
Effective Problem Solving using
SAT Solvers

Curtis Bright, Jürgen Gerhard, Ilias Kotsireas, Vijay Ganesh

with a clever
special algorithm which then gets beaten by translation to

Chris Jefferson

Introduction
SAT solvers are programs that solve the Boolean
satisfiability problem from Boolean logic.

Maple has a built-in SAT solver that can be called using the
Satisfy command of the Logic package.

1 with(Logic);

1 x &and y;

1 F := ¬(x) &implies (y &or z);

1 Satisfy(F);

In this talk we show how a variety of problems can be
solved using Satisfy.

All of our solutions are available from the Maple
Application Center.

The n-Queens Problem

The n-queens problem is to place n queens on an n by n
chessboard such that no queens attack each other.

Variables
We use the Boolean variables for and between 1

and to denote if there is a queen on the square at .

 Generate set of all variables Generate set of all variables

SAT encoding
Each row must contain a queen since there are n rows and
only one queen can go in each row.

 Generate positive constraints Generate positive constraints

If a square contains a queen then no other square in that
row, column, or diagonal contains a queen.

 Generate negative constraints Generate negative constraints

Finding a solution
We call Satisfy with both the positive and negative
constraints.

1

2

allConstraints := &and(positiveConstraints(n), negativeConstraints(n)):
satisfyingAssignment := Satisfy(allConstraints);

 Read satisfying assignment and draw a graphical representation of the queens on a chessboard Read satisfying assignment and draw a graphical representation of the queens on a chessboard

The Einstein Riddle
The "Einstein Riddle" is a logic puzzle apocryphally
attributed to Albert Einstein.

3. 3.

7. 7.

8. 8.

4. 4.

1. 1.

12. 12.

10. 10.

13. 13.

6. 6.

5. 5.

15. 15.

14. 14.

2. 2.

11. 11.

9. 9.

There are five houses in a row with each house a different
colour and each house owned by a man of a different
nationality.

Additionally, each of the owners have a different pet, prefer
a different kind of drink, and smoke a different brand of
cigarette. Furthermore, we know the following information:

The Brit lives in the Red house.
The Swede keeps dogs as pets.
The Dane drinks tea.
The Green house is next to the
White house, on the left.
The owner of the Green house
drinks coffee.
The person who smokes Pall Mall
rears birds.
The owner of the Yellow house
smokes Dunhill.
The man living in the centre house
drinks milk.
The Norwegian lives in the first
house.
The man who smokes Blends
lives next to the one who keeps
cats.
The man who keeps horses lives
next to the man who smokes
Dunhill.
The man who smokes Blue

The puzzle
is:

3. 3.

7. 7.

8. 8.

4. 4.

1. 1.

12. 12.

10. 10.

13. 13.

6. 6.

5. 5.

15. 15.

14. 14.

2. 2.

11. 11.

9. 9.

Master drinks beer.
The German smokes Prince.
The Norwegian lives next to the
Blue house.
The man who smokes Blends has
a neighbour who drinks water.

Variables
We label the houses with a number between 1 and 5.
The Boolean variable will be true exactly when the

house with index has attribute .

 Generate set of all variables Generate set of all variables

SAT encoding

 Each attribute appears at least once Each attribute appears at least once

 No attribute appears twice No attribute appears twice

 For each attribute type every house has some attribute For each attribute type every house has some attribute

 For each attribute type no house has multiple attributes For each attribute type no house has multiple attributes

 Encoding the known facts into logic Encoding the known facts into logic

Finding a solution
We call Satisfy with all the constraints.

1

2

allConstraints := allAttributesAppear, noAttributesShared, allHaveEachAttribute, noneHaveMultiple, entries(clues, nolist):
satisfyingAssignment := Satisfy(&and(allConstraints));

To easily see who lives where and the attributes of each
house and owner we fill a 2D array with data from the
found solution:

 Read satisfying assignment and produce nicely formatted solution Read satisfying assignment and produce nicely formatted solution

Euler's Graeco-Latin Square
Conjecture

A Latin square of order is an matrix containing
distinct entries such that every row and column does not
contain duplicate entries.

A superposition of two Latin squares is called a Graeco-

Latin square if all pairs of entries appear.

