Minimal Elements for the Prime Numbers

Curtis Bright ${ }^{1}$, Jeffrey Shallit ${ }^{1}$, Raymond Devillers ${ }^{2}$
${ }^{1}$ University of Waterloo, ${ }^{2}$ Université libre de Bruxelles

December 7, 2016

Published in Experimental Mathematics (Vol. 25, Issue 3)

Motivation

Fact
The following 26 numbers are prime:
$2,3,5,7,11,19,41,61,89,409,449,499,881,991,6469,6949$, 9001, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049

Motivation

Fact
The following 26 numbers are prime:
$2,3,5,7,11,19,41,61,89,409,449,499,881,991,6469,6949$, 9001, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049

Claim

Give me a prime number and I can remove some of its digits to obtain a prime on this list!

Minimal Primes

- The primes in this list are known as the minimal primes because this the smallest list of numbers for which this claim holds.

Minimal Sets

- More generally, any language (set of strings over a finite alphabet) has its own minimal set of elements and the minimal primes are the minimal set of the language

$$
\{2,3,5,7,11,13,17,19,23, \ldots\}
$$

Definitions

- x is a subword of y if one can strike out zero or more symbols of y to get x.
- A string of symbols s is minimal for a language L if

1. s is a member of L and
2. s does not contain another member of L as a subword.

- $M(L)$ denotes the set of minimal elements of L.

Higman-Haines Theorem

- $M(L)$ is finite for every language L.

Computation of Minimal Sets

- Computing $M(L)$ is undecidable in general and can be very difficult to compute even for simple languages.

Computation of Minimal Sets

- Computing $M(L)$ is undecidable in general and can be very difficult to compute even for simple languages.
- Can lead to some strange behaviour...

Computation of Minimal Sets

- Computing $M(L)$ is undecidable in general and can be very difficult to compute even for simple languages.
- Can lead to some strange behaviour...
- The minimal set for primes of the form $4 n+1$ has 146 elements, the largest of which has 79 digits.

Computation of Minimal Sets

- Computing $M(L)$ is undecidable in general and can be very difficult to compute even for simple languages.
- Can lead to some strange behaviour...
- The minimal set for primes of the form $4 n+1$ has 146 elements, the largest of which has 79 digits.
- The minimal set for primes of the form $4 n+3$ has 113 elements, the largest of which has 19,153 digits!

Computation of Minimal Sets

Proposed Computation Process

- The following process will determine $M(L)$ if it can be implemented:

1. $M:=\emptyset$
2. while $L \neq \emptyset$ do
3. choose x, a shortest string in L
4. add x to M
5. remove from L all words containing the subword x 6. return M

Computation of Minimal Sets

Proposed Computation Process

- The following process will determine $M(L)$ if it can be implemented:

1. $M:=\emptyset$
2. while $L \neq \emptyset$ do
3. choose x, a shortest string in L
4. add x to M
5. remove from L all words containing the subword x 6. return M

- Caveat: We might not have a nice way of performing operations on L.

Computation of Minimal Sets

Using Overapproximations

- This process also works if L is replaced with an overapproximation L^{\prime}, so long as once no more minimal elements remain to be found we can show that $L^{\prime}=\emptyset$.

Computation of Minimal Sets

Using Overapproximations

- This process also works if L is replaced with an overapproximation L^{\prime}, so long as once no more minimal elements remain to be found we can show that $L^{\prime}=\emptyset$.
- In practice, we choose L^{\prime} to be a regular language, e.g.,

$$
\{2,5\} \cup \Sigma^{*}\{1,3,7,9\}
$$

is a regular overapproximation to the set of primes over the alphabet $\Sigma:=\{0, \ldots, 9\}$.

Computation of Minimal Sets

Sample Language

- We will work with overapproximations of the form $x L^{*} z$ where x and z are strings of digits and L is a set of digits.
- To be able to apply the process previously described, we need to be able to test if $x L^{*} z$ contains a prime or not.

Computation of Minimal Sets

Sample Language

- We will work with overapproximations of the form $x L^{*} z$ where x and z are strings of digits and L is a set of digits.
- To be able to apply the process previously described, we need to be able to test if $x L^{*} z$ contains a prime or not.
- It is unknown if this problem is decidable.

