MathCheck: A SAT+CAS Mathematical Conjecture Verifier

Curtis Bright ${ }^{1}$ Ilias Kotsireas ${ }^{2} \quad$ Vijay Ganesh ${ }^{1}$
${ }^{1}$ University of Waterloo
${ }^{2}$ Wilfrid Laurier University

July 26, 2018

SAT

SAT + CAS

Brute force

SAT + CAS

Brute force + Cleverness

The research areas of SMT [SAT Modulo Theories] solving and symbolic computation are quite disconnected. [...] More common projects would allow to join forces and commonly develop improvements on both sides.

Dr. Erika Ábrahám RWTH Aachen University ISSAC 2015 Invited talk

Hadamard matrices

- 125 years ago Jacques Hadamard defined what are now known as Hadamard matrices.
- Square matrices with ± 1 entries and pairwise orthogonal rows.

Jacques Hadamard. Résolution d'une question relative aux déterminants.
Bulletin des sciences mathématiques, 1893.

Williamson matrices

- In 1944, John Williamson discovered a way to construct Hadamard matrices of order $4 n$ via four symmetric matrices A, B, C, D of order n with ± 1 entries.
- Such matrices are circulant (each row a shift of the previous row) and satisfy

$$
A^{2}+B^{2}+C^{2}+D^{2}=4 n l
$$

where I is the identity matrix.

The Williamson conjecture

Only a finite number of Hadamard matrices of Williamson type are known so far; it has been conjectured that one such exists of any order $4 t$.

Dr. Richard Turyn
Raytheon Company
1972

Williamson matrices in odd orders

- In 1944, Williamson found twenty-three sets of Williamson matrices in the orders $3,5,7,9,11,13,15,17,19,21,25,37$, and 43.

Williamson matrices in odd orders

- In 1944, Williamson found twenty-three sets of Williamson matrices in the orders $3,5,7,9,11,13,15,17,19,21,25,37$, and 43.
- In 1962, Baumert, Golomb, and Hall found one in order 23.

L. Baumert, S. Golomb, M. Hall. Discovery of an Hadamard matrix of order 92. Bulletin of the American mathematical society, 1962.

Williamson matrices in odd orders

- In 1944, Williamson found twenty-three sets of Williamson matrices in the orders $3,5,7,9,11,13,15,17,19,21,25,37$, and 43.
- In 1962, Baumert, Golomb, and Hall found one in order 23.
- In 1965, Baumert and Hall found seventeen sets of Williamson matrices in the orders $15,17,19,21,25$, and 27.
- In 1966, Baumert found one in order 29.

Williamson matrices in odd orders

- In 1944, Williamson found twenty-three sets of Williamson matrices in the orders $3,5,7,9,11,13,15,17,19,21,25,37$, and 43.
- In 1962, Baumert, Golomb, and Hall found one in order 23.
- In 1965, Baumert and Hall found seventeen sets of Williamson matrices in the orders $15,17,19,21,25$, and 27.
- In 1966, Baumert found one in order 29.
- In 1972, Turyn found an infinite class of them, including one in each order $27,31,37,41,45,49,51,55,57,61,63$, and 69.

Williamson matrices in odd orders

- In 1944, Williamson found twenty-three sets of Williamson matrices in the orders $3,5,7,9,11,13,15,17,19,21,25,37$, and 43.
- In 1962, Baumert, Golomb, and Hall found one in order 23.
- In 1965, Baumert and Hall found seventeen sets of Williamson matrices in the orders $15,17,19,21,25$, and 27.
- In 1966, Baumert found one in order 29.
- In 1972, Turyn found an infinite class of them, including one in each order $27,31,37,41,45,49,51,55,57,61,63$, and 69.
- In 1977, Sawade found four in order 25 and four in order 27.
- In 1977, Yamada found one in order 37.
- In 1988, Koukouvinos and Kounias found four in order 33.

