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Motivation

Fact
The following 26 numbers are prime:

2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 991, 6469, 6949,
9001, 9049, 9649, 9949, 60649, 666649, 946669, 60000049,

66000049, 66600049

Claim
Give me a prime number and I can remove some of its digits to
obtain a prime on this list!
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Minimal Primes

I The primes in this list are known as the minimal primes
because this the smallest list of numbers for which this
claim holds.
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Minimal Sets

I More generally, any language (set of strings over a finite
alphabet) has its own minimal set of elements and the
minimal primes are the minimal set of the language

{2, 3, 5, 7, 11, 13, 17, 19, 23, . . .}.
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Definitions

I x is a subword of y if one can strike out zero or more
symbols of y to get x .

I A string of symbols s is minimal for a language L if
1. s is a member of L and
2. s does not contain another member of L as a subword.

I M (L) denotes the set of minimal elements of L.
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Higman–Haines Theorem

I M (L) is finite for every language L.
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Computation of Minimal Sets

I Computing M (L) is undecidable in general and can be
very difficult to compute even for simple languages.

I Can lead to some strange behaviour. . .
I The minimal set for primes of the form 4n + 1 has 146

elements, the largest of which has 79 digits.
I The minimal set for primes of the form 4n + 3 has 113

elements, the largest of which has 19,153 digits!
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Computation of Minimal Sets
Proposed Computation Process

I The following process will determine M (L) if it can be
implemented:

1. M := ∅
2. while L 6= ∅ do

3. choose x , a shortest string in L
4. add x to M
5. remove from L all words containing the subword x

6. return M

I Caveat: We might not have a nice way of performing
operations on L.
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Computation of Minimal Sets
Using Overapproximations

I This process also works if L is replaced with an
overapproximation L ′, so long as once no more minimal
elements remain to be found we can show that L ′ = ∅.

I In practice, we choose L ′ to be a regular language, e.g.,

{2, 5} ∪ Σ∗{1, 3, 7, 9}

is a regular overapproximation to the set of primes over the
alphabet Σ := {0, . . . , 9}.
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Computation of Minimal Sets
Sample Language

I We will work with overapproximations of the form xL∗z
where x and z are strings of digits and L is a set of digits.

I To be able to apply the process previously described, we
need to be able to test if xL∗z contains a prime or not.

I It is unknown if this problem is decidable.
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Computation of Minimal Sets
Necessary Operations

I In order to perform the process previously described, we
need to perform the following operations on the language
xL∗z :
1. Determine if the language contains a prime.

2. If so, determine the smallest prime(s) in the language.

3. If a prime is found, shrink the language under consideration
so that it no longer contains that prime.

I And any strings which contain that prime as a subword.
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Proving that xL∗z contains no primes
Method 1: Find a common divisor

Theorem. If N divides xz and all numbers of the form xLz
then N divides all numbers of the form xL∗z .

Example. 7 divides 49 and 469 so 7 divides 4669, 46669, and
all numbers of the form 46∗9.
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Proof
N divides xz and all xLz implies N divides all xL∗z

Say y ∈ L∗ contains the digits y1, . . . , yn and z is a digit. By
telescoping,

xyz − xz =

n∑
i=1

(
xyiyi+1 · · · ynz − xyi+1 · · · ynz

)
=

n∑
i=1

10n−i(xyi − x
)

=

n∑
i=1

10n−i−1(xyiz − xz
)

N must divide xyz since it divides every other term in this
equation.
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Proving that xL∗z contains no primes
Method 2: Use an algebraic factorization

Let [x ]b represent the evaluation of the string x in base b; the
following are some example algebraic factorizations:

[ n︷ ︸︸ ︷
4 · · · 4 1

]
16 = (8 · 4n + 7)(8 · 4n − 7)/15[

1
n︷ ︸︸ ︷

0 · · · 0 1
]
8 = (2n+1 + 1)(4n+1 − 2n+1 + 1)

Once n is large enough the right side obviously factors and
cannot be prime.
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Proving that xL∗z contains no primes
Combination method

The family 19∗ in base 17 contains no primes, because

[
1

2n︷ ︸︸ ︷
9 · · · 9

]
17 = (5 · 17n + 3)(5 · 17n − 3)/16

and all
[
1

2n+1︷ ︸︸ ︷
9 · · · 9

]
17 are even, since [19]17 and [1999]17 are even.
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Proving that xL∗z contains a prime

I In practice, if xL∗z could not be ruled out as only
containing composites and |L| > 1 then a relatively small
prime could always be found in the language.

I Intuitively, this is because there are a large number of
small strings in such a language, and at least one is likely
to be prime.

I For example, there are 2n−2 strings of length n in the
language 1{2, 3}∗1.
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Searching for primes in xy∗z

I In the case |L| = 1 the family is of the form xy∗z , and
there is only a single string of each length > |xz |.

I Some families xy∗z could not be ruled out as only
containing composites and no primes could be found in the
family, even after searching through numbers with over
100,000 digits.
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Does xy∗z contain large primes?

I The prime number theorem tells us that the chance that a
random n-digit number is prime is approximately 1/n . If
one conjectures the numbers xy∗z behave similarly you
would expect

∑∞
n=2 1/n = ∞ primes of the form xy∗z .

I Of course, this doesn’t always happen, but it’s at least a
reasonable conjecture in the absence of evidence to the
contrary.
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In Practice. . .

