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Introduction
SAT solvers are programs that solve the Boolean 
satisfiability problem from Boolean logic.

Maple has a built-in SAT solver that can be called using the
Satisfy command of the Logic package.

1 with(Logic);

1 x &and y;

1 F := &not(x) &implies (y &or z);



1 Satisfy(F);

In this talk we show how a variety of problems can be 
solved using Satisfy.

All of our solutions are available from the Maple 
Application Center.

The n-Queens Problem



The n-queens problem is to place n queens on an n by n 
chessboard such that no queens attack each other.

Variables
We use the Boolean variables  for  and  between 1 

and  to denote if there is a queen on the square at .

 Generate set of all variables Generate set of all variables



SAT encoding
Each row must contain a queen since there are n rows and 
only one queen can go in each row.

 Generate positive constraints Generate positive constraints

If a square contains a queen then no other square in that 
row, column, or diagonal contains a queen.

 Generate negative constraints Generate negative constraints

Finding a solution
We call Satisfy with both the positive and negative 
constraints.

1

2

allConstraints := &and(positiveConstraints(n), negativeConstraints(n)):
satisfyingAssignment := Satisfy(allConstraints);



 Read satisfying assignment and draw a graphical representation of the queens on a chessboard Read satisfying assignment and draw a graphical representation of the queens on a chessboard

The Einstein Riddle
The "Einstein Riddle" is a logic puzzle apocryphally 
attributed to Albert Einstein.
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There are five houses in a row with each house a different 
colour and each house owned by a man of a different 
nationality.

Additionally, each of the owners have a different pet, prefer 
a different kind of drink, and smoke a different brand of 
cigarette.  Furthermore, we know the following information:

The Brit lives in the Red house.
The Swede keeps dogs as pets.
The Dane drinks tea.
The Green house is next to the 
White house, on the left.
The owner of the Green house 
drinks coffee.
The person who smokes Pall Mall 
rears birds.
The owner of the Yellow house 
smokes Dunhill.
The man living in the centre house 
drinks milk.
The Norwegian lives in the first 
house.
The man who smokes Blends 
lives next to the one who keeps 
cats.
The man who keeps horses lives 
next to the man who smokes 
Dunhill.
The man who smokes Blue 

The puzzle 
is:
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Master drinks beer.
The German smokes Prince.
The Norwegian lives next to the 
Blue house.
The man who smokes Blends has 
a neighbour who drinks water.

Variables
We label the houses with a number  between 1 and 5.  
The Boolean variable  will be true exactly when the 

house with index  has attribute .

 Generate set of all variables Generate set of all variables

SAT encoding



 Each attribute appears at least once Each attribute appears at least once

 No attribute appears twice No attribute appears twice

 For each attribute type every house has some attribute For each attribute type every house has some attribute

 For each attribute type no house has multiple attributes For each attribute type no house has multiple attributes

 Encoding the known facts into logic Encoding the known facts into logic



Finding a solution
We call Satisfy with all the constraints.

1

2

allConstraints := allAttributesAppear, noAttributesShared, allHaveEachAttribute, noneHaveMultiple, entries(clues, nolist):
satisfyingAssignment := Satisfy(&and(allConstraints));



To easily see who lives where and the attributes of each 
house and owner we fill a 2D array with data from the 
found solution:

 Read satisfying assignment and produce nicely formatted solution Read satisfying assignment and produce nicely formatted solution

Euler's Graeco-Latin Square 
Conjecture

A Latin square of order  is an  matrix containing  
distinct entries such that every row and column does not 
contain duplicate entries.



A superposition of two Latin squares is called a Graeco-

Latin square if all  pairs of entries appear.

History
In 1782 Euler constructed Graeco-Latin squares in all 
orders  except those of the form .  He conjectured 
that no Graeco-Latin squares exist in these orders.

In 1900, Tarry proved that Graeco-Latin squares do not 
exist in order six.  Three independent invalid proofs of 
Euler's conjecture were published in 1902, 1910, and 
1922.

However, i Shrikhande, and Parker 
showed these proofs were flawed by constructing Graeco-
Latin squares in all orders except 2 and 6.

Variables
The Boolean variables  will represent that the 

th entry of the first Latin square is  (and the 



variables  will be used for the second Latin square).

