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SAT + CAS

Brute force + Cleverness
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The research areas of SMT [SAT Modulo Theories]
solving and symbolic computation are quite
disconnected. [. . . ] More common projects would
allow to join forces and commonly develop
improvements on both sides.

Dr. Erika Ábrahám
RWTH Aachen University

ISSAC 2015 Invited talk
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Golay pairs

I Golay pairs, termed
complementary series by
Marcel Golay, were
introduced in 1949 to
solve a problem in
multi-slit spectrometry.
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Definition

I Let A and B be polynomials with ±1 coefficients and
degree n − 1. They are a Golay pair if

|A(z)|2 + |B(z)|2 = 2n

for all z on the unit circle.
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Example

I A = 1 + z and B = 1− z are a Golay pair since for z on
the unit circle we have

|1 + z |2 + |1− z |2 = 4.
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Norm test

I If A, B is a Golay pair then

|A(z)|2 ≤ 2n and |B(z)|2 ≤ 2n

for all z on the unit circle.
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Sum-of-squares test

I If A, B is a Golay pair then

|A(z)|2 + |B(z)|2 = 2n

is a decomposition of 2n into two integer squares when z
is ±1.
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Alternate definition

I ±1-sequences A = [a0, . . . , an−1] and B = [b0, . . . , bn−1]
are a Golay pair if

n−s−1∑
k=0

akak+s +
n−s−1∑
k=0

bkbk+s = 0

for s = 1, . . . , n − 1.

NA(s): A measure of how much A is correlated with itself with
the first s entries removed.
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Example

I A = [1, 1, 1,−1] and B = [1, 1,−1, 1] are a Golay pair
since

NA(1) + NB(1) = 1 + (−1) = 0

NA(2) + NB(2) = 0 + 0 = 0

NA(3) + NB(3) = (−1) + 1 = 0.
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Problem

I Golay found Golay pairs in lengths 2, 10, and 26.

I Golay pairs of length 2a10b26c can be constructed using
these “primitive” pairs but it is conjectured that Golay
pairs exist in no other lengths.

I Borwein and Ferguson have searched lengths up to 100.

Peter Borwein and Ron Ferguson. A complete description of Golay pairs

for lengths up to 100. Mathematics of computation, 2004.
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Generalization

I What if we allow sequences with {±1,±i} entries?

I The defining relationship remains exactly the same, only
need to modify the autocorrelation function:

NX (s) :=
n−s−1∑
k=0

xkxk+s

I Sum-of-squares decomposition is now

Re(A(z))2 + Im(A(z))2 + Re(B(z))2 + Im(B(z))2 = 2n.
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Example

I A = [1, 1,−1] and B = [1, i , 1] are a complex Golay pair
since

NA(1) + NB(1) = 0 + 0 = 0

NA(2) + NB(2) = (−1) + 1 = 0.
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Fiedler’s theorem

I Let A = Aeven + Aodd be a decomposition of A into terms
with even degree and terms with odd degree, e.g.,
1 + z + z2 = (1 + z2) + z .

I If A, B is a complex Golay pair then

|Aeven(z)|2 + |Aodd(z)|2 + |Beven(z)|2 + |Bodd(z)|2 = 2n

for all z on the unit circle.

Frank Fiedler. Small Golay sequences.

Advances in mathematics of

communications, 2013.
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Preprocessing: Enumerate Aeven and Aodd

I We will find lists of the Aeven and Aodd which pass the
norm tests

|Aeven(z)|2 ≤ 2n and |Aodd(z)|2 ≤ 2n

for M = 214 equally-spaced points on the unit circle.

I Can compute via brute force for n ≈ 30.
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Stage 1: Enumerate possibilities for A

I For all Aeven and Aodd found in the preprocessing, we form
A = Aeven +Aodd and filter those which fail either the norm
test or the sums-of-squares test. That is, those for which

Re(A(z))2 + Im(A(z))2 + x2 + y 2 = 2n

has no integer solutions x , y for when z is ±1 or ±i .
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Stage 2: Construct B from A

I Given A, generate a SAT instance which encodes the
property of (A,B) being a complex Golay pair.

I Let v0, . . . , v2n−1 be variables which represent the entries
of B under the following encoding scheme:

v2k v2k+1 bk
F F 1
F T −1
T F i
T T −i
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SAT instance

I How to encode the property of A, B being a complex
Golay pair into a SAT instance?

I That is, NA(s) + NB(s) = 0 for s = 1, . . . , n − 1.

I We use a SAT solver custom-tailored to this problem
which can programmatically learn logical facts.
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Example

I If A = [1, 1,−1] then NA(1) = 0 and NA(2) = −1.

I Say during the search the SAT solver tries assigning

v0 v1 v2 v3 v4 v5
F F ? ? T T

I B = [1, ?,−i ] and NA(2) + NB(2) = −1 + i 6= 0, so we
can learn the clause which says at least one of these
variables must be assigned differently:

v0 ∨ v1 ∨ ¬v4 ∨ ¬v5.
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A product theorem

I We proved that if A, B is a complex Golay pair then
akan−k−1bkbn−k−1 = ±1 for k = 0, . . . , n − 1.

I From this we deduce if exactly one of {bk , bn−k−1} is real.
If so, we learn the following:

v2k ∨ v2(n−k−1)

¬v2k ∨ ¬v2(n−k−1)
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Implementation

I We implemented this algorithm using C and C++ to do
the enumerations, Maple to form the sum-of-squares
decompositions, and FFTW to compute the values of A(z)
at equally-spaced points along the unit circle.
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Results

I We split the enumeration work across 25 Intel Xeon
2.1 GHz processors and enumerated all complex Golay
pairs up to length 25 in 40 realtime hours.

I There are no complex Golay pairs in lengths 23 or 25 but
there are 786,432 complex Golay pairs of length 24 (1056
up to an equivalence).

I Available on the MathCheck website:

https://sites.google.com/site/uwmathcheck/
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Future optimizations?

I Could the norm test could be done more efficiently by
computing the maximum of |A(z)|2 for z on the unit
circle?

I Could we make the SAT solver more efficient by encoding
other theorems about complex Golay sequences?
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Conclusion

I The SAT+CAS paradigm is very general and can be
applied to problems in a large number of domains.

I Especially good for problems that require CAS functions as
well as some kind of brute-force search.

I Pro: Make use of the immense amount of engineering
effort that has gone into CAS and SAT solvers.

I Con: Can be difficult to split the problem in a way that
takes advantage of this.
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