Effective Problem Solving using
SAT Solvers

Curtis Bright, Jurgen Gerhard, llias Kotsireas, Vijay Ganesh

“, . .1t 1s a constant source of annoyance when you come up
with a clever
special algorithm which then gets beaten by translation to
SAT.”

—Chris Jefferson

v Introduction

SAT solvers are programs that solve the Boolean
satisfiability problem from Boolean logic.

Maple has a built-in SAT solver that can be called using the
Satisfy command of the Logic package.

| 1 with(Logic);

[&and, &iff, &implies, &nand, &nor, ¬, &or, &xor, BooleanSimplify, Canonicalize,
Complement, Contradiction, Convert, Dual, Environment, Equivalent, Export, Implies, Import,
Normalize, Parity, Random, Satisfiable, Satisfy, Tautology, TruthTable, Tseitin]

1 x &and y;

XAy

1 F := ¬(x) & nplies (y &or z);

F:=(~x) = (yVz)

1 Satisfy(F);

{x=false, y = true, z=false}

In this talk we show how a variety of problems can be
solved using Satisfy.

All of our solutions are available from the Maple
Application Center.

v The n-Queens Problem

® ° ®
®
| o W o o o
®
° ° ®
° ® ®
® ®

The n-queens problem is to place n queensonan n by n
chessboard such that no queens attack each other.

Y Variables

We use the Boolean variables 0 for x and y between 1
X,y

and » to denote if there is a queen on the square at (x, y).

% Generate set of all vari abl es

(909,293,959 69,729,819 2% 3% 4D 59 6D 729 8Os 1
N I N N N A N O O O N O O N O O
05 205395 405 505 95 795 996 1> 2% 3 9645 %0 %6, 7Y 8 97,1

\ 4

\ 4

07297394959 69729 8% 10% 2»% 3% 0% 5% e » s}

SAT encoding

Each row must contain a queen since there are n rows and
only one gueen can go in each row.

% CGCenerate positive constraints

QI,IVQZ,I\/Q3,1\/Q4,1\/Q5,1\/Q6,1\/Q7,1\/Q8,1

If a square contains a queen then no other square in that
row, column, or diagonal contains a queen.

% CGenerate negative constraints

O = (ﬁ(Q1,2VQ1,3VQ1,4VQ1,5VQ1,6VQ1,7VQ1,8VQ2,1VQ2,2VQ3,1VQ3,3
\/Q4,1\/Q4,4\/Q5,1\/QS,S\/Q6,1\/Q6,6\/Q7,1\/Q7,7\/Q8,1\/Q&S))

Finding a solution

We call Satisfy with both the positive and negative
constraints.

1 allConstraints := &and(positiveConstraints(n), negativeConstraints(n)):
2 satisfyingAssignment := Satisfy(all Constraints);

satisfyingAssignment := {Ql, | =false, Q) ,=false, Q) ;=false, 0.4 =false, O, s=true, O ¢
=false, Q) ;= false, 0, s= false, 0, = false, 0,,= false, Q3= Jalse, O, 4=false, 0, s
= false, 0, 6= false, Q, 7=true, Q) ¢= false, 05 = false, Oy ,=true, Q3 3= false, 05 4
=false, Qs s=false, Qs (=false, Qs ;=false, Q5 ¢=false, O, | =false, 0y ,= Jalse, O, 5
=false, Oy 4= false, 0y 5= false, Oy ¢=true, 0y ;= false, 0, 5= false, 05 = false, Os »
= false, Qs y=true, Os 4= false, Qs 5= false, Os 6= false, Qs 7= false, Os g = false, s, 1

=true, Qg ,= false, O 3= false, Q; , = false, O 5= false, O 6= false, Os 7= false, Os. g
= false, Q7, | =/false, Q7, , =false, Q7’ 5 = false, Q7’ 4= true, Q7, s = false, Q7’ ¢ =Jalse, Q7’ 7

= false, 0 5= false, O 1= false, O »= false, O 3= false, Qg 4= false, O 5= false, O 6
= false, Oy ;= false, Oy ¢= true}

Read sati sfying assignment and draw a graphi cal representati

W

W

W

W

The Einstein Riddle

The "Einstein Riddle" is a logic puzzle apocryphally
attributed to Albert Einstein.

