Improvements to Satisfy and

ChromaticNumber
Curtis Bright, University of Waterloo

V¥ Satisfy

The command Satisfy accepts a logical formula and returns a satisfying
assignment of the formula if possible and NULL if no satisfying assignment
exists.

VY Example

> with(Logic) :
F:= &and(x, y, z);
G :=&and (¬(x),¬(y), z2);
H :=&or(x, y);
J =&or(¬(x),¬(y));

F=XxAyANZz
G=(—"xX)AN(yY)AZ

H:=xVvYy
I J= (=X V(=)
> Satisfy(F);
i {x = true, y = true, z = true}
> Satisfy(G);

{x = false, y = false, z = true}

> Satisfy(&and(H, J));
{x = false, y = true}

(> Satisfy(&and(F. G)):

* The Boolean satisfiability problem (SAT) is the archetypical NP-comple
problem.

and in practice they can efficiently solve many problems of interest.

Pigeonhole principle (PHP)
* As an example of a non-trival formula, consider an encoding of the

each hole can contain at most one pigeon.
and j=1,.,n—1) to represent if pigeon i is in hole j.

|:> n:=3:
> # Every pigeon is in a hole

(1.1.1)

(1.1.2)

(1.1.3)

(1.1.4)

te

* Despite this, a lot of work has gone into making SAT solvers more efficient

pigeonhole principle, the fact that n pigeons cannot fit into n — 1 holes if

* To enocode this proposition we use the variable x[/, j] (where i=1,...,n

PositiveClauses = seq(&or(seq(x[i, jl,j=1..n-1)),i=1.. n);
PositiveClauses == X 1 V Xy 5, X 1 V Xy 5, X3 1 V X3 5 (1.1.5)

> # No hole contains two pigeons
NegativeClauses = seq(seq(seq(&or(¬(x[i j]), ¬(x[k, j])),i=k+1
.h),k=1.n),j=1..n—1);
NegativeClauses == (=X, 1) V (=X 1), (7X3 1) V(7X 1), (7% 1) V((1.1.6)
X 1) (T X, 2) V(X 2)s (TX50) V(TXy2) (TX32) V(T X 0)

(> PHP = &and (PositiveClauses, NegativeClauses);
PHP = (X1 VX1, 2) A (%,1V X, 2) A (X351 VX5 0) A((7%,1) V(7%,1)) (1.1.7)

AN(7x3) V(7x 1)) A((7X3,1) V(7% 1)) A7 %,2) V(

| X)) A %2) VT X,2)) A (7X52) V(7 X2))
(> time(Satisfy(PHP));

0.001 (1.1.8)

* Using a larger value of n...
> ni=5:
PositiveClauses = seq(&or(seq(x[i, jl,j=1..n-1)),i=1..n):
NegativeClauses := seq(seq(seq(&or(¬(x[i, j]), ¬(x[k, j])),i=k+1
.n),k=1.n),j=1.n—-1):
PHP := &and (PositiveClauses, NegativeClauses) :
nops(PHP);
45 (1.1.9)

> time(Satisfy(PHP));

0.004 (1.1.10)

* In fact, it is known that the solving method that modern SAT solvers use
will take exponential time to determine that PHP is unsatisfiable.

V¥ Solving methods

* Until Maple 2016, the solving method used was not designed to handle
large problems.

* New in Maple 2018: A method option which specifies which solving
method to use.

* Currently, the only methods which are supported are "maplesat” and
"legacy".

|:> time(Satisfy(PHP, method = "maplesat"));

0.003 (1.2.1)
> time(Satisfy(PHP, method = "legacy"));
i 1.011 (1.2.2)

Y Default solver

* In Maple 2018 the default SAT solver is MapleSAT.

* In Maple 2016 and 2017 the default SAT solver was Minisat (the solver
MapleSAT is based on).

* |t is possible to fine-tune the behaviour of MapleSAT by using Satisfy's
solveroptions parameter.

| > F:=:-Import("/home/cbright/uf20-01.cnf") :
> Satisfy(F, method = "maplesat”, solveroptions = [rnd_init_act = true,
random_seed=11]);
Satisfy(F, method = "maplesat", solveroptions = [rnd_init_act = true,
random_seed = 21);
{B = true, BO = false, B1 = false, B10 = false, B11 = true, B12 = true, B13

= true, B14 = false, B15 = true, B16 = false, B17 = false, B18 = true, B2
= true, B3 = false, B4 = false, B5 = false, B6 = false, B7 = false, B8
= true, B9 = false}
{B = false, BO = true, B1 = true, B10 = false, B11 = false, B12 = true, B13 (1.3.1)
= true, B14 = false, B15 = true, B16 = true, B17 = true, B18 = true, B2
= true, B3 = false, B4 = false, B5 = false, B6 = true, B7 = true, B8
= true, B9 = true}

VY ChromaticNumber

The command ChromaticNumber accepts a graph and returns the minimum
number of colours necessary to colour the vertices of the graph so that no
adjacent vertices are coloured the same.