 Generate set of variables Generate set of variables

SAT encoding

 Each location contains at least one entry Each location contains at least one entry

 Each location contains at most one entry Each location contains at most one entry

 All columns and rows contain distinct entries All columns and rows contain distinct entries



 Each pair of entries (e.g., A and alpha) must appear somewhere in the superposition of X on Y Each pair of entries (e.g., A and alpha) must appear somewhere in the superposition of X on Y

 Can assume certain entries of the Latin squares by permuting or renaming entries Can assume certain entries of the Latin squares by permuting or renaming entries

Finding Graeco-Latin squares
We use Satisfy to find a satisfying assignment of all the 
constraints, RealTime from the CodeTools package to 
time how long the computation takes and commands from 
the plots and plottools packages to display the solution.

 Commands to plot Graeco-Latin squares and find them for small orders Commands to plot Graeco-Latin squares and find them for small orders

F o u n d  a  G r a e c o - L a t i n  s q u a r e  o f  o r d e r  1  i n  0 . 0 0  s e c o n d s :

F o u n d  t h a t  n o  G r a e c o - L a t i n  s q u a r e s  o f  o r d e r  2  e x i s t  i n  0 . 0 1  
seconds.
F o u n d  a  G r a e c o - L a t i n  s q u a r e  o f  o r d e r  3  i n  0 . 0 2  s e c o n d s :



F o u n d  a  G r a e c o - L a t i n  s q u a r e  o f  o r d e r  4  i n  0 . 1 5  s e c o n d s :

F o u n d  a  G r a e c o - L a t i n  s q u a r e  o f  o r d e r  5  i n  0 . 1 3  s e c o n d s :

F o u n d  a  G r a e c o - L a t i n  s q u a r e  o f  o r d e r  7  i n  0 . 7 2  s e c o n d s :



Counterexample to Euler's conjecture
Using this encoding Maple finds a Graeco-Latin square of 
order ten in about a day:



Generating Sudoku puzzles



A similar encoding can be used to generate a random 
Sudoku puzzles.  A completed Sudoku grid is a 9 by 9 
Latin square such that the entries in each highlighted 3 by 
3 block are distinct as well.

First, we call Satisfy with the Sudoku constraints (with no 
initial entries).  A random assignment is generated by 
passing a random seed to the SAT solver using
solveroptions in the Satisfy call.



1

2

3

4

constraints := &and(atLeastOneDigit, distinctnessConstraints):
satisfyingAssignment := Satisfy(constraints, solveroptions=[rnd_init_act=true, random_seed=floor(1000*time[real]())]):

numberOfEntriesToThrowAway := 0:

 Commands to plot a Sudoku puzzle Commands to plot a Sudoku puzzle

T h i s  i s  a  v a l i d  S u d o k u  p u z z l e .

Using this method of generating Sudoku puzzles we 
implemented an interactive Sudoku game.



 Interactive Sudoku by Curtis Bright Interactive Sudoku by Curtis Bright

Restar t Check Solve

New Game:

Random From File From Web



The Graph Colouring Problem

A colouring of a graph is an assignment of colours to its 
vertices such that every two adjacent vertices are coloured 
differently.

A minimal colouring of a graph can be computed using the
ChromaticNumber function of the GraphTheory package.

Variables
Let 



 represent that vertex  of a graph  is coloured 

with colour .

SAT encoding

 Each vertex has been assigned a colour Each vertex has been assigned a colour

 No vertex has been assigned two colours No vertex has been assigned two colours

 Adjacent vertices are not coloured the same way Adjacent vertices are not coloured the same way

Finding a colouring

We call Satisfy on the constraints with  starting at 1 and 
increase  until the set of constraints becomes satisfiable.

 Solving a benchmark using a random graph  Solving a benchmark using a random graph 

C o u l d  n o t  f i n d  a  c o l o u r i n g  o f  G  w i t h  1  c o l o u r s .   T o t a l  t i m e :  0 . 4 0
seconds.
C o u l d  n o t  f i n d  a  c o l o u r i n g  o f  G  w i t h  2  c o l o u r s .   T o t a l  t i m e :  1 . 0 8
seconds.
C o u l d  n o t  f i n d  a  c o l o u r i n g  o f  G  w i t h  3  c o l o u r s .   T o t a l  t i m e :  2 . 0 9
seconds.
C o u l d  n o t  f i n d  a  c o l o u r i n g  o f  G  w i t h  4  c o l o u r s .   T o t a l  t i m e :  3 . 3 1
seconds.
F o u n d  a  c o l o u r i n g  o f  G  w i t h  5  c o l o u r s .   T o t a l  t i m e :  4 . 8 9  s e c o n d s .