There are five houses in a row with each house a different
colour and each house owned by a man of a different

nationality.

Additionally, each of the owners have a different pet, prefer
a different kind of drink, and smoke a different brand of
cigarette. Furthermore, we know the following information:

1. The Brit lives in the Red house.

2. The Swede keeps dogs as pets.

3. The Dane drinks tea.

4. The Green house Is next to the

White house, on the left.

5. The owner of the Green house

drinks coffee.

6. The person who smokes Pall Malll

rears birds.

7. The owner of the Yellow house

smokes Dunhill.

8. The man living in the centre house

drinks milk.

9. The Norwegian lives in the first

house.

10. The man who smokes Blends
lives next to the one who keeps
cats.

11. The man who keeps horses lives
next to the man who smokes
Dunbhill.

12. The man who smokes Blue

The puzzle
IS:

Master drinks beer.

13. The German smokes Prince.
14. The Norwegian lives next to the

Blue house.

15. The man who smokes Blends has

\ 4

\ 4

a neighbour who drinks water.

Variables

We label the houses with a number i between 1 and 5.

The Boolean variable S will be true exactly when the
l a

house with index i has attribute a.

% Generate set of all vari abl es

1 Blends’ 1 Brir 1 Dane Sl Dunhill 1 German® 1 Prince 1 Swede Sl, beer Sl, birds® Sl, blue’ Sl, cats’

S A) Sl, green’ Sl, horses® Sl, milk> Sl, recd Sl, tew Sl, water® Sl, white® Sl, yellow

SZ, Brir SZ, Dane’ S2, DunhilP S2, German’ SZ, Prince

Sl,cojfee’ 1, dogs®> =1, fish®

Sl BlueMaster S 1, Norwegian® Sl, PallMalP S2, Blends®

C/)

2, Swede S 2, beer S 2, birds S2, blue® S2, cats’ S 2, coffee’ S 2, dogs’ S2, fish? S 2, green’ S 2, horses® S2, milk>

S 2, teaw S2, water® S 2, white® SZ, yellow S 2, BlueMaster S2, Norwegian’ SZ, PallMalP S3, Blends® S3, Brir

%)

2, rec®

9]

3, Dane® S3, DunhilP S3, Germam’ S3, Prince S 3, Swede S3, beer S3, birds’ S3, blue S3, cats’ S3, coffee’ S3, dogs®

S3, yellow S: 3, BlueMaster

S S

4, Prince ~4, Swede

%)

3, fish® S3, green’ S3, horses® S3, milk S3, red S3, te@ S3, water® S3, white®

S4, Blends® S, 4, Brit S, 4, Dane® S4, DunhilP S4, Germam®

DJ

3, Norwegian® S3, PallMalP

CQ

4, beer S4, birds’ S4, blue S4, cats’ S. 4, coffee’ S. 4, dogs® S4, fish® S. 4, green’® S4, horses® S4, milk> S4, red S4, tea

S4, white’ S. 4, yellow S4, BlueMaster S. 4, Norwegian® S. 4, PallMalb SS, Blends’ S 5, Brir S 5, Dane

C/)

4, water’

(%)

5, Dunhill SS, Germanw S 5, Prince SS, Swede SS beer SS, birds’ S 5, blue® S 5, cats’ SS, coffee’ SS, dogs® SS,ﬁsh’

9]

5, green’ SS, horses® SS, milk> SS, red SS, tew SS water® SS, white® SS, yellow SS, BlueMaster SS, Norwegian®

%)

5, PallMall }

SAT encoding

9]

1, Brit =

Each attribute appears at |east once

Sl, blue 4 S2, blue v S3, blue 4 S4, blue N SS, blue

No attri bute appears tw ce

Sl, blue = (_|S2, blue)

