Minimal Elements for the Prime Numbers

<u>Curtis Bright¹</u>, Jeffrey Shallit¹, Raymond Devillers²

¹University of Waterloo, ²Université libre de Bruxelles

December 7, 2016

Published in Experimental Mathematics (Vol. 25, Issue 3)

Motivation

Fact

The following 26 numbers are prime:

2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 991, 6469, 6949, 9001, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049

Motivation

Fact

The following 26 numbers are prime:

2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 991, 6469, 6949, 9001, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049

Claim

Give me a prime number and I can remove some of its digits to obtain a prime on this list!

Minimal Primes

▶ The primes in this list are known as the *minimal primes* because this the smallest list of numbers for which this claim holds.

More generally, any language (set of strings over a finite alphabet) has its own *minimal set* of elements and the minimal primes are the minimal set of the language

 $\{2, 3, 5, 7, 11, 13, 17, 19, 23, \ldots\}.$

Definitions

- x is a subword of y if one can strike out zero or more symbols of y to get x.
- A string of symbols s is *minimal* for a language L if
 - 1. s is a member of L and
 - 2. s does not contain another member of L as a subword.
- M(L) denotes the set of minimal elements of L.

Higman–Haines Theorem

• M(L) is finite for every language L.

 Computing M(L) is undecidable in general and can be very difficult to compute even for simple languages.

- Computing M(L) is undecidable in general and can be very difficult to compute even for simple languages.
- ▶ Can lead to some strange behaviour...

- Computing M(L) is undecidable in general and can be very difficult to compute even for simple languages.
- Can lead to some strange behaviour...
 - ► The minimal set for primes of the form 4n + 1 has 146 elements, the largest of which has 79 digits.

- Computing M(L) is undecidable in general and can be very difficult to compute even for simple languages.
- Can lead to some strange behaviour...
 - ► The minimal set for primes of the form 4n + 1 has 146 elements, the largest of which has 79 digits.
 - ► The minimal set for primes of the form 4n + 3 has 113 elements, the largest of which has 19,153 digits!

Proposed Computation Process

- ▶ The following process will determine *M*(*L*) *if* it can be implemented:
 - 1. $M \coloneqq \emptyset$
 - 2. while $L \neq \emptyset$ do
 - 3. choose x, a shortest string in L
 - 4. add x to M

5. remove from L all words containing the subword \boldsymbol{x} 6. return M

Proposed Computation Process

▶ The following process will determine *M*(*L*) *if* it can be implemented:

1. $M \coloneqq \emptyset$

- 2. while $L \neq \emptyset$ do
 - 3. choose x, a shortest string in L
 - 4. add x to M

5. remove from L all words containing the subword \boldsymbol{x} 6. return M

 Caveat: We might not have a nice way of performing operations on L.

Using Overapproximations

► This process also works if L is replaced with an overapproximation L', so long as once no more minimal elements remain to be found we can show that L' = Ø.

Using Overapproximations

- ► This process also works if L is replaced with an overapproximation L', so long as once no more minimal elements remain to be found we can show that L' = Ø.
- In practice, we choose L' to be a regular language, e.g.,

 $\{2,5\}\cup\Sigma^*\{1,3,7,9\}$

is a regular overapproximation to the set of primes over the alphabet $\Sigma := \{0, \ldots, 9\}.$

Computation of Minimal Sets Sample Language

- We will work with overapproximations of the form xL*z where x and z are strings of digits and L is a set of digits.
- ► To be able to apply the process previously described, we need to be able to test if xL*z contains a prime or not.

Computation of Minimal Sets Sample Language

- We will work with overapproximations of the form xL*z where x and z are strings of digits and L is a set of digits.
- ► To be able to apply the process previously described, we need to be able to test if xL*z contains a prime or not.
- It is unknown if this problem is decidable.

Necessary Operations

- In order to perform the process previously described, we need to perform the following operations on the language xL*z:
 - 1. Determine if the language contains a prime.
 - 2. If so, determine the smallest prime(s) in the language.
 - 3. If a prime is found, shrink the language under consideration so that it no longer contains that prime.

Necessary Operations

- In order to perform the process previously described, we need to perform the following operations on the language xL*z:
 - 1. Determine if the language contains a prime.
 - 2. If so, determine the smallest prime(s) in the language.
 - 3. If a prime is found, shrink the language under consideration so that it no longer contains that prime.
 - And any strings which contain that prime as a subword.

Proving that xL^*z contains no primes Method 1: Find a common divisor

Theorem. If N divides xz and all numbers of the form xLz then N divides all numbers of the form xL^*z .

Proving that xL^*z contains no primes Method 1: Find a common divisor

Theorem. If N divides xz and all numbers of the form xLz then N divides all numbers of the form xL^*z .

Example. 7 divides 49 and 469 so 7 divides 4669, 46669, and all numbers of the form 46^*9 .