T h e  g r a p h  G  w a s  c o l o u r e d  u s i n g  5  c o l o u r s  i n  4 . 8 9  s e c o n d s .



ChromaticNumber function
As of Maple 2018, a tuned version of this approach has 
been implemented in the ChromaticNumber function.

1

2

3
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G := :-Import("example/DSJC125.1.s6", base = datadir);
computationTime, chi := CodeTools:-RealTime(ChromaticNumber(G, method=sat)):

printf("Maple 2019 finds the chromatic number of G to be %d in %.2f seconds.", chi, computationTime);

M a p l e  2 0 1 9  f i n d s  t h e  c h r o m a t i c  n u m b e r  o f  G  t o  b e  5  i n  0 . 1 1  
seconds.

Prior to 2018, Maple could not find the chromatic number 
of  after an hour!

The Maximum Clique Problem



A clique of a graph is a subset of its vertices that are all 
mutually connected.

The maximum clique problem is to find a clique of 
maximum size in a given graph and can be solved with the
MaximumClique function of the GraphTheory package.

Variables
We use the Boolean variables  where  is a vertex of  to

represent if the vertex  appears in the clique we are trying 



1. 1. 

2. 2. 

to find (say we are trying to find a clique of size ).

SAT encoding

If the vertices 1 and 2 are not connected then the variables 
 and  cannot both be true.

 Generate clique connectedness constraints Generate clique connectedness constraints

We also want a way of enforcing that at least  variables 
 are assigned to true.

The most basic way of doing this is something like 
, but this is 

very inefficient.

Clever size encoding
Instead, we use Boolean counter variables  that 

represent at least  of the variables  are assigned 

true.  This occurs exactly when:

Either at least  of   are true, or

at least  of  are true and  is true.



This gives an efficient recursive definition of  in 

terms of  and .

 Boolean counter constraints with k=3 and n=5 Boolean counter constraints with k=3 and n=5

Finding a maximum clique

We call Satisfy on the constraints with  starting at 1 and 
increase  until the set of constraints becomes 
unsatisfiable.

 Solving a benchmark from the DIMACS implementation challenge Solving a benchmark from the DIMACS implementation challenge

F o u n d  a  c l i q u e  o f  G  o f  s i z e  1 .   T o t a l  t i m e :  0 . 0 2  s e c o n d s .
F o u n d  a  c l i q u e  o f  G  o f  s i z e  2 .   T o t a l  t i m e :  0 . 0 5  s e c o n d s .
F o u n d  a  c l i q u e  o f  G  o f  s i z e  3 .   T o t a l  t i m e :  0 . 0 9  s e c o n d s .
F o u n d  a  c l i q u e  o f  G  o f  s i z e  4 .   T o t a l  t i m e :  0 . 1 4  s e c o n d s .
F o u n d  a  c l i q u e  o f  G  o f  s i z e  5 .   T o t a l  t i m e :  0 . 2 0  s e c o n d s .
F o u n d  a  c l i q u e  o f  G  o f  s i z e  6 .   T o t a l  t i m e :  0 . 2 7  s e c o n d s .
F o u n d  a  c l i q u e  o f  G  o f  s i z e  7 .   T o t a l  t i m e :  0 . 4 3  s e c o n d s .
F o u n d  a  c l i q u e  o f  G  o f  s i z e  8 .   T o t a l  t i m e :  0 . 5 2  s e c o n d s .
F o u n d  a  c l i q u e  o f  G  o f  s i z e  9 .   T o t a l  t i m e :  0 . 6 3  s e c o n d s .
F o u n d  a  c l i q u e  o f  G  o f  s i z e  1 0 .   T o t a l  t i m e :  0 . 7 5  s e c o n d s .
F o u n d  a  c l i q u e  o f  G  o f  s i z e  1 1 .   T o t a l  t i m e :  0 . 9 5  s e c o n d s .
F o u n d  a  c l i q u e  o f  G  o f  s i z e  1 2 .   T o t a l  t i m e :  1 . 0 9  s e c o n d s .
F o u n d  a  c l i q u e  o f  G  o f  s i z e  1 3 .   T o t a l  t i m e :  1 . 2 5  s e c o n d s .
F o u n d  a  c l i q u e  o f  G  o f  s i z e  1 4 .   T o t a l  t i m e :  1 . 4 9  s e c o n d s .



