
Satisfiability Checking + Symbolic Computation:
A New Approach to Combinatorial Mathematics

Curtis Bright, University of Windsor
Vijay Ganesh, University of Waterloo

LAPIS Meeting, Rice University
July 14, 2021

1/36



SAT + CAS
Search + Math

2/36



MathCheck: The first SAT+CAS system

In 2015, Zulkoski et al. created the first SAT+CAS system
MathCheck and applied it to conjectures in graph theory.1

In 2016, Bright et al. extended MathCheck and applied it to a
conjecture in combinatorics.2

MathCheck has since won several awards including a 2020 best
paper award in Applicable Algebra in Engineering, Communication
and Computing.3

1E. Zulkoski, V. Ganesh, K. Czarnecki. MathCheck: A Math Assistant based on a
Combination of Computer Algebra Systems and SAT Solvers. CADE 2015.

2C. Bright, V. Ganesh, A. Heinle, I. Kotsireas, S. Nejati, K. Czarnecki.
MathCheck2: A SAT+CAS verifier for combinatorial conjectures. CASC 2016.

3C. Bright et al. A Nonexistence Certificate for Projective Planes of Order Ten
with Weight 15 Codewords. AAECC 2020.
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The SC2 project

In November 2015, researchers from both satisfiability checking
and symbolic computation (SC2) came together for the first time
in a seminar in Dagstuhl, Germany. . .

This led to the creation of the SC-square project which now has
associates from over 40 universities and 15 companies.
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Application I:
The Williamson Conjecture
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Hadamard matrices

Hadamard matrices are square matrices with ±1 entries whose
rows are mutually orthogonal.

1 1 1 1

−1 1 −1 1

−1 1 1 −1

−1 −1 1 1

In 1893, Jacques Hadamard studied these matrices. They have
applications in error-correcting codes and many other areas.
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Williamson’s construction

In 1944, John Williamson discovered a method of constructing
Hadamard matrices in many orders like this order 8 example:

1 1 1 1 1 −1 1 −1

1 1 1 1 −1 1 −1 1

−1 −1 1 1 −1 1 1 −1

−1 −1 1 1 1 −1 −1 1

−1 1 1 −1 1 1 −1 −1

1 −1 −1 1 1 1 −1 −1

−1 1 −1 1 1 1 1 1

1 −1 1 −1 1 1 1 1
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Order 23 example
In 1961, scientists from NASA searched for Williamson matrices
while developing codes for communicating with spacecraft and
they found the first Williamson matrices of order 23.4

4L. Baumert, S. Golomb, M. Hall. Discovery of an Hadamard matrix of order 92.
Bulletin of the American Mathematical Society, 1962.
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Williamson matrices

Williamson’s construction relies on finding {±1}-matrices for
which A2 + B2 + C 2 + D2 is a scalar matrix (all off-diagonal
entries are zero).

If A, B, C , D are symmetric and each row is a cyclic shift of the
previous row then the matrices are said to be Williamson matrices.

Williamson matrices of order 5.
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The Williamson conjecture

Many researchers expected Williamson matrices to exist in all
orders and this became known as the Williamson conjecture.

Williamson himself found examples in orders n = 2k for k ≤ 5 and
he expressed interest in if this could be continued:
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Williamson matrices of order 2k for 2 ≤ k ≤ 5
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Williamson matrices of order 2k

The question of if Williamson matrices exist in all orders 2k was
open for 75 years.

In 2019, we ran exhaustive searches for Williamson matrices in all
even orders n ≤ 70 and discovered a large number of Williamson
matrices in order 64.5

The patterns uncovered by this searches show that Williamson’s
method works for all orders that are powers of two.6

5C. Bright, I. Kotsireas, V. Ganesh. Applying computer algebra systems with SAT
solvers to the Williamson conjecture. Journal of Symbolic Computation, 2020.

6——. New Infinite Families of Perfect Quaternion Sequences and Williamson
Sequences. IEEE Transactions on Information Theory, 2020.
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Previous searches

In 2006, a computer algebra approach found Williamson matrices
in all even orders n ≤ 22.7

In 2016, a satisfiability approach found Williamson matrices in all
even orders n ≤ 30.8

The search space for order n = 70 is twenty-five orders of
magnitude larger than the search space for order n = 30—yet it is
possible to search exhaustively with a hybrid approach.