VY Examples

> with(GraphTheory) :

L with(SpecialGraphs) :
> P:= PetersenGraph() :
DrawGraph(P);

4)

=> ChromaticNumber(P);
(2.1.1)

=> ChromaticNumber (P,/col') :
col,
[[2,5,7,10], [4, 6, 9], [1, 3, 8]]

> HighlightVertex(P, col[1],'red');
HighlightVertex(P, col[2],'blue');
HighlightVertex(P, col[3],'green');
DrawGraph(P);

(2.1.2)

=> K := CompleteGraph(5) :
ChromaticNumber (K, 'col');

> HighlightVertex(K, col[1],'red'");
HighlightVertex(K, col[2],'blue');
HighlightVertex(K, col[3],'green');
HighlightVertex(K, col[4], magenta’);
HighlightVertex(K, col[5],'tan");
DrawGraph(K);

(2.1.3)

4

* Maple's previous method of computing the chromatic number of a graph
computed a max clique inside the graph as a first step.

* The size of a max clique in a graph gives lower bound on the chromatic
number.

* When the max clique is as large as possible (i.e., in the case of a complete
graph) the method performs very well.

* The method does not perform particularly well in general (even just
finding a max clique is NP hard).

Y Opportunity to use SAT solver

* The problem is naturally translated into a Boolean satisfiability setting.

* Say we want to determine if a graph with n vertices V is k-colourable.

* For each vertex v € V we use the Boolean variables v[1],..., v[k] with v[/]
denoting that v can be coloured with colour i.

Positive clauses

Each vertex has to be coloured some colour: v[1]Vv[2]V---VV[K] for
eachveV

Negative clauses

Each vertex cannot be coloured two colours: = v[c] V- v[d] for each pair
of distinct colours (¢,d) and v eV

Adjacent vertices cannot be coloured the same color: = u[c] V- v|[c] for
each pair of adjacent vertices (u, v) and each colour c.

e Foreach k=1, 2, 3,..., n we construct the above Boolean formulas S, and

check whether the set of all such formulas is satisfiable.
* We know that S, is satisfiable for k = n and unsatisfible for k=1

(assuming there is at least one edge).
* The value of k for which S, is satisfiable but S, _; is unsatisfiable is the

chromatic number of the graph.

¥V In practice: hard cases
* The hardest set of formulas to determine the satisfiability of is S, _; where

k is the chromatic number of the graph.
* For example, when G is the complete graph on n vertices the formulas
S, _; say that the complete graph can be coloured with n—1 colours

which is false (this is equivalent to the pigeonhole principle).
* When n=11 it starts taking the SAT solver minutes to determine that
S, _; is not satisfiable, even though the complete graphs should be easy

to compute the chromatic number for (and Maple's previous
implementation instantly solves this case).

¥V In practice: continued...

* However, the SAT method typically outperforms the previous Maple
implementation.

* In fact, running both methods on a set of competition benchmarks the SAT
method was always faster and solved a number of benchmarks that the
previous method could not (in a reasonable amount of time).

* In short, the SAT method was only slower on complete graphs.

VY What to do?

* The SAT method is generally better but performs poorly on complete (or
almost-complete) graphs.

* Because complete graphs should be some of the easiest graphs to colour,
using this method by itself is not adequate.

* We arrived at ahybrid stategy: we run both methods in parallel and
return the result of whichever method finishes first.

* Each method was run on a separate node using the Grid package.

Code snippet:

> Grid:-Setup(numnodes = 2);
Grid:-Run(0, GraphTheory.-ColorOptimal, [args));

Grid:-Run(1, GraphTheory.-ColorSAT, [args]);
firstnode = Grid.- WaitForFirst();
Grid.—Interrupt();

Grid:-Wait();

result := Grid:-GetLastResult(firstnode);

Y Example of performance

* In the following example Maple 2017 is unable to determine the chromatic
number after an hour of CPU time while Maple 2018 does so in seconds.
* The example is a random graph which appears in the paper "Optimization
by Simulated Annealing: An Experimental Evaluation; Part Il, Graph
_ Coloring and Number Partitioning".
> G :=:-Import("example/DSJC125.1.s6", base = datadir);
time(ChromaticNumber(G));
G :=
Graph 1: an undirected unweighted graph with 125 vertices and 736
edge(s)

0.281 (2.6.1)