Proof

N divides xz and all xLz implies N divides all xL^*z

Say $y \in L^*$ contains the digits y_1, \ldots, y_n and z is a digit. By telescoping,

$$egin{aligned} xyz - xz &= \sum_{i=1}^n ig(xy_iy_{i+1}\cdots y_nz - xy_{i+1}\cdots y_nzig) \ &= \sum_{i=1}^n 10^{n-i} ig(xy_i - xig) \ &= \sum_{i=1}^n 10^{n-i-1} ig(xy_iz - xzig) \end{aligned}$$

N must divide xyz since it divides every other term in this equation.

Proving that xL^*z contains no primes Method 2: Use an algebraic factorization

Let $[x]_b$ represent the evaluation of the string x in base b; the following are some example algebraic factorizations:

$$\begin{bmatrix} n \\ 4 \cdots 4 \\ 1 \end{bmatrix}_{16} = (8 \cdot 4^n + 7)(8 \cdot 4^n - 7)/15$$
$$\begin{bmatrix} n \\ 1 \\ 0 \cdots 0 \\ 1 \end{bmatrix}_8 = (2^{n+1} + 1)(4^{n+1} - 2^{n+1} + 1)$$

Once n is large enough the right side obviously factors and cannot be prime.

Proving that xL^*z contains no primes Combination method

The family 19* in base 17 contains no primes, because

$$\left[1\overbrace{9\cdots9}^{2n}\right]_{17} = (5\cdot17^n + 3)(5\cdot17^n - 3)/16$$

and all $\left[1 \underbrace{9 \cdots 9}_{17}\right]_{17}$ are even, since $[19]_{17}$ and $[1999]_{17}$ are even.

Proving that xL^*z contains a prime

- ► In practice, if xL*z could not be ruled out as only containing composites and |L| > 1 then a relatively small prime could always be found in the language.
- Intuitively, this is because there are a large number of small strings in such a language, and at least one is likely to be prime.
 - ▶ For example, there are 2ⁿ⁻² strings of length n in the language 1{2,3}*1.

Searching for primes in xy^*z

- ▶ In the case |L| = 1 the family is of the form xy^*z , and there is only a single string of each length $\ge |xz|$.
- Some families xy*z could not be ruled out as only containing composites and no primes could be found in the family, even after searching through numbers with over 100,000 digits.

Does xy^*z contain large primes?

► The prime number theorem tells us that the chance that a random n-digit number is prime is approximately 1/n. If one conjectures the numbers xy*z behave similarly you would expect ∑_{n=2}[∞] 1/n = ∞ primes of the form xy*z.

Does xy^*z contain large primes?

- ► The prime number theorem tells us that the chance that a random n-digit number is prime is approximately 1/n. If one conjectures the numbers xy*z behave similarly you would expect ∑_{n=2}[∞] 1/n = ∞ primes of the form xy*z.
- Of course, this doesn't always happen, but it's at least a reasonable conjecture in the absence of evidence to the contrary.

In Practice...

- Many xy*z families contain no small primes even though they do contain very large primes.
- For example, the smallest prime in the base 23 family 9E* is 9E⁸⁰⁰⁸⁷³ which when written in decimal contains 1,090,573 digits.

In Practice...

- Many xy*z families contain no small primes even though they do contain very large primes.
- ▶ For example, the smallest prime in the base 23 family 9E* is 9E⁸⁰⁰⁸⁷³ which when written in decimal contains 1,090,573 digits.
 - Technically, probable primality tests were used to show this (which have a *very* small chance of making an error) because all known primality tests run far too slowly to run on a number of this size.

Shrinking the Language

Recall that once a minimal prime has been found we want to shrink the language being searched while still keeping it large enough that it contains all remaining minimal primes.

▶ Say that xyz is discovered to be prime with $y \in L$. Then xL^*z can be replaced with

 $x(L \setminus \{y\})^*z.$

▶ Say that xyyz is discovered to be prime with $y \in L$. Then xL^*z can be replaced with

 $x(L\setminus\{y\})^*z \quad \cup \quad x(L\setminus\{y\})^*y(L\setminus\{y\})^*z.$

Say that $xy\hat{y}z$ and $x\hat{y}yz$ are discovered to be prime with $y, \hat{y} \in L$ and $y \neq \hat{y}$. Then xL^*z can be replaced with

 $x(L\setminus\{y\})^*z \quad \cup \quad x(L\setminus\{\hat{y}\})^*z.$

▶ Say that $xy\hat{y}z$ is discovered to be prime with y, $\hat{y} \in L$ and $y \neq \hat{y}$. Then xL^*z can be replaced with

 $x(L \setminus \{y\})^* (L \setminus \{\hat{y}\})^* z.$

Exploring xL^*z

► If the methods we've discussed cannot be used to rule out or shrink xL*z where L = {y₁,..., y_n} then we can replace it by

$$xL^*y_1z \cup xL^*y_2z \cup \cdots \cup xL^*y_nz$$

and re-run the methods on this new language.

- There is no guarantee that the techniques discussed will ever terminate, but in practice they often do.
- They are able to determine the minimal primes of the form 4n+1 and 4n+3 and the minimal primes expressed in the bases b for 2 ≤ b ≤ 16 and b = 18, 20, 22, 23, 24, and 30.