For each attribute type every house has sone attribute

Sl,blue\/S VSI,red\/S VS

1, green 1, white 1, yellow

For each attribute type no house has nultiple attributes

Sl, blue = (_‘ Sl, green)

Encodi ng the known facts into | ogic

Sl, red S2, Brit = SZ, red S3, Brit = S3, red S4, Brit = S4, red SS, Brit = SS, red Sl, Swede

= Sl, dogs® SZ, Swede = SZ, dogs® SS, Swede = S3, dogs® S4, Swede = S4, dogs® SS, Swede = SS, dogs®

Sl, Dane

S

1, green

SZ, Dane = SZ, tea@ S3, Dane = S3, tea@®

S2 = S3 S3 = S4

S 4, Dane =S, 4, tea SS, Dane = SS, tea@

S4 = 55

=
Sl, te@

=>S2

-
, white* =2, green , white’ 3, green , White’ =4, green , white® SS, green’

Sl, green = Sl, coffee’ SZ, green =S 2, coffee’ S 3, green =S 3, coffee’ S 4, green = S4, coffee’ SS, green

= 85 cofeer 1. Pativall = 51, birds 52, Paliviall = 52, birds 3, PatiMall = 53, birds S4, PaliMall

= Sy piras S5, Pativgall = S5, birds S, yeliow = S1, Dunhite 52, yeliow = 52, Dunhile 53, yellow

= S3, Dunhill S4, yellow = S4, DunhilP SS, yellow = SS, DunhilP S3, milk> Sl, Norwegian® S2, Blends

= (

Sl, cats N S3, cats) > S3, Blends = (SZ, cats 4 S4, cats) ’ S4, Blends = (S3, cats N SS, cats) ’

Sl, Blends = SZ, cats’ SS, Blends = S4, cats’ SZ, horses = (Sl, Dunhill v S3, Dunhill) ’ S3, horses

= (

S5, punhitt ¥ Sa, punitt) >S4, horses = (53, punnitt V' S5, Dunhitt) > S1, horses = 52, Dunhite

SS, horses = S4, DunhilP Sl, BlueMaster = Sl, beer S 2, BlueMaster = S2, beer S3, BlueMaster = S3, beer

S4, BlueMaster = S4, beer SS, BlueMaster =S 5, beer S 1, German = Sl, Prince S 2, German = SZ, Prince

Sy

, German

VS,

= S3, Prince S4, German = S4, Prince SS, German = SS, Prince SZ, Norwegian = (Sl, blue

blue) > S3, Norwegian = (SZ, blue v S4, blue) > S4, Norwegian = (S3, blue v SS, blue) >

Sl, Norwegian = SZ, blue’ SS, Norwegian = S4, blue SZ, Blends = (Sl, water v S3, water) ’ S3, Blends
= (S 2, water v S4, water) ’ S4, Blends = (S3, water 4 SS, water) ’ Sl, Blends = SZ, water® SS, Blends

=
S 4, water

Y Finding a solution
We call Satisfy with all the constraints.

1 allConstraints := allAttributesAppear, noAttributesShared, allHaveEachAttribute, noneHaveMultiple, entries(c
2 satisfyingAssignment : = Satisfy(&nd(all Constraints));

satisfyingAssignment = {Sl Blends —Jalse, S| .. =false, S, . =false, S, p, ... = true,
Sl, German :false’ Sl, Prince :false’ Sl, Swede :false’ Sl, beer :false’ Sl, birds :false’ Sl, blue
=false, S\, cass 1, dogs = false, Sl,ﬁsh =false, S, green =false, S
= false, S\, milk = false, S\ red =false, S, ., =false, S =false, S

=true, S, coffee =false, S

1, horses

=true, S

1, tea 1, water 1, white 1, yellow

=lrue, Sl, BlueMaster :f als) Sl, Norwegian =lrue, Sl, PallMall :f alse’ SZ, Blends =lrue, SZ, Brit

