
Faster SAT solving with
applications to Sudoku

Background
A SAT solver is a program that takes as input a formula in Boolean logic
and returns an assignment to the variables that makes the formula true (if
one exists).

1

2

3

4

SAT Solving Example
with(Logic):
F := (a &or b) &and c;
Satisfy(F);

Maple has had a Boolean logic package since at least Maple V but the
satisfiability-checking command was slow and only intended to be used
on small examples.
In the meantime there has been a lot of progress in SAT solving

people to translate their problem into SAT just to be able to use a SAT
solver on it.
In Maple 2016, Stephen Forrest updated the Satisfy command to use
MiniSat, a free SAT solver that hasn't been updated since 2010 but forms
the basis for many current state-of-the-art SAT solvers.
In Maple 2018, I updated the Satisfy command to use MapleSAT, an
improved version of MiniSat developed by Vijay Ganesh's research
group at Waterloo that won awards in 2016 and 2017.

Graph colouring
The ChromaticNumber command of the GraphTheory package returns

the minimal number of colours necessary to colour a graph such that no
two adjacent vertices share the same colour.

In Maple 2018, I added a sat method which solves the problem by
translating it into Boolean logic and calling MapleSAT.
This method solves some benchmarks in seconds that Maple 2017
couldn't solve in an hour.
1

2

G := :-Import("example/DSJC125.1.s6", base = datadir);
CodeTools:-Usage(GraphTheory:-ChromaticNumber(G));

memory used=283.87KiB, a l l oc change=8 .75MiB , cpu t ime=233.00ms,
r e a l t i m e = 6 . 3 7 s , gc t ime=151.28ms

5

Problem: Overhead

Profiling revealed that MapleSAT was much faster than Maple's legacy

MapleSAT link.
The link was not written for performance: it was based on passing a
string to MiniSat.
In one example with ~37,000 clauses, translating the formula to a string
took 1.85s and finding a satisfying assignment took 0.007s.
Not acceptable especially if you want to call the solver many times.

Improved MapleSAT link
Instead of passing a string we pass a Maple object and have MapleSAT
internally convert it into the format it uses.
With the new link the formula from above is passed to MapleSAT and
solved in 0.03s.

Improved Tseitin
MapleSAT requires formulas to be in conjunctive normal form. This
conversion is done with Maple's Tseitin function.
Previously Tseitin would always first convert its input into negation
normal form, even if it was unnecessary. A check has been added so that
Tseitin will check if a formula is in CNF before converting to negation
normal form.
Calling Tseitin on the formula from above previously took about 0.7s, it
now takes about 0.1s.

Maximum clique
I added a sat method to the MaximumClique command of the
GraphTheory package that finds a maximum clique using a SAT solver.
I also added a hybrid method that uses the Grid package to run both the
default method and the SAT method in parallel and returns the first
result.

Timings
Timings comparing the hybrid, SAT, and default methods with a
timeout of 200 seconds:

 BENCHMARK HYBRID SAT DEFAULT

c-fat500-1 2.519 6.202 0.121
keller4 9.059 7.643 TIMEOUT
p_hat500-1 33.122 TIMEOUT 31.566
MANN_a9 1.539 0.157 186.845
brock200_2 21.13 23.35 19.388
c-fat200-2 1.573 2.077 0.143
c-fat200-5 9.559 7.785 17.913
johnson8-2-4 1.076 0.06 0.011
c-fat500-10 122.164 114.125 TIMEOUT
johnson8-4-4 1.556 0.241 6.029
c-fat200-1 1.536 0.725 0.053
hamming6-4 1.13 0.068 0.047
hamming8-2 54.097 49.863 TIMEOUT
johnson16-2-4 7.092 5.575 TIMEOUT
hamming8-4 9.584 7.81 TIMEOUT
p_hat300-1 3.568 11.891 2.351
c-fat500-5 38.588 35.405 117.546
p_hat700-1 163.249 TIMEOUT 151.535
c-fat500-2 2.077 8.936 0.777
hamming6-2 2.054 0.613 40.838

The SAT method was the fastest for half of the solved benchmarks
and solved 18/80 benchmarks compared to the default method's 15/80
benchmarks.
The hybrid method solved 20/80 benchmarks but was usually the
second fastest method.

Example worksheets
In addition to the clique-finding example worksheet, I also wrote
worksheets for

* The -queens problem
* Solving the world's hardest Sudoku
* Solving the Einstein riddle
* Solving the 8-puzzle
* An interactive Sudoku game