Computation of Minimal Sets

Necessary Operations

- In order to perform the process previously described, we need to perform the following operations on the language $x L^{*} z$:

1. Determine if the language contains a prime.
2. If so, determine the smallest prime(s) in the language.
3. If a prime is found, shrink the language under consideration so that it no longer contains that prime.

Computation of Minimal Sets

Necessary Operations

- In order to perform the process previously described, we need to perform the following operations on the language $x L^{*} z$:

1. Determine if the language contains a prime.
2. If so, determine the smallest prime(s) in the language.
3. If a prime is found, shrink the language under consideration so that it no longer contains that prime.

- And any strings which contain that prime as a subword.

Proving that $x L^{*} z$ contains no primes

Method 1: Find a common divisor

Theorem. If N divides $x z$ and all numbers of the form $x L z$ then N divides all numbers of the form $x L^{*} z$.

Proving that $x L^{*} z$ contains no primes

Method 1: Find a common divisor

Theorem. If N divides $x z$ and all numbers of the form $x L z$ then N divides all numbers of the form $x L^{*} z$.

Example. 7 divides 49 and 469 so 7 divides 4669, 46669, and all numbers of the form $46^{*} 9$.

Proof

N divides $x z$ and all $x L z$ implies N divides all $x L^{*} z$

Say $y \in L^{*}$ contains the digits y_{1}, \ldots, y_{n} and z is a digit. By telescoping,

$$
\begin{aligned}
x y z-x z & =\sum_{i=1}^{n}\left(x y_{i} y_{i+1} \cdots y_{n} z-x y_{i+1} \cdots y_{n} z\right) \\
& =\sum_{i=1}^{n} 10^{n-i}\left(x y_{i}-x\right) \\
& =\sum_{i=1}^{n} 10^{n-i-1}\left(x y_{i} z-x z\right)
\end{aligned}
$$

N must divide $x y z$ since it divides every other term in this equation.

Proving that $x L^{*} z$ contains no primes

Method 2: Use an algebraic factorization

Let $[x]_{b}$ represent the evaluation of the string x in base b; the following are some example algebraic factorizations:

$$
\begin{aligned}
& {[\overbrace{4 \cdots 4}^{n} 1]_{16}=\left(8 \cdot 4^{n}+7\right)\left(8 \cdot 4^{n}-7\right) / 15} \\
& {[1 \overbrace{0 \cdots 0}^{n} 1]_{8}=\left(2^{n+1}+1\right)\left(4^{n+1}-2^{n+1}+1\right)}
\end{aligned}
$$

Once n is large enough the right side obviously factors and cannot be prime.

Proving that $x L^{*} z$ contains no primes

Combination method

The family 19* in base 17 contains no primes, because

$$
[1 \overbrace{9 \cdots 9}^{2 n}]_{17}=\left(5 \cdot 17^{n}+3\right)\left(5 \cdot 17^{n}-3\right) / 16
$$

and all $[1 \overbrace{9 \cdots 9}^{2 n+1}]_{17}$ are even, since $[19]_{17}$ and $[1999]_{17}$ are even.

Proving that $x L^{*} z$ contains a prime

- In practice, if $x L^{*} z$ could not be ruled out as only containing composites and $|L|>1$ then a relatively small prime could always be found in the language.
- Intuitively, this is because there are a large number of small strings in such a language, and at least one is likely to be prime.
- For example, there are 2^{n-2} strings of length n in the language $1\{2,3\}^{*} 1$.

Searching for primes in $x y^{*} z$

- In the case $|L|=1$ the family is of the form $x y^{*} z$, and there is only a single string of each length $\geqslant|x z|$.
- Some families $x y^{*} z$ could not be ruled out as only containing composites and no primes could be found in the family, even after searching through numbers with over 100,000 digits.

Does $x y^{*} z$ contain large primes?

- The prime number theorem tells us that the chance that a random n-digit number is prime is approximately $1 / n$. If one conjectures the numbers $x y^{*} z$ behave similarly you would expect $\sum_{n=2}^{\infty} 1 / n=\infty$ primes of the form $x y^{*} z$.

Does $x y^{*} z$ contain large primes?

- The prime number theorem tells us that the chance that a random n-digit number is prime is approximately $1 / n$. If one conjectures the numbers $x y^{*} z$ behave similarly you would expect $\sum_{n=2}^{\infty} 1 / n=\infty$ primes of the form $x y^{*} z$.
- Of course, this doesn't always happen, but it's at least a reasonable conjecture in the absence of evidence to the contrary.