History
In 1782 Euler constructed Graeco-Latin squares in all
orders except those of the form . He conjectured
that no Graeco-Latin squares exist in these orders.

In 1900, Tarry proved that Graeco-Latin squares do not
exist in order six. Three independent invalid proofs of
Euler's conjecture were published in 1902, 1910, and
1922.

However, i Shrikhande, and Parker
showed these proofs were flawed by constructing Graeco-
Latin squares in all orders except 2 and 6.

Variables
The Boolean variables will represent that the

th entry of the first Latin square is (and the

variables will be used for the second Latin square).

 Generate set of variables Generate set of variables

SAT encoding

 Each location contains at least one entry Each location contains at least one entry

 Each location contains at most one entry Each location contains at most one entry

 All columns and rows contain distinct entries All columns and rows contain distinct entries

 Each pair of entries (e.g., A and alpha) must appear somewhere in the superposition of X on Y Each pair of entries (e.g., A and alpha) must appear somewhere in the superposition of X on Y

 Can assume certain entries of the Latin squares by permuting or renaming entries Can assume certain entries of the Latin squares by permuting or renaming entries

Finding Graeco-Latin squares
We use Satisfy to find a satisfying assignment of all the
constraints, RealTime from the CodeTools package to
time how long the computation takes and commands from
the plots and plottools packages to display the solution.

 Commands to plot Graeco-Latin squares and find them for small orders Commands to plot Graeco-Latin squares and find them for small orders

F o u n d a G r a e c o - L a t i n s q u a r e o f o r d e r 1 i n 0 . 0 0 s e c o n d s :

F o u n d t h a t n o G r a e c o - L a t i n s q u a r e s o f o r d e r 2 e x i s t i n 0 . 0 1
seconds.
F o u n d a G r a e c o - L a t i n s q u a r e o f o r d e r 3 i n 0 . 0 2 s e c o n d s :

F o u n d a G r a e c o - L a t i n s q u a r e o f o r d e r 4 i n 0 . 1 5 s e c o n d s :

F o u n d a G r a e c o - L a t i n s q u a r e o f o r d e r 5 i n 0 . 1 3 s e c o n d s :

F o u n d a G r a e c o - L a t i n s q u a r e o f o r d e r 7 i n 0 . 7 2 s e c o n d s :

Counterexample to Euler's conjecture
Using this encoding Maple finds a Graeco-Latin square of
order ten in about a day:

Generating Sudoku puzzles

A similar encoding can be used to generate a random
Sudoku puzzles. A completed Sudoku grid is a 9 by 9
Latin square such that the entries in each highlighted 3 by
3 block are distinct as well.

First, we call Satisfy with the Sudoku constraints (with no
initial entries). A random assignment is generated by
passing a random seed to the SAT solver using
solveroptions in the Satisfy call.

1

2

3

4

constraints := &and(atLeastOneDigit, distinctnessConstraints):
satisfyingAssignment := Satisfy(constraints, solveroptions=[rnd_init_act=true, random_seed=floor(1000*time[real]())]):

numberOfEntriesToThrowAway := 0:

 Commands to plot a Sudoku puzzle Commands to plot a Sudoku puzzle

T h i s i s a v a l i d S u d o k u p u z z l e .

Using this method of generating Sudoku puzzles we
implemented an interactive Sudoku game.

 Interactive Sudoku by Curtis Bright Interactive Sudoku by Curtis Bright

Restar t Check Solve

New Game:

Random From File From Web

The Graph Colouring Problem

A colouring of a graph is an assignment of colours to its
vertices such that every two adjacent vertices are coloured
differently.

A minimal colouring of a graph can be computed using the
ChromaticNumber function of the GraphTheory package.

Variables
Let

 represent that vertex of a graph is coloured

with colour .

SAT encoding

 Each vertex has been assigned a colour Each vertex has been assigned a colour

 No vertex has been assigned two colours No vertex has been assigned two colours

 Adjacent vertices are not coloured the same way Adjacent vertices are not coloured the same way

Finding a colouring

We call Satisfy on the constraints with starting at 1 and
increase until the set of constraints becomes satisfiable.