I Many xy∗z families contain no small primes even though
they do contain very large primes.

I For example, the smallest prime in the base 23 family 9E∗

is 9E800873 which when written in decimal contains
1,090,573 digits.

I Technically, probable primality tests were used to show this
(which have a very small chance of making an error)
because all known primality tests run far too slowly to run
on a number of this size.
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Shrinking the Language

I Recall that once a minimal prime has been found we want
to shrink the language being searched while still keeping it
large enough that it contains all remaining minimal primes.
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Shrinking xL∗z

I Say that xyz is discovered to be prime with y ∈ L. Then
xL∗z can be replaced with

x (L \ {y})∗z .
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Shrinking xL∗z

I Say that xyyz is discovered to be prime with y ∈ L. Then
xL∗z can be replaced with

x (L \ {y})∗z ∪ x (L \ {y})∗y(L \ {y})∗z .

22 / 28



Shrinking xL∗z

I Say that xyŷz and x ŷyz are discovered to be prime with
y , ŷ ∈ L and y 6= ŷ . Then xL∗z can be replaced with

x (L \ {y})∗z ∪ x (L \ {ŷ})∗z .
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Shrinking xL∗z

I Say that xyŷz is discovered to be prime with y , ŷ ∈ L and
y 6= ŷ . Then xL∗z can be replaced with

x (L \ {y})∗(L \ {ŷ})∗z .
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Exploring xL∗z

I If the methods we’ve discussed cannot be used to rule out
or shrink xL∗z where L = {y1, . . . , yn } then we can replace
it by

xL∗y1z ∪ xL∗y2z ∪ · · · ∪ xL∗ynz

and re-run the methods on this new language.
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Experimental Results

I There is no guarantee that the techniques discussed will
ever terminate, but in practice they often do.

I They are able to determine the minimal primes of the form
4n + 1 and 4n + 3 and the minimal primes expressed in the
bases b for 2 6 b 6 16 and b = 18, 20, 22, 23, 24, and 30.

I The bases b = 17, 19, 21, and 25 6 b 6 29 are solved with
the exception of 37 families of the form xy∗z .
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Summary of Results for Bases up to 30
Base # elements Max. length # unsolved

families
2 2 2
3 3 3
4 3 2
5 8 5
6 7 5
7 9 5
8 15 9
9 12 4
10 26 8
11 152 45
12 17 8
13∗ 228 32,021
14 240 86
15 100 107
16 483 3545
17∗ > 1279 > 111,334 1
18 50 33
19∗ > 3462 > 110,986 1
20 651 449
21∗ > 2600 > 479,150 1
22 1242 764
23∗ 6021 800,874
24 306 100
25∗ > 17,597 > 136,967 12
26 > 5662 > 8773 2
27∗ > 17,210 > 109,006 5
28∗ > 5783 > 94,538 1
29∗ > 57,283 > 174,240 14
30 220 1024

∗Data based on probable primality tests.
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Unsolved Families

Base Family Algebraic form Base Family Algebraic form
17 F19∗ (5 · 821 · 17n − 32)/16 29 1A∗ (19 · 29n − 5)/14
19 EE16∗ (22 · 13 · 307 · 19n − 1)/3 68L0∗6 7 · 757 · 29n+1 + 2 · 3
21 G0∗FK 24 · 21n+2 + 5 · 67 AMP∗ (8761 · 29n − 52)/28
25 6MF∗9 (1381 · 25n+1 − 53)/8 C∗FK (3 · 29n+2 + 2 · 331)/7

CM1∗ (59 · 131 · 25n − 1)/24 F∗OPF (3 · 5 · 29n+3 + 139 · 1583)/28
EE1∗ (8737 · 25n − 1)/24 FKI∗ (6379 · 29n − 32)/14
E1∗E (337 · 25n+1 + 311)/24 F∗OP (3 · 5 · 29n+2 + 7573)/28
EFO∗ 2 · 3 · 61 · 25n − 1 LP09∗ (31 · 16607 · 29n − 32)/28
F1∗F1 (192 · 25n+2 + 37 · 227)/24 OOPS∗A 2 · 10453 · 29n+1 − 19
F0∗KO 3 · 5 · 25n+2 + 22 · 131 PC∗ (2 · 89 · 29n − 3)/7
F0K∗O (5 · 11 · 41 · 25n+1 + 19)/6 PPPL∗O (87103 · 29n+1 + 32)/4
LOL∗8 (53 · 83 · 25n+1 − 3 · 37)/8 Q∗GL (13 · 29n+2 − 3 · 1381)/14
M1∗F1 (232 · 25n+2 + 37 · 227)/24 Q∗LO (13 · 29n+2 − 19 · 109)/14
M10∗8 19 · 29 · 25n+1 + 23 RM∗G (389 · 29n+1 − 5 · 19)/14
OL∗8 (199 · 25n+1 − 3 · 37)/8

26 A∗6F (2 · 26n+2 − 7 · 71)/5
I∗GL (2 · 32 · 26n+2 − 11 · 113)/25

27 80∗9A 23 · 27n+2 + 11 · 23
999G∗ (101 · 877 · 27n − 23)/13
CL∗E (32 · 37 · 27n+1 − 7 · 29)/26
EI∗F8 (191 · 27n+2 − 23 · 149)/13
F∗9FM (3 · 5 · 27n+3 − 113557)/26

28 OA∗F (2 · 7 · 47 · 28n+1 + 53)/27
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