In Practice. . .

- Many $x y^{*} z$ families contain no small primes even though they do contain very large primes.
- For example, the smallest prime in the base 23 family $9 E^{*}$ is $9 \mathrm{E}^{800873}$ which when written in decimal contains 1,090,573 digits.

In Practice. . .

- Many $x y^{*} z$ families contain no small primes even though they do contain very large primes.
- For example, the smallest prime in the base 23 family $9 E^{*}$ is $9 E^{800873}$ which when written in decimal contains 1,090,573 digits.
- Technically, probable primality tests were used to show this (which have a very small chance of making an error) because all known primality tests run far too slowly to run on a number of this size.

Shrinking the Language

- Recall that once a minimal prime has been found we want to shrink the language being searched while still keeping it large enough that it contains all remaining minimal primes.

Shrinking $x L^{*} z$

- Say that $x y z$ is discovered to be prime with $y \in L$. Then $x L^{*} z$ can be replaced with

$$
x(L \backslash\{y\})^{*} z
$$

Shrinking $x L^{*} z$

- Say that xyyz is discovered to be prime with $y \in L$. Then $x L^{*} z$ can be replaced with

$$
x(L \backslash\{y\})^{*} z \quad \cup \quad x(L \backslash\{y\})^{*} y(L \backslash\{y\})^{*} z
$$

Shrinking $x L^{*} z$

- Say that $x y \hat{y} z$ and $x \hat{y} y z$ are discovered to be prime with $y, \hat{y} \in L$ and $y \neq \hat{y}$. Then $x L^{*} z$ can be replaced with

$$
x(L \backslash\{y\})^{*} z \quad \cup \quad x(L \backslash\{\hat{y}\})^{*} z .
$$

Shrinking $x L^{*} z$

- Say that $x y \hat{y} z$ is discovered to be prime with $y, \hat{y} \in L$ and $y \neq \hat{y}$. Then $x L^{*} z$ can be replaced with

$$
x(L \backslash\{y\})^{*}(L \backslash\{\hat{y}\})^{*} z .
$$

Exploring $x L^{*} z$

- If the methods we've discussed cannot be used to rule out or shrink $x L^{*} z$ where $L=\left\{y_{1}, \ldots, y_{n}\right\}$ then we can replace it by

$$
x L^{*} y_{1} z \quad \cup \quad x L^{*} y_{2} z \quad \cup \quad \cdots \quad \cup \quad x L^{*} y_{n} z
$$

and re-run the methods on this new language.

Experimental Results

- There is no guarantee that the techniques discussed will ever terminate, but in practice they often do.
- They are able to determine the minimal primes of the form $4 n+1$ and $4 n+3$ and the minimal primes expressed in the bases b for $2 \leqslant b \leqslant 16$ and $b=18,20,22,23,24$, and 30 .

Experimental Results

- There is no guarantee that the techniques discussed will ever terminate, but in practice they often do.
- They are able to determine the minimal primes of the form $4 n+1$ and $4 n+3$ and the minimal primes expressed in the bases b for $2 \leqslant b \leqslant 16$ and $b=18,20,22,23,24$, and 30 .
- The bases $b=17,19,21$, and $25 \leqslant b \leqslant 29$ are solved with the exception of 37 families of the form $x y^{*} z$.

Summary of Results for Bases up to 30

Base	\# elements	Max. length	\# unsolved families
2	2	2	
3	3	3	
4	3	2	
5	8	5	
6	7	5	
7	9	5	
8	15	9	
9	12	4	
10	26	8	
11	152	45	
12	17	8	
13*	228	32,021	
14	240	86	
15	100	107	
16	483	3545	
17*	$\geqslant 1279$	$\geqslant 111,334$	1
18	50	33	
19*	$\geqslant 3462$	$\geqslant 110,986$	1
20	651	449	
21^{*}	$\geqslant 2600$	$\geqslant 479,150$	1
22	1242	764	
23*	6021	800,874	
24	306	100	
25^{*}	$\geqslant 17,597$	$\geqslant 136,967$	12
26	$\geqslant 5662$	$\geqslant 8773$	2
27^{*}	$\geqslant 17,210$	$\geqslant 109,006$	5
28*	$\geqslant 5783$	$\geqslant 94,538$	1
29*	$\geqslant 57,283$	$\geqslant 174,240$	14
30	220	1024	

