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SATisfiability

SAT: Given a Boolean logic expression, can it can be made true?

Donald Knuth’s The Art of Computer
Programming Vol. 4B (2022) is over
700 pages and half of it is devoted to SAT.

“SAT solvers” can be surprisingly effective and can solve many
search problems seemingly unrelated to Boolean logic, like Sudoku.1

1Bright, Gerhard, Kotsireas, Ganesh. Effective Problem Solving Using SAT Solvers.
Maple Conference, 2019.
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https://www-cs-faculty.stanford.edu/~knuth/taocp.html
https://doi.org/10.1007/978-3-030-41258-6_15


A SAT Success Story

How fast can you multiply 3× 3 matrices? Before 2021, four
algorithms were known using 23 scalar multiplications. Then. . .

Using a SAT solver, over 17,000 distinct 3× 3 matrix multiplication
algorithms were found using 23 scalar multiplications.
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https://doi.org/10.1016/j.jsc.2020.10.003


Rivest–Shamir–Adleman Cryptosystem

The popular cryptosystem
RSA relies on the difficulty of
factoring large integers into
primes.

RSA encryption involves a semiprime N = p · q for two randomly
chosen primes p and q of the same bitlength (known only to the
recipient).

The best known attack on RSA involves factoring N. No efficient
integer factoring algorithms are known (unless you allow quantum
computation).
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Reduction of Factoring to SAT

Multiplication circuits can be converted to SAT by operating
directly on the bit-representation of the integers.

Say [N3N2N1N0]2 is the binary representation of N. Use variables
p1, p0 and q1, q0 to denote the bits of the prime factors of N:

q1 q0
× p1 p0

a1 a0
b1 b0

c1 c0
N3N2N1N0

[a1a0]2 = [q1q0]2 × p0

[b1b0]2 = [q1q0]2 × p1

N0 = a0

[c0N1]2 = a1 + b0

[c1N2]2 = b1 + c0

N3 = c1

These equations can be broken into logical expressions, e.g.,
a0 ↔ (q0 ∧ p0), N1 ↔ (a1 ⊕ b0), and c0 ↔ (a1 ∧ b0), etc.
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SAT vs. Algebraic Methods

It’s somewhat mind-boggling to realize that numbers can
be factored without using any number theory! No greatest
common divisors, no applications of Fermat’s theorems,
etc., are anywhere in sight. [. . . ] Of course we can’t expect
this method to compete with the sophisticated factorization
algorithms. . .

Donald Knuth, TAOCP 4B

As might be expected, computer algebra methods dramatically
outperform SAT. The number field sieve can factor an n-bit number
heuristically in time exp(O∼(n1/3)) (super-polynomial, but
sub-exponential in n).
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Side-channel Attacks

Cryptographic implementations have an Achilles heel—they are
implemented in the real world, not a platonic universe.

Side-channel attacks exploit the fact that cryptographic
implementations may leak information about the private key in
practice.
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Motivating Example

Suppose you are using disk encryption with RSA. In order to read
from the disk, your private key, including the prime factors of N, is
kept in memory.

What if an attacker steals your screen-locked machine? Is there any
way they can extract your private key?

Experiments have shown that after an hour without power, 99.87%
of bits in DRAM modules remain readable—assuming the DRAM
was kept in liquid nitrogen.2

2Halderman et al. Lest We Remember: Cold-Boot Attacks on Encryption Keys.
Communications of the ACM, 2009.
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Motivating Example II

When power is removed, bits in DRAM modules decay to a
predictable ground state (say 0).

Any bits that are 1 after the power is removed must originally
have been 1, while 0 bits may have been 0 or 1.

The result is that the attacker learns bits of the private key at bit
positions they don’t control (in practice, at essentially random
positions).

bits of p: known

unknown
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Exploiting Leaked Bits

Algebraic methods like the number field sieve cannot seem to
exploit leaked bits.

With SAT, it is easy assign any leaked bits of the prime factors to
their correct value. This speeds up the solver—but SAT solvers are
slow for this problem, as they don’t exploit algebraic properties.

Question we address: Can we use algebraic methods to improve
SAT solvers on random leaked-bit factorization problems?
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Coppersmith’s Method

Don Coppersmith showed that if the lowest or highest 50% of the
bits of a prime factor of N are leaked. . .

bits of p: knownunknown or known unknown

then N can be factored in polynomial time via lattice reduction.3

However, Coppersmith’s method is not effective if the leaked bits
are randomly distributed.

3Coppersmith. Finding a Small Root of a Bivariate Integer Equation; Factoring with
High Bits Known. EUROCRYPT, 1996.
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https://doi.org/10.1007/3-540-68339-9_16
https://doi.org/10.1007/3-540-68339-9_16


SAT + Computer Algebra System (CAS)

As SAT solvers search for solutions, they find “partial” solutions
(where some variables will be unassigned).

Say that a partial solution has assigned values to all of the
bottom-half of the bits of p:

SAT solver Coppersmith

p = (??????11000101)2

If Coppersmith’s method succeeds, N is factored. If not, tell the
solver that at least one of the low bits of p must change.
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Experimental Setup

For varying bitlengths and percentages of leaked bits, we compared
the SAT solver MapleSAT with a version of MapleSAT calling
Coppersmith’s method on 15 randomly generated instances.

Coppersmith’s method (implemented with fplll)4 is used when at
least 60% of the low bits of p are known, as this allows using a
lattice of fixed dimension 5 (regardless of the size of N).

4fplll, a lattice reduction library, https://github.com/fplll/fplll
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https://github.com/fplll/fplll


Results
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Each instance was run for 3 days. For comparison, the number field
sieve on 512-bit N uses around 2770 CPU hours.5

5Valenta et al. Factoring as a Service. Financial Cryptography and Data Security,
2016.
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https://doi.org/10.1007/978-3-662-54970-4_19


Results II
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Each instance was run for 3 days and used at most 0.5 GiB of RAM.
For comparison, an algebraic “branch and prune” technique with
40% leaked bits used around 2000 seconds and 90 GiB.6

6Heninger and Shacham. Reconstructing RSA Private Keys from Random Key Bits.
CRYPTO 2009.
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https://doi.org/10.1007/978-3-642-03356-8_1


Final Thoughts

I’ve been working on combining SAT with computer algebra for
almost 10 years. I regularly see SAT+CAS solvers providing
exponential speedups over pure SAT or pure CAS approaches.

The approach works for problems requiring both search and
advanced mathematics. . .

Communications of the ACM, 2022
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