F o u n d  a  c l i q u e  o f  G  o f  s i z e  1 5 .   T o t a l  t i m e :  1 . 6 7  s e c o n d s .
F o u n d  a  c l i q u e  o f  G  o f  s i z e  1 6 .   T o t a l  t i m e :  1 . 9 4  s e c o n d s .
C o u l d  n o t  f i n d  a  c l i q u e  o f  G  o f  s i z e  1 7 .   T o t a l  t i m e :  2 . 2 3  
seconds.

T h e  l a r g e s t  c l i q u e  o f  G  h a s  s i z e  1 6  a n d  i t  w a s  f o u n d  i n  2 . 2 3  
seconds.

MaximumClique function
As of Maple 2019, a tuned version of this approach has 
been implemented in the MaximumClique function.

1

2

3

G := :-Import("example/MANN_a9.clq", base=datadir, format="dimacs");
computationTime, clique := CodeTools:-RealTime(MaximumClique(G, method=sat)):
printf("The largest clique of G has size %d and it was found in %.2f seconds.\n", nops(clique), computationTime);

T h e  l a r g e s t  c l i q u e  o f  G  h a s  s i z e  1 6  a n d  i t  w a s  f o u n d  i n  0 . 0 7  
seconds.

Prior to 2019, Maple required about 225 seconds to find a 
maximum clique in this graph.

The 15-puzzle



The 15-puzzle is a classic "sliding tile" puzzle.  It consists of

with one missing tile.

The objective is to order the tiles in increasing order (from 
left to right and top to bottom) and end with the blank tile in 
the lower-right.

Variables
We'll use the Boolean variables  to denote that 



the square  contains tile  after  moves.

SAT encoding

 Constraints directly specifying state of above puzzle Constraints directly specifying state of above puzzle

 Constraints directly specifying that the board is solved at time t Constraints directly specifying that the board is solved at time t

 Two tiles cannot occupy the same square at the same time Two tiles cannot occupy the same square at the same time

The rules of the puzzle imply that the tile in square  
does not change when  and its neighbours are not 
blank, i.e., 

 for all timesteps .

 Generate the "static" transition constraints Generate the "static" transition constraints



If  represents that only square 
 moves to  at timestep  then we also know the 

constraint 
 

where  is adjacent to .

 Generate the "slide" transition constraints Generate the "slide" transition constraints

Finding a solution

We ask the SAT solver to find a solution up to  (starting 
at 5) moves.  If no solution is found, increase .

 Commands to search for a solution Commands to search for a solution

Genera ted  11697  cons t ra in t s  w i t h  1536  va r i ab les  and  now sea rch ing
f o r  a  s o l u t i o n  w i t h  a t  m o s t  5  m o v e s . . .
N o  s o l u t i o n  f o u n d  w i t h  a t  m o s t  5  m o v e s  i n  1 . 4 4  s e c o n d s .
Gene ra ted  21457  cons t ra in t s  w i t h  2816  va r i ab les  and  now sea rch ing



f o r  a  s o l u t i o n  w i t h  a t  m o s t  1 0  m o v e s . . .
N o  s o l u t i o n  f o u n d  w i t h  a t  m o s t  1 0  m o v e s  i n  2 . 8 6  s e c o n d s .
Gene ra ted  31217  cons t ra in t s  w i t h  4096  va r i ab les  and  now sea rch ing
f o r  a  s o l u t i o n  w i t h  a t  m o s t  1 5  m o v e s . . .
S o l u t i o n  f o u n d  w i t h  a t  m o s t  1 5  m o v e s  i n  6 . 5 1  s e c o n d s .

We'll use the Explore command to allow us to see how the
board state changes over time with a slider controlling 
what time  to view.

 Commands for reading and plotting the solution with the Explore command Commands for reading and plotting the solution with the Explore command



Conclusion
SAT solvers can be surprisingly useful for some problems!

Our SAT encodings for ChromaticNumber and
MaximumClique often outperform Maple's previous own 



built-in functions (sometimes significantly so).

By default, Maple 2019 will run the SAT approach and the 
traditional Maple approach on separate cores and return the 
result of whichever finishes first.

It's worthwhile to add the Satisfy command into your 
toolbox of useful Maple functions.