- There is no guarantee that the techniques discussed will ever terminate, but in practice they often do.
- They are able to determine the minimal primes of the form 4n+1 and 4n+3 and the minimal primes expressed in the bases b for 2 ≤ b ≤ 16 and b = 18, 20, 22, 23, 24, and 30.
 - ► The bases b = 17, 19, 21, and 25 ≤ b ≤ 29 are solved with the exception of 37 families of the form xy*z.

Summary of Results for Bases up to 30

Base	# elements	Max. length	# unsolved families
2	2	2	
3	3	3	
4	3	2	
5	8	5	
6	7	5	
7	9	5	
8	15	9	
9	12	4	
10	26	8	
11	152	45	
12	17	8	
13*	228	32,021	
14	240	86	
15	100	107	
16	483	3545	
17*	$\geqslant 1279$	≥ 111,334	1
18	50	33	
19*	$\geqslant 3462$	≥ 110,986	1
20	651	449	
21*	$\geqslant 2600$	$\geqslant 479,150$	1
22	1242	764	
23*	6021	800,874	
24	306	100	
25*	\geqslant 17,597	\geqslant 136,967	12
26	$\geqslant 5662$	≥ 8773	2
27*	≥ 17,210	≥ 109,006	5
28*	$\geqslant 5783$	≥ 94,538	1
29*	≥ 57,283	\geqslant 174,240	14
30	220	1024	

*Data based on probable primality tests.

Unsolved Families

Base	Family	Algebraic form	Base	Family	Algebraic form
17	F19*	$(5 \cdot 821 \cdot 17^n - 3^2)/16$	29	14*	$(19 \cdot 29^n - 5)/14$
19	EE16*	$(2^2 \cdot 13 \cdot 307 \cdot 19^n - 1)/3$		68L0*6	$7 \cdot 757 \cdot 29^{n+1} + 2 \cdot 3$
21	GO*FK	$2^4 \cdot 21^{n+2} + 5 \cdot 67$		AMP*	$(8761 \cdot 29^n - 5^2)/28$
25	6MF*9	$(1381 \cdot 25^{n+1} - 53)/8$		C*FK	$(3 \cdot 29^{n+2} + 2 \cdot 331)/7$
	CM1*	$(59 \cdot 131 \cdot 25^n - 1)/24$		F*OPF	$(3 \cdot 5 \cdot 29^{n+3} + 139 \cdot 1583)/28$
	EE1*	$(8737 \cdot 25^n - 1)/24$		FKI*	$(6379 \cdot 29^n - 3^2)/14$
	E1*E	$(337 \cdot 25^{n+1} + 311)/24$		F*OP	$(3 \cdot 5 \cdot 29^{n+2} + 7573)/28$
	EFO*	$2\cdot 3\cdot 61\cdot 25^n-1$		LP09*	$(31 \cdot 16607 \cdot 29^n - 3^2)/28$
	F1*F1	$(19^2\cdot 25^{n+2}+37\cdot 227)/24$		00PS*A	$2\cdot 10453\cdot 29^{n+1}-19$
	F0*KO	$3 \cdot 5 \cdot 25^{n+2} + 2^2 \cdot 131$		PC*	$(2 \cdot 89 \cdot 29^n - 3)/7$
	FOK* O	$(5 \cdot 11 \cdot 41 \cdot 25^{n+1} + 19)/6$		PPPL*0	$(87103 \cdot 29^{n+1} + 3^2)/4$
	LOL*8	$(53 \cdot 83 \cdot 25^{n+1} - 3 \cdot 37)/8$		Q*GL	$(13 \cdot 29^{n+2} - 3 \cdot 1381)/14$
	M1*F1	$(23^2 \cdot 25^{n+2} + 37 \cdot 227)/24$		Q*LO	$(13 \cdot 29^{n+2} - 19 \cdot 109)/14$
	M10*8	$19 \cdot 29 \cdot 25^{n+1} + 2^3$		RM^*G	$(389 \cdot 29^{n+1} - 5 \cdot 19)/14$
	0L* 8	$(199 \cdot 25^{n+1} - 3 \cdot 37)/8$			
26	A*6F	$(2 \cdot 26^{n+2} - 7 \cdot 71)/5$			
	I*GL	$(2 \cdot 3^2 \cdot 26^{n+2} - 11 \cdot 113)/25$			
27	80*9A	$2^3 \cdot 27^{n+2} + 11 \cdot 23$			
	999G*	$(101 \cdot 877 \cdot 27^n - 2^3)/13$			
	CL*E	$(3^2 \cdot 37 \cdot 27^{n+1} - 7 \cdot 29)/26$			
	EI*F8	$(191 \cdot 27^{n+2} - 2^3 \cdot 149)/13$			
	F*9FM	$(3 \cdot 5 \cdot 27^{n+3} - 113557)/26$			
28	OA* F	$(2 \cdot 7 \cdot 47 \cdot 28^{n+1} + 5^3)/27$			