7I. Kotsireas, C. Koukouvinos. Constructions for Hadamard matrices of Williamson
type. Journal of Combinatorial Mathematics and Combinatorial Computing, 2006.

8C. Bright, V. Ganesh, A. Heinle, I. Kotsireas, S. Nejati, K. Czarnecki.
MathCheck2: A SAT+CAS verifier for combinatorial conjectures. CASC 2016.
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SAT encoding

Let the Boolean variable ai represent the ith entry in the initial
row of the matrix A contains a 1.

a0
true

a1
true

a2
false

a3
false

a4
true

Using similar variables for B, C , and D, one can express that the
off-diagonal entries of A2+B2+C 2+D2 are zero using arithmetic
circuits (which can be converted into conjunctive normal form).
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Simple setup

Encoding that Williamson
matrices of order n exist

SAT solver

Williamson matrices
or counterexample

However, this does not perform well, since a SAT solver will not
exploit mathematical facts about Williamson matrices.
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SAT+CAS overview

The SAT solver is augmented with a CAS learning method:

SAT solver CAS

partial satisfying
assignment

conflict clause

The conflict generated by the CAS depends on the problem
domain.
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Power spectral density (PSD) filtering

If A is a Williamson matrix then

PSDA ≤ 4n

where PSDA is the maximum squared magnitude of the Fourier
transform of the first row [a0, . . . , an−1] of A.

Precisely,
∣∣∑n−1

j=0 ajω
j
∣∣2 ≤ 4n where ω is any nth root of unity.
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Search with PSD filtering

To exploit PSD filtering we need
(1) an efficient method of computing the PSD values; and
(2) an efficient method of searching while avoiding matrices that

fail the filtering criteria.

 CASs excel at (1) and SAT solvers excel at (2).

19/36



Search with PSD filtering

To exploit PSD filtering we need
(1) an efficient method of computing the PSD values; and
(2) an efficient method of searching while avoiding matrices that

fail the filtering criteria.

 CASs excel at (1) and SAT solvers excel at (2).

19/36



SAT+CAS learning for Williamson matrices

The CAS computes the PSD of a matrix provided by the SAT
solver. . .

SAT solver CAS

. . . if it is too large, the matrix is blocked from the search.
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Encoding comparison

The SAT+CAS method was significantly faster than the simple
SAT encoding and the speedup improved as the order increased:
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Results

With our SAT+CAS system MathCheck we found over 100,000
new sets of Williamson matrices—even though fewer than 200 had
previously been found by computers.

No Williamson matrices of order n = 35 were found, verifying a
result of Ðoković.9 Williamson matrices were found for all n < 35
thereby showing that n = 35 is the smallest counterexample of
Williamson’s conjecture.

These results lead to the proposal of the conjecture that
Williamson matrices exist in all even orders n.

9D. Ðoković. Williamson matrices of order 4n for n = 33, 35, 39. Discrete
Mathematics, 1993.
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Application II:
Lam’s Problem
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History

Since 300 BC, mathematicians tried to derive Euclid’s “parallel
postulate” from his other axioms for geometry.

The discovery of alternative geometries
in the 1800s showed this is impossible!
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Projective planes

Parallel lines do not exist in projective planes—instead, any pair of
lines will meet at a unique point.

unique point on A and B

A B

“line at infinity”

A complete classification of projective planes is still unknown (in
particular in the case when there are a finite number of points).
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Finite projective planes

Finite projective planes satisfy the following axioms:
I Every pair of lines meet at a unique point.
I Every pair of points define a unique line.
I Every line contains n + 1 points for some order n.

order 1 order 2 order 3
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Incidence matrices of projective planes

A projective plane of order n is equivalent to a quad-free
(0, 1)-matrix with n + 1 ones in each row and column.

A quad-free matrix contains no rectangle with 1s in the corners.