 Solving a benchmark using a random graph Solving a benchmark using a random graph

C o u l d n o t f i n d a c o l o u r i n g o f G w i t h 1 c o l o u r s . T o t a l t i m e : 0 . 4 0
seconds.
C o u l d n o t f i n d a c o l o u r i n g o f G w i t h 2 c o l o u r s . T o t a l t i m e : 1 . 0 8
seconds.
C o u l d n o t f i n d a c o l o u r i n g o f G w i t h 3 c o l o u r s . T o t a l t i m e : 2 . 0 9
seconds.
C o u l d n o t f i n d a c o l o u r i n g o f G w i t h 4 c o l o u r s . T o t a l t i m e : 3 . 3 1
seconds.
F o u n d a c o l o u r i n g o f G w i t h 5 c o l o u r s . T o t a l t i m e : 4 . 8 9 s e c o n d s .

T h e g r a p h G w a s c o l o u r e d u s i n g 5 c o l o u r s i n 4 . 8 9 s e c o n d s .

ChromaticNumber function
As of Maple 2018, a tuned version of this approach has
been implemented in the ChromaticNumber function.

1

2

3

4

G := :-Import("example/DSJC125.1.s6", base = datadir);
computationTime, chi := CodeTools:-RealTime(ChromaticNumber(G, method=sat)):

printf("Maple 2019 finds the chromatic number of G to be %d in %.2f seconds.", chi, computationTime);

M a p l e 2 0 1 9 f i n d s t h e c h r o m a t i c n u m b e r o f G t o b e 5 i n 0 . 1 1
seconds.

Prior to 2018, Maple could not find the chromatic number
of after an hour!

The Maximum Clique Problem

A clique of a graph is a subset of its vertices that are all
mutually connected.

The maximum clique problem is to find a clique of
maximum size in a given graph and can be solved with the
MaximumClique function of the GraphTheory package.

Variables
We use the Boolean variables where is a vertex of to

represent if the vertex appears in the clique we are trying

1. 1.

2. 2.

to find (say we are trying to find a clique of size).

SAT encoding

If the vertices 1 and 2 are not connected then the variables
 and cannot both be true.

 Generate clique connectedness constraints Generate clique connectedness constraints

We also want a way of enforcing that at least variables
 are assigned to true.

The most basic way of doing this is something like
, but this is

very inefficient.

Clever size encoding
Instead, we use Boolean counter variables that

represent at least of the variables are assigned

true. This occurs exactly when:

Either at least of are true, or

at least of are true and is true.

This gives an efficient recursive definition of in

terms of and .

 Boolean counter constraints with k=3 and n=5 Boolean counter constraints with k=3 and n=5

Finding a maximum clique

We call Satisfy on the constraints with starting at 1 and
increase until the set of constraints becomes
unsatisfiable.

 Solving a benchmark from the DIMACS implementation challenge Solving a benchmark from the DIMACS implementation challenge

F o u n d a c l i q u e o f G o f s i z e 1 . T o t a l t i m e : 0 . 0 2 s e c o n d s .
F o u n d a c l i q u e o f G o f s i z e 2 . T o t a l t i m e : 0 . 0 5 s e c o n d s .
F o u n d a c l i q u e o f G o f s i z e 3 . T o t a l t i m e : 0 . 0 9 s e c o n d s .
F o u n d a c l i q u e o f G o f s i z e 4 . T o t a l t i m e : 0 . 1 4 s e c o n d s .
F o u n d a c l i q u e o f G o f s i z e 5 . T o t a l t i m e : 0 . 2 0 s e c o n d s .
F o u n d a c l i q u e o f G o f s i z e 6 . T o t a l t i m e : 0 . 2 7 s e c o n d s .
F o u n d a c l i q u e o f G o f s i z e 7 . T o t a l t i m e : 0 . 4 3 s e c o n d s .
F o u n d a c l i q u e o f G o f s i z e 8 . T o t a l t i m e : 0 . 5 2 s e c o n d s .
F o u n d a c l i q u e o f G o f s i z e 9 . T o t a l t i m e : 0 . 6 3 s e c o n d s .
F o u n d a c l i q u e o f G o f s i z e 1 0 . T o t a l t i m e : 0 . 7 5 s e c o n d s .
F o u n d a c l i q u e o f G o f s i z e 1 1 . T o t a l t i m e : 0 . 9 5 s e c o n d s .
F o u n d a c l i q u e o f G o f s i z e 1 2 . T o t a l t i m e : 1 . 0 9 s e c o n d s .
F o u n d a c l i q u e o f G o f s i z e 1 3 . T o t a l t i m e : 1 . 2 5 s e c o n d s .
F o u n d a c l i q u e o f G o f s i z e 1 4 . T o t a l t i m e : 1 . 4 9 s e c o n d s .