=f alse’ SZ, Dane lrue, S 2, Dunhill =f als 2 SZ, German =f als 2 SZ, Prince =f als 2 SZ, Swede :f als &

SQQ beer —JAlse, Sz, pirds —Jalse, S2’ e = True, SQQ cars —Jalse, Sz, coffee false, Sz, dogs — false,

SZ, fish :f alse’ S 2, green :f alse’ SZ, horses lrue, S 2, milk :f alse’ SZ, red :f alse’ SZ, tea lrue, S 2, water
=f alse’ SZ, white :f als & SZ, yellow :f als & SZ, BlueMaster :f als & SZ, Norwegian =f alse’ S2, PallMall
:false’ S3, Blends :false’ S3, Brit true, S3, Dane :false’ S3, Dunhill :false’ S3, German :false’

S3, Prince :f alse’ S3, Swede :f alse’ S3, beer :f alse’ S3, birds lrue, S3, blue :f alse’ S3, cats :f alse’

S3, coffee =false, S3’ dogs =false, S3’ﬁsh =false, S3, green = false, S3, horses —Jalse, S3, ik = frue,

S5 re = false, S;, = false, S, = false, S, = false,

S3, Norwegian :f alse’ S3, PallMall — Irue, S4, Blends :f alse’ S4, Brit :f alse’ S. 4, Dane :f alse’ S4, Dunbhill
=f alse’ S4, German lrue, S4, Prince lrue, S4, Swede =f alse’ S, 4, beer =f als & S4, birds =f alse’ S, 4, blue
= false, S4’ cas —Jalse, S4’ coffee — € S4,
= false, Sy, milk =false, S, ,,,~false, S,
=f alse, S4, BlueMaster =f alse, S4, Norwegian =f alse, S 4, PallMall =f alse, SS, Blends :f alse, SS, Brit

:f alse’ SS, Dane :f alse’ SS, Dunhill :f alse’ SS, German :f alse’ SS, Prince :f alse’ SS, Swede lrue,

SS, beer lrue, SS, birds :f alse’ S 5, blue :f alse’ SS, cats :f alse’ SS, coffee :f als) SS, dogs =lrue, SS, fish
=false, Ss, = false, Ss, = false, Ss, itk =Jalse, Ss, veq —Jalse, Ss, req = Jalse, Ss, water
:false’ SS, white true, SS, yellow :false’ SS, BlueMaster lrue, SS, Norwegian :false’ SS, PallMall

= false}

water white BlueMaster

= true, Sy . =false, S5 yellow

=false, S 4, fish = true, S 4 =true, S 4

=false, S, 4,

dogs horses

=false, S,

green

=false, S 4,

tea water white yellow

, e

green horses

To easlly see who lives where and the attributes of each
house and owner we fill a 2D array with data from the
found solution:

Read sati sfying assi gnnent and produce nicely formatted sol u

yellow blue red green white
Norwegian Dane Brit German Swede
water tea milk coffee beer

Dunhill Blends PallMall Prince BlueMaster

cats horses birds fish dogs

v Euler's Graeco-Latin Square
Conjecture

A Latin square of order » is an n x n matrix containing »
distinct entries such that every row and column does not
contain duplicate entries.

ABCD]
BADUC
CDAB
DCBA

A superposition of two Latin squares is called a Graeco-

2 :
Latin square if all » pairs of entries appear.

Ao By C§ DB
BB Ao Dy Co
Cy Do AB Bo
Do CB Bo Ay

Y History

In 1782 Euler constructed Graeco-Latin squares in all
orders n except those of the form 4k + 2. He conjectured
that no Graeco-Latin squares exist in these orders.

In 1900, Tarry proved that Graeco-Latin squares do not
exist in order six. Three independent invalid proofs of
Euler's conjecture were published in 1902, 1910, and
1922.

However, n 1959-1960 Bose, Shrikhande, and Parker
showed these proofs were flawed by constructing Graeco-
Latin squares in all orders except 2 and 6.