1 1 0
1 0 1
0 1 1

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1

1 0 0 0 1 0 0 0 1 1 0 0 0
0 0 1 1 0 0 0 1 0 1 0 0 0
0 1 0 0 0 1 1 0 0 1 0 0 0
1 0 0 0 0 1 0 1 0 0 1 0 0
0 1 0 1 0 0 0 0 1 0 1 0 0
0 0 1 0 1 0 1 0 0 0 1 0 0
1 0 0 1 0 0 1 0 0 0 0 1 0
0 1 0 0 1 0 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 0 1 1 1 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1 0 0 0 1
1 1 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 1 1 1

order 1 order 2 order 3
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Projective planes of small orders

1 2 3 4 5 6 7 8 9 10
3 3 3 3 3 7 3 3 3 7

Lam’s problem
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Resolution of Lam’s problem

Lam et al.10 used custom-written software to show that a
projective plane of order ten does not exist.

We must trust the searches ran to completion—the authors were
upfront that mistakes were a real possibility.

Using MathCheck, we generated the first certifiable resolution of
Lam’s problem.11

10C. Lam, L. Thiel, S. Swiercz. The Nonexistence of Finite Projective Planes of
Order 10. Canadian Journal of Mathematics, 1989.

11C. Bright, K. Cheung, B. Stevens, I. Kotsireas, V. Ganesh. A SAT-based
Resolution of Lam’s Problem. AAAI 2021.
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Lam’s problem encoding

If xi ,j represents that entry (i , j) of the projective plane contains a 1
then specifying a matrix is quad-free can be done using the clauses

¬xi ,j ∨ ¬xi ,j ′ ∨ ¬xi ′,j ∨ ¬xi ′,j ′

for all distinct pairs of indices (i , j) and (i ′, j ′).

The constraints that there are exactly eleven 1s in each row and
column are reformulated and expressed in a convenient way for a
SAT solver.

This alone is not sufficient to solve Lam’s problem—it does not
exploit the theorems that make an exhaustive search feasible.
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SAT+CAS learning for Lam’s Problem

The SAT solver finds partial solutions and sends them to a CAS. . .

SAT solver CAS

. . . and the CAS finds a nontrival isomorphism and blocks it.
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Results

The search for a projective plane of order 10 can be split into three
main cases. The search times compared with previous searches:

Case SAT-based CAS-based SAT+CAS
1 5 minutes 3–78 minutes 0.1 minutes
2 − 16,000 hours 30 hours
3 − 20,000 hours 16,000 hours

The SAT+CAS approach was much faster in the first two cases
and decently faster in the third case (a case where most of the
search space was not very symmetric).
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Discrepancies

The lack of verifiable certificates has real
consequences. We found discrepancies with
the intermediate results of both Lam’s search
and an independent verification from 2011.

On the right is a 51-column partial projective
plane of order ten said to not exist in
2011—but we found with MathCheck.
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Other results

We have successfully used MathCheck in many other problems:

Problem Main Result CAS Functionality
Williamson Found smallest counterexample Fourier transform

Even Williamson First verification in orders n ≤ 70 Fourier transform
Lam’s Problem First certifiable solution Graph isomorphism
Good Matrix Found 3 new counterexamples Fourier transform
Best Matrix First solution in order 57 Fourier transform

Complex Golay Verified lengths up to 28 Nonlinear optimizer
Ruskey–Savage First verification in order 5 Travelling salesman solver

Norine First verification in order 6 Shortest path solver

uwaterloo.ca/mathcheck
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Conclusion

Many mathematical problems stand to benefit from fast, verifiable,
and expressive search tools.

Adding CAS functionality to a SAT solver greatly increases its
expressiveness and the kinds of problems that can be tackled
effectively.

Don’t reinvent the wheel!
I It’s hard to beat a SAT solver at search.
I It’s hard to beat CASs for mathematical computations.
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Future work

SAT+CAS methods are poised to forever change what is
considered feasible in mathematical search—and there are many
promising areas where they have yet to be used.

Upcoming: I’m co-chairing the sixth SC-square workshop taking
place virtually on August 19–20, 2021. See my website for more
information on this and related research opportunities:

curtisbright.com
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