Unsolved Families

Base	Family	Algebraic form	Base	Family	Algebraic form
17	F19*	$\left(5 \cdot 821 \cdot 17^{n}-3^{2}\right) / 16$	29	$1 \mathrm{~A}^{*}$	$\left(19 \cdot 29^{n}-5\right) / 14$
19	EE16*	$\left(2^{2} \cdot 13 \cdot 307 \cdot 19^{n}-1\right) / 3$		68LO* 6	$7 \cdot 757 \cdot 29^{n+1}+2 \cdot 3$
21	G0*FK	$2^{4} \cdot 21^{n+2}+5 \cdot 67$		AMP*	$\left(8761 \cdot 29^{n}-5^{2}\right) / 28$
25	$6 \mathrm{MF}^{*} 9$	$\left(1381 \cdot 25^{n+1}-53\right) / 8$		$C^{*} \mathrm{FK}$	$\left(3 \cdot 29^{n+2}+2 \cdot 331\right) / 7$
	CM1*	$\left(59 \cdot 131 \cdot 25^{n}-1\right) / 24$		F^{*} OPF	$\left(3 \cdot 5 \cdot 29^{n+3}+139 \cdot 1583\right) / 28$
	EE1*	$\left(8737 \cdot 25^{n}-1\right) / 24$		FKI*	$\left(6379 \cdot 29^{n}-3^{2}\right) / 14$
	E1*E	$\left(337 \cdot 25^{n+1}+311\right) / 24$		F^{*} OP	$\left(3 \cdot 5 \cdot 29^{n+2}+7573\right) / 28$
	EFO*	$2 \cdot 3 \cdot 61 \cdot 25^{n}-1$		LP09*	$\left(31 \cdot 16607 \cdot 29^{n}-3^{2}\right) / 28$
	F1*F1	$\left(19^{2} \cdot 25^{n+2}+37 \cdot 227\right) / 24$		OOPS* A	$2 \cdot 10453 \cdot 29^{n+1}-19$
	FO* KO	$3 \cdot 5 \cdot 25^{n+2}+2^{2} \cdot 131$		PC*	$\left(2 \cdot 89 \cdot 29^{n}-3\right) / 7$
	FOK* 0	$\left(5 \cdot 11 \cdot 41 \cdot 25^{n+1}+19\right) / 6$		PPPL* 0	$\left(87103 \cdot 29^{n+1}+3^{2}\right) / 4$
	LOL* 8	$\left(53 \cdot 83 \cdot 25^{n+1}-3 \cdot 37\right) / 8$		Q* GL	$\left(13 \cdot 29^{n+2}-3 \cdot 1381\right) / 14$
	M1*F1	$\left(23^{2} \cdot 25^{n+2}+37 \cdot 227\right) / 24$		Q* LO	$\left(13 \cdot 29^{n+2}-19 \cdot 109\right) / 14$
	M10* 8	$19 \cdot 29 \cdot 25^{n+1}+2^{3}$		RM* G	$\left(389 \cdot 29^{n+1}-5 \cdot 19\right) / 14$
	OL* 8	$\left(199 \cdot 25^{n+1}-3 \cdot 37\right) / 8$			
26	A* 6 F	$\left(2 \cdot 26^{n+2}-7 \cdot 71\right) / 5$			
	I* GL	$\left(2 \cdot 3^{2} \cdot 26^{n+2}-11 \cdot 113\right) / 25$			
27	80*9A	$2^{3} \cdot 27^{n+2}+11 \cdot 23$			
	999G*	$\left(101 \cdot 877 \cdot 27^{n}-2^{3}\right) / 13$			
	CL*E	$\left(3^{2} \cdot 37 \cdot 27^{n+1}-7 \cdot 29\right) / 26$			
	EI*F8	$\left(191 \cdot 27^{n+2}-2^{3} \cdot 149\right) / 13$			
	$\mathrm{F}^{*} 9 \mathrm{FM}$	(3.5.27 ${ }^{n+3}-113557$)/26			
28	OA* F	$\left(2 \cdot 7 \cdot 47 \cdot 28^{n+1}+5^{3}\right) / 27$			