Y Variables

The Boolean variables X i will represent that the
i,
(i, j) th entry of the first Latin square is & (and the

i, j, k

. CGCenerate set of vari abl es

B 11C’ llD’ 12A’ 12B’ 12C’XI,Z,D’XI,S,A’XI,3,B’Xl,3,C’

Y SAT encoding

Each | ocation contains at |east one entry

Xl, 1,4 VXI, 1,B VXL 1, C VXI, 1,D

Each | ocation contains at npbst one entry

XiLa= (74X, 1, 8)

Al colums and rows contain distinct entries

XiLa= (74X, 2 4)

X

variables Y will be used for the second Latin square).

X, X, 1,3, D
XawXiapXisoXiaoX 10X 16% 105 1 0% 205 28% 205 2>
X30% 3% 30% 30X 405 4% 40105 105165105 1>
X0 0% 2082082030835 3508530408485 40% 4>
XX 10X, 0% 0% 2 0% 28X 00X 20 Xa 3,0 X 3 8 X 3 00X 3
XawoXapXscXap s e iieoipios e oot
VisoYisplisolispiasYiapisac s Do e ehp
Lowhophoohophishsphsohsphaosraplsge o
LisGiphiobivBosBbopoohovBasBse ey
CaywlBaplBbaobavUieiplolioYaose Yoo Yase s
Vs wVisplasolasoYasetsap Y44C’Y44D}

Each pair of entries (e.g., A and al pha) nust appear sonmewhe

(X, 1AA1/1)V (Kaa N)Y (Ksa A5 6) Y (KuaarYae) Y (K1

(X2 2aN Y5 6) YV (%2347 56) V (X244 N G 4 0) V(K514

1,

La) V

a)\/(X0 N0)Y (s aA Y5 0) Y (KaaAYsao) Y (Kara
La) V

(Ka2a Yo o)V (Kasar sV (KaaaNYso)

. Can assune certain entries of the Latin squares by pernuting
Xl,I,A/\Xl,2,B/\Xl,3,CAX1,4,D/\X2,l,B/\X3,I,C/\X4,1,D/\Y1 /\Y /\Y

L,2,B
AY1,4,8

Y Finding Graeco-Latin squares

We use Satisfy to find a satisfying assignment of all the
constraints, Real Time from the CodeTools package to
time how long the computation takes and commands from
the plots and plottools packages to display the solution.

Commands to plot G aeco-Latin squares and find them for snal

Found a Graeco-Latin square of order 1 in 0.00 seconds:

Found that no Graeco-Latin squares of order 2 exist in 0.01
seconds.
Found a Graeco-Latin square of order 3 in 0.02 seconds:

Found a Graeco-Latin square of order 4 in 0.15 seconds:

Found a Graeco-Latin square of order 5 in 0.13 seconds:

Found a Graeco-Latin square of order 7 in 0.72 seconds:

Y Counterexample to Euler's conjecture

Using this encoding Maple finds a Graeco-Latin square of
order ten in about a day:

8
3|6
7 9 2
9 7
4 (5|7
1 3
1 6|8
8|5 1
9 4

A similar encoding can be used to generate a random
Sudoku puzzles. A completed Sudoku gridisa9by 9
Latin square such that the entries in each highlighted 3 by
3 block are distinct as well.

First, we call Satisfy with the Sudoku constraints (with no
Initial entries). A random assignment is generated by
passing a random seed to the SAT solver using
solveroptions in the Satisfy call.

constraints := &nd(atLeastOneDigit, distinctnessConstraints

1
2 satisfyingAssignment := Satisfy(constraints, solveroptions nd_init_ac

3
4 nunber O Entri esToThr owAway : =

0

t

, random seed=fl oor (1000*ti me[r

>
o
(7]
—+
(@)
=i
)
—
<))
w
c
Q
o
=
c
©
c
N
N
(1)

58913 |6 |1 (724
2|16 |4 | 7|8[5(|9]3]1
3|17(112|914(6|5|8
112|764]9|5|8]|3
819 (3 (152476
6|4 5|8 |7 (321|089
911652 |8 |3|4]|7
4132917 |8|]6]|5
/7158|1413 |6(1|9]2

This is a valid Sudoku puzzle.