F o u n d a c l i q u e o f G o f s i z e 1 5 . T o t a l t i m e : 1 . 6 7 s e c o n d s .
F o u n d a c l i q u e o f G o f s i z e 1 6 . T o t a l t i m e : 1 . 9 4 s e c o n d s .
C o u l d n o t f i n d a c l i q u e o f G o f s i z e 1 7 . T o t a l t i m e : 2 . 2 3
seconds.

T h e l a r g e s t c l i q u e o f G h a s s i z e 1 6 a n d i t w a s f o u n d i n 2 . 2 3
seconds.

MaximumClique function
As of Maple 2019, a tuned version of this approach has
been implemented in the MaximumClique function.

1

2

3

G := :-Import("example/MANN_a9.clq", base=datadir, format="dimacs");
computationTime, clique := CodeTools:-RealTime(MaximumClique(G, method=sat)):
printf("The largest clique of G has size %d and it was found in %.2f seconds.\n", nops(clique), computationTime);

T h e l a r g e s t c l i q u e o f G h a s s i z e 1 6 a n d i t w a s f o u n d i n 0 . 0 7
seconds.

Prior to 2019, Maple required about 225 seconds to find a
maximum clique in this graph.

The 15-puzzle

The 15-puzzle is a classic "sliding tile" puzzle. It consists of

with one missing tile.

The objective is to order the tiles in increasing order (from
left to right and top to bottom) and end with the blank tile in
the lower-right.

Variables
We'll use the Boolean variables to denote that

the square contains tile after moves.

SAT encoding

 Constraints directly specifying state of above puzzle Constraints directly specifying state of above puzzle

 Constraints directly specifying that the board is solved at time t Constraints directly specifying that the board is solved at time t

 Two tiles cannot occupy the same square at the same time Two tiles cannot occupy the same square at the same time

The rules of the puzzle imply that the tile in square
does not change when and its neighbours are not
blank, i.e.,

 for all timesteps .

 Generate the "static" transition constraints Generate the "static" transition constraints

If represents that only square
 moves to at timestep then we also know the

constraint

where is adjacent to .

 Generate the "slide" transition constraints Generate the "slide" transition constraints

Finding a solution

We ask the SAT solver to find a solution up to (starting
at 5) moves. If no solution is found, increase .

 Commands to search for a solution Commands to search for a solution

Genera ted 11697 cons t ra in t s w i t h 1536 va r i ab les and now sea rch ing
f o r a s o l u t i o n w i t h a t m o s t 5 m o v e s . . .
N o s o l u t i o n f o u n d w i t h a t m o s t 5 m o v e s i n 1 . 4 4 s e c o n d s .
Gene ra ted 21457 cons t ra in t s w i t h 2816 va r i ab les and now sea rch ing

f o r a s o l u t i o n w i t h a t m o s t 1 0 m o v e s . . .
N o s o l u t i o n f o u n d w i t h a t m o s t 1 0 m o v e s i n 2 . 8 6 s e c o n d s .
Gene ra ted 31217 cons t ra in t s w i t h 4096 va r i ab les and now sea rch ing
f o r a s o l u t i o n w i t h a t m o s t 1 5 m o v e s . . .
S o l u t i o n f o u n d w i t h a t m o s t 1 5 m o v e s i n 6 . 5 1 s e c o n d s .

We'll use the Explore command to allow us to see how the
board state changes over time with a slider controlling
what time to view.

 Commands for reading and plotting the solution with the Explore command Commands for reading and plotting the solution with the Explore command

Conclusion
SAT solvers can be surprisingly useful for some problems!

Our SAT encodings for ChromaticNumber and
MaximumClique often outperform Maple's previous own

built-in functions (sometimes significantly so).

By default, Maple 2019 will run the SAT approach and the
traditional Maple approach on separate cores and return the
result of whichever finishes first.

It's worthwhile to add the Satisfy command into your
toolbox of useful Maple functions.

