
(1.1.2)(1.1.2)

>  >  

(1.1.3)(1.1.3)

>  >  

(1.1.5)(1.1.5)

>  >  

(1.1.4)(1.1.4)

>  >  

>  >  

>  >  

>  >  

(1.1.1)(1.1.1)

Improvements to Satisfy and 
ChromaticNumber

Curtis Bright, University of Waterloo

Satisfy
The command Satisfy accepts a logical formula and returns a satisfying 
assignment of the formula if possible and  if no satisfying assignment 
exists.

Example

The Boolean satisfiability problem (SAT) is the archetypical NP-complete 
problem.
Despite this, a lot of work has gone into making SAT solvers more efficient
and in practice they can efficiently solve many problems of interest.

Pigeonhole principle (PHP)
As an example of a non-trival formula, consider an encoding of the
pigeonhole principle, the fact that  pigeons cannot fit into  holes if 
each hole can contain at most one pigeon.
To enocode this proposition we use the variable (where  
and ) to represent if pigeon  is in hole .



(1.1.8)(1.1.8)

(1.1.10)(1.1.10)

(1.1.5)(1.1.5)

(1.1.7)(1.1.7)

(1.2.1)(1.2.1)

(1.1.9)(1.1.9)

>  >  

(1.1.6)(1.1.6)

(1.2.2)(1.2.2)

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

>  >  

0.001

Using a larger value of ...

45

0.004

In fact, it is known that the solving method that modern SAT solvers use 
will take exponential time to determine that  is unsatisfiable.

Solving methods
Until Maple 2016, the solving method used was not designed to handle 
large problems.
New in Maple 2018: A method option which specifies which solving 
method to use.
Currently, the only methods which are supported are "maplesat" and 
"legacy".

0.003

1.011

Default  solver



>  >  

(1.3.1)(1.3.1)

>  >  

(1.1.5)(1.1.5)

>  >  

>  >  

>  >  

In Maple 2018 the default SAT solver is MapleSAT.
In Maple 2016 and 2017 the default SAT solver was Minisat (the solver 
MapleSAT is based on).
It is possible to fine-tune the behaviour of MapleSAT by using Satisfy's
solveroptions parameter.

ChromaticNumber
The command ChromaticNumber accepts a graph and returns the minimum 
number of colours necessary to colour the vertices of the graph so that no 
adjacent vertices are coloured the same.

Examples



(2.1.2)(2.1.2)

>  >  

>  >  

>  >  

>  >  

(1.1.5)(1.1.5)

(2.1.1)(2.1.1)3



>  >  

>  >  

>  >  

(1.1.5)(1.1.5)

(2.1.3)(2.1.3)5



>  >  

(1.1.5)(1.1.5)

Maple's previous method of computing the chromatic number of a graph 
computed a max clique inside the graph as a first step.
The size of a max clique in a graph gives lower bound on the chromatic 
number.
When the max clique is as large as possible (i.e., in the case of a complete
graph) the method performs very well.
The method does not perform particularly well in general (even just 
finding a max clique is NP hard).

Opportunity to use SAT solver
The problem is naturally translated into a Boolean satisfiability setting.
Say we want to determine if a graph with  vertices  is -colourable.
For each vertex  we use the Boolean variables  with  
denoting that  can be coloured with colour .

Positive clauses
Each vertex has to be coloured some colour:  for 
each 



(1.1.5)(1.1.5)

>  >  

>  >  

Negative clauses
Each vertex cannot be coloured two colours:  for each pair 
of distinct colours  and 
Adjacent vertices cannot be coloured the same color:  for 
each pair of adjacent vertices  and each colour .

For each  we construct the above Boolean formulas and 

check whether the set of all such formulas is satisfiable.
We know that S  is satisfiable for  and unsatisfible for  

(assuming there is at least one edge).
The value of  for which  is satisfiable but  is unsatisfiable is the 

chromatic number of the graph.

In practice: hard cases
The hardest set of formulas to determine the satisfiability of is S  where

 is the chromatic number of the graph.
For example, when  is the complete graph on  vertices the formulas 
S  say that the complete graph can be coloured with  colours 

which is false (this is equivalent to the pigeonhole principle).
When  it starts taking the SAT solver minutes to determine that 
S  is not satisfiable, even though the complete graphs should be easy 

to compute the chromatic number for (and Maple's previous 
implementation instantly solves this case).

In practice: continued...
However, the SAT method typically outperforms the previous Maple 
implementation.
In fact, running both methods on a set of competition benchmarks the SAT
method was always faster and solved a number of benchmarks that the 
previous method could not (in a reasonable amount of time).
In short, the SAT method was only slower on complete graphs.

What to do?
The SAT method is generally better but performs poorly on complete (or 
almost-complete) graphs.
Because complete graphs should be some of the easiest graphs to colour, 
using this method by itself is not adequate.
We arrived at a hybrid stategy: we run both methods in parallel and 
return the result of whichever method finishes first.
Each method was run on a separate node using the Grid package.

Code snippet:



>  >  

>  >  

(1.1.5)(1.1.5)

>  >  

(2.6.1)(2.6.1)

Example of performance
In the following example Maple 2017 is unable to determine the chromatic
number after an hour of CPU time while Maple 2018 does so in seconds.
The example is a random graph which appears in the paper "Optimization 
by Simulated Annealing: An Experimental Evaluation; Part II, Graph 
Coloring and Number Partitioning".
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