Using this method of generating Sudoku puzzles we

Implemented an interactive Sudoku game.

Interactive Sudoku by Curtis Bright

5|3 7
6 1191|595
9 |8 6
8 6 3
4 3 1
2 6
6 2|8
4 1|9 5
8 719
Restart Check Solve
New Game:

Random From File From Web

vy The Graph Colouring Problem

A colouring of a graph is an assignment of colours to its

vertices such that every two adjacent vertices are coloured
differently.

A minimal colouring of a graph can be computed using the
ChromaticNumber function of the GraphTheory package.

Variables
T Let

x represent that vertex j of a graph G is coloured
i, J
~ with colour i.

Y SAT encoding

Each vertex has been assigned a col our

xl, red v xl, blue 4 xl, green

No vertex has been assigned two col ours

g
(7%, rea) Y (7%, biue)

Adj acent vertices are not coloured the sane way

(ﬁxl, red) N (_‘xZ, red)

Y Finding a colouring

We call Satisfy on the constraints with £ starting at 1 and
Increase k until the set of constraints becomes satisfiable.

Sol ving a benchmark using a random graph

G = Graph 1: an undirected unweighted graph with 125 vertices and 736 edge(s)
Could not find a colouring of G with 1 colours. Total time: 0.40
seconds.

Could not find a colouring of G with 2 colours. Total time: 1.08
seconds.
Could not find a colouring of G with 3 colours. Total time: 2.09
seconds.
Could not find a colouring of G with 4 colours. Total time: 3.31
seconds.
Found a colouring of G with 5 colours. Total time: 4.89 seconds.

The graph G was coloured using 5 colours in 4.89 seconds.

Y ChromaticNumber function

As of Maple 2018, a tuned version of this approach has
been implemented in the ChromaticNumber function.

1 G:= :-Inport("exanpl e/ DSJC125. 1.s6", base = datadir);

2 computationTinme, chi := CodeTool s: - Real Ti me(Chr omati cNunber (G, net hod=sat)):

3

4 printf("Maple 2019 finds the chromatic nunber of Gto be % in % 2f seconds."”, chi, computationTine);

G = Graph 2: an undirected unweighted graph with 125 vertices and 736 edge(s)
Maple 2019 finds the chromatic number of G to be 5in 0.11
seconds.

Prior to 2018, Maple could not find the chromatic number
- of G after an hour!

"he Maximum Cligue Problem

A clique of a graph is a subset of its vertices that are all
mutually connected.

The maximum cligue problem is to find a clique of
maximum size in a given graph and can be solved with the
MaximumClique function of the GraphTheory package.

Y Variables

We use the Boolean variables x where i is a vertex of G to
1

represent if the vertex i appears in the clique we are trying

' to find (say we are trying to find a clique of size k).

Y SAT encoding

If the vertices 1 and 2 are not connected then the variables
x and x2 cannot both be true.

|
CGenerate clique connectedness constraints

e
(") V(%)

We also want a way of enforcing that at least & variables
X peves X are assigned to true.
n

The most basic way of doing this is something like

(xl/\---/\xk> \/---\/(xn_k_H/\---/\xn>,butthiSiS

very inefficient.

Y Clever size encoding
Instead, we use Boolean counter variables s that

k, n
represent at least 4 of the variables X peees X are assigned
n

true. This occurs exactly when:

1. Either at least & of X peves X are true, or

n—1

2. atleast k — 1 of X peeey X are true and x is true.

