein four-group
V4 := {1, (12)(34), (13)(24), (14)(23)} are:

α1 + α2 α1 + α3 α1 + α4

α2 + α3 α2 + α4 α3 + α4

That is, the orbit-length partition of Rp,f ’s roots under V4

is {2, 2, 2}.
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Using the orbit-length partition
The following table gives the orbit-length partitions of
x1 + x2 under the five transitive subgroups of S4 (up to
relabeling indices):

S4 A4 D4 V4 C4

{6} {6} {4, 2} {2, 2, 2} {4, 2}

Thus Gal(f ) is either D4 or C4.
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Trying a new resolvent polynomial
With p := x1 − x2 we find that

Rp,f (y) = y12 + 5y10 + 15y8 + 25y6 − 50y4 + 125

= (y4 + 5y2 + 5)(y4 + 5y + 5)(y4 − 5y + 5)

and we find the orbits of Rp,f ’s roots under Gal(f ) to be:

Thus the orbit-length partition of x1 − x2 under Gal(f ) is
{4, 4, 4}.
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Using the orbit-length partition
The following table gives the orbit-length partitions of
x1 − x2 under the five transitive subgroups of S4 (up to
relabeling indices):

S4 A4 D4 V4 C4

{12} {12} {8, 4} {4, 4, 4} {4, 4, 4}

Thus Gal(f ) is either V4 or C4. Comparing with our
previous result, we find that Gal(f ) is C4.

In general
The orbit-length partition of small linear polynomials under
Gal(f ) is often enough to completely distinguish Gal(f ).
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A general algorithm
To determine if Gal(f ) ⊆ G one can select p which is fixed
by exactly the permutations in G (i.e., G = stab(p)). For
example, one can take

p :=
∑
σ∈G

xσ(1)x
2
σ(2)x

3
σ(3) · · · x

n
σ(n).

Rp,f has a linear factor if and only if

Gal(f ) ⊆ stab(p(α1, . . . ,αn))

for some ordering of the αi .
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A general algorithm (cont’d)
Find all transitive subgroups G ⊆ Sn and work your way
through the subgroup lattice by testing if Gal(f ) ⊆ G as
necessary.

For example, the subgroup lattice of S4 is:

S4

D4 A4

C4 V4

29 / 29