n—1 n

This gives an efficient recursive definition of s In

k, n

terms of s and s .
k,n—1 k—1,n—1

Bool ean counter constraints with k=3 and n=5

S0, 51,0052, 00 53,0054, 00 55,00 50,10 50,2 50,3511 (50,1 Y (X1 NS0,0))52, 1< (51,0

V(A1 0))83 1 (521 Y (B34 80))81 (53,1 Y (X4 AS30))s 851 (844
V(X5 A8 0))51,2 9 (S0,2 Y (X1 1)):522 (51,2 YV (2AS11)):552 < (52,2
V(A 1)) 529 (S532V (%aANS31)):S52 (S42Y (X A8y 1))>513 < (50,3
V(¥ AS2)) 839 (51,3 (aAS12)):833 9 (523 Y (B3N 82)):8% 3 (5,3
V(X4 NS35))5853 9 (Sa3V (X5 A8y 2))5 553

Y Finding a maximum clique

We call Satisfy on the constraints with £ starting at 1 and
increase k& until the set of constraints becomes
unsatisfiable.

Sol ving a benchmark fromthe DI MACS i npl enmentation chal | enge

G = Graph 3: an undirected unweighted graph with 45 vertices and 918 edge(s)

Found a clique of G of size 1. Total time: 0.02 seconds.
Found a clique of G of size 2. Total time: 0.05 seconds.
Found a clique of G of size 3. Total time: 0.09 seconds.
Found a clique of G of size 4. Total time: 0.14 seconds.
Found a clique of G of size 5. Total time: 0.20 seconds.
Found a clique of G of size 6. Total time: 0.27 seconds.
Found a clique of G of size 7. Total time: 0.43 seconds.
Found a clique of G of size 8. Total time: 0.52 seconds.
Found a clique of G of size 9. Total time: 0.63 seconds.
Found a clique of G of size 10. Total time: 0.75 seconds.
Found a clique of G of size 11. Total time: 0.95 seconds.
Found a clique of G of size 12. Total time: 1.09 seconds.
Found a clique of G of size 13. Total time: 1.25 seconds.
Found a clique of G of size 14. Total time: 1.49 seconds.

Found a cligue of G of size 15. Total time: 1.67 seconds
Found a cligue of G of size 16. Total time: 1.94 seconds
Could not find a cliqgue of G of size 17. Total time: 2.23
seconds.

The largest clique of G has size 16 and it was found in 2.23
seconds.

Y MaximumClique function

As of Maple 2019, a tuned version of this approach has
been implemented in the MaximumClique function.

1 G:= :-Inport("exanpl e/ MVANN_a9.cl q", base=datadir, format="dinacs");
2 computationTinme, clique := CodeTool s: - Real Ti me(Maxi munCl i que(G net hod=sat)):
3 printf("The largest clique of G has size % and it was found in % 2f seconds.\n", nops(clique), conputationT

G = Graph 4: an undirected unweighted graph with 45 vertices and 918 edge(s)
The largest cliqgue of G has size 16 and it was found in 0.07
seconds.

Prior to 2019, Maple required about 225 seconds to find a
maximum clique in this graph.

v The 15-puzzle

S 1 7 3
9 2 11 4
13 6 15 3

10 14 12

The 15-puzzle is a classic "sliding tile" puzzle. It consists of
a 4 x 4 grid containing tiles numbered 1 through 15 along

with one missing tile.

The objective is to order the tiles in increasing order (from
left to right and top to bottom) and end with the blank tile in

the lower-right.

We'll use the Boolean variables S| i, j, n, ¢] to denote that

IVariabIes

the square (i, j) contains tile » after moves.

Y SAT encoding

% Constraints directly specifying state of above puzzle

Sl, 1,5,0/\S2, 1,9,0/\53, 1, 13,0/\54, l,blank,O/\Sl,Z, 1,0/\Sz,2,2,0/\53,2,6,0/\54,2, 10, 0
/\S1,3,7,0/\S2,3,11,0/\53,3,15,0/\S4,3, 14,0/\S1,4,3,O/\SZ,4,4,0/\S3,4,8,0/\S4,4, 12,0

. Constraints directly specifying that the board is solved at

Sl, 1, l,t/\SQ, 1,5,1/\S3, 1,9,t/\S4, 1, 13,t/\S1,2,2,z/\SZ,2,6,t/\S3,2, 10,t/\S4,2, 14,t/\S1,3,3,t
/\S2,3,7,t/\S3,3,11,t/\S4,3, 15,t/\Sl,4,4,t/\S2,4,8,t/\S3,4, 12,t/\S4,4,blank,t

Two tiles cannot occupy the same square at the sanme tine

(ﬁsl, 11, o) v (_'Sl, 1,2, 0)

The rules of the puzzle imply that the tile in square (i, ;)
does not change when (i, j) and its neighbours are not
blank, i.e.,
notEqualOrAdjacentToBlank(i, j, t)

= doesNotChange(1i, j, t)
for all timesteps .

% Generate the "static" transition constraints

S0 btank 0) N (751 2, s1ank 0) A (T2 1 btk 0)) = (St 1,0 S, ,,1) A (S 20
S8) AL L309 S L3 1) A(SL L4099 S La1) A(SL s 09 S 1s1)
ANSi60®S161) N(SL172.09 S L721) A (S s 09 Sus 1) NS 190
S0) NS L1002 S 010.1) A(SL L0 S 1) AN (S 120
S8 L) NSL Lo TS L) NS 140 S 1a1) AN (S 1s0

<S8 11s1) AN (Su1, blank 0 S S 1, blank 1))

If oneTileMoved(i, j, k, [, t) represents that only square
(i, j) movesto (k, /) attimestep ¢ then we also know the

constraint
Sli, j, blank, t] = V " Z)oneTileMoved(z’, I, kL t)
where (%,) is adjacent ’to (7, 7).

% Cenerate the "slide" transition constraints

St btank 0= (51,210 S L) A (SL2209 51 1,21) A(S1L2309 S, 1,3,1)
A (51,2,4,0 S a)N(SL25095151) N (SL2602 S 161) N(S1L270
S 2)N(S1280 S 1081) N (51200951 1.01) AN (SL21009 511 10.1)
NS 21109 S L1 1) N (S2120 S 1,12.1) A (S1213.0 51 1,13.1)
AN(S12140 9 S 1a1) AN (12150 €S 115,1) AN (51,2, blank 0 < St 1, blank 1))
NS00 %10 01) N (521,209 52 121) N(521.3.09 52 1.3.1) AN(S2 1,40
S8 1 a) N (5215095215 1) N (52160952 1.61) N(S21,7.0 55, 1,7.1)
AN(S1,80° 5 181) N (521,009 52 1,01) A(S2 110,052, 1,10,1) N (5211100
S) NS 11209 S 012.1) A (S 1,130 © S 1 13,1) AN (2,1, 14,0
<8 1 1a1) N (521150 S5 115.1) AN (52,1, blank 0 < 52,1, blank 1)))

Y Finding a solution

We ask the SAT solver to find a solution up to M (starting
at 5) moves. If no solution is found, increase M.

Conmands to search for a solution

Generated 11697 constraints with 1536 variables and now searching
for a solution with at most 5 moves...

No solution found with at most 5 moves in 1.44 seconds.
Generated 21457 constraints with 2816 variables and now searching

for a solution with at most 10 moves...

No solution found with at most 10 moves in 2.86 seconds.
Generated 31217 constraints with 4096 variables and now searching
for a solution with at most 15 moves...

Solution found with at most 15 moves in 6.51 seconds.

We'll use the Explore command to allow us to see how the
board state changes over time with a slider controlling
what time ¢ to view.

% Commands for reading and plotting the solution with the Expl

5 1 14 3
9 2 11 4
13 6 15 38
10 | 14 | 12
> L
Conclusion

SAT solvers can be surprisingly useful for some problems!

Our SAT encodings for ChromaticNumber and
MaximumClique often outperform Maple's previous own

built-in functions (sometimes significantly so).

By default, Maple 2019 will run the SAT approach and the
traditional Maple approach on separate cores and return the
result of whichever finishes first.

It's worthwhile to add the Satisfy command into your
' toolbox of useful Maple functions.