Williamson matrices in odd orders

- In 1944, Williamson found twenty-three sets of Williamson matrices in the orders $3,5,7,9,11,13,15,17,19,21,25,37$, and 43.
- In 1962, Baumert, Golomb, and Hall found one in order 23.
- In 1965, Baumert and Hall found seventeen sets of Williamson matrices in the orders $15,17,19,21,25$, and 27.
- In 1966, Baumert found one in order 29.
- In 1972, Turyn found an infinite class of them, including one in each order $27,31,37,41,45,49,51,55,57,61,63$, and 69.
- In 1977, Sawade found four in order 25 and four in order 27.
- In 1977, Yamada found one in order 37.
- In 1988, Koukouvinos and Kounias found four in order 33.
- In 1992, Đoković found one in order 31.
- In 1993, Đoković found one in order 33 and one in order 39.
- In 1995, Đoković found two in order 25 and one in order 37.

Williamson matrices in odd orders

- In 1944, Williamson found twenty-three sets of Williamson matrices in the orders $3,5,7,9,11,13,15,17,19,21,25,37$, and 43.
- In 1962, Baumert, Golomb, and Hall found one in order 23.
- In 1965, Baumert and Hall found seventeen sets of Williamson matrices in the orders $15,17,19,21,25$, and 27.
- In 1966, Baumert found one in order 29.
- In 1972, Turyn found an infinite class of them, including one in each order $27,31,37,41,45,49,51,55,57,61,63$, and 69.
- In 1977, Sawade found four in order 25 and four in order 27.
- In 1977, Yamada found one in order 37.
- In 1988, Koukouvinos and Kounias found four in order 33.
- In 1992, Đoković found one in order 31.
- In 1993, Đoković found one in order 33 and one in order 39.
- In 1995, Đoković found two in order 25 and one in order 37.
- In 2001, van Vliet found one in order 51.

Williamson matrices in odd orders

- In 1944, Williamson found twenty-three sets of Williamson matrices in the orders $3,5,7,9,11,13,15,17,19,21,25,37$, and 43.
- In 1962, Baumert, Golomb, and Hall found one in order 23.
- In 1965, Baumert and Hall found seventeen sets of Williamson matrices in the orders $15,17,19,21,25$, and 27.
- In 1966, Baumert found one in order 29.
- In 1972, Turyn found an infinite class of them, including one in each order $27,31,37,41,45,49,51,55,57,61,63$, and 69.
- In 1977, Sawade found four in order 25 and four in order 27.
- In 1977, Yamada found one in order 37.
- In 1988, Koukouvinos and Kounias found four in order 33.
- In 1992, Đoković found one in order 31.
- In 1993, Đoković found one in order 33 and one in order 39.
- In 1995, Đoković found two in order 25 and one in order 37.
- In 2001, van Vliet found one in order 51.
- In 2008, Holzmann, Kharaghani, and Tayfeh-Rezaie found one in order 43.

Williamson matrices in odd orders

- In 1944, Williamson found twenty-three sets of Williamson matrices in the orders $3,5,7,9,11,13,15,17,19,21,25,37$, and 43.
- In 1962, Baumert, Golomb, and Hall found one in order 23.
- In 1965, Baumert and Hall found seventeen sets of Williamson matrices in the orders $15,17,19,21,25$, and 27.
- In 1966, Baumert found one in order 29.
- In 1972, Turyn found an infinite class of them, including one in each order $27,31,37,41,45,49,51,55,57,61,63$, and 69.
- In 1977, Sawade found four in order 25 and four in order 27.
- In 1977, Yamada found one in order 37.
- In 1988, Koukouvinos and Kounias found four in order 33.
- In 1992, Đoković found one in order 31.
- In 1993, Đoković found one in order 33 and one in order 39.
- In 1995, Đoković found two in order 25 and one in order 37.
- In 2001, van Vliet found one in order 51.
- In 2008, Holzmann, Kharaghani, and Tayfeh-Rezaie found one in order 43.
- In 2018, Bright, Kotsireas, and Ganesh found one in order 63.

A Hadamard matrix of order $4 \cdot 63=252$

Status of the conjecture

- The Williamson conjecture for odd orders is false, 35 being the smallest counterexample.
D. Đoković. Williamson matrices of order $4 n$ for $n=33,35,39$.

Discrete mathematics, 1993.

- The Williamson conjecture for even orders is open.

Williamson matrices in even orders

- In 1944, Williamson found Williamson matrices in the orders $2,4,8,12,16,20$, and 32 .
- In 2006, Kotsireas and Koukouvinos found them in all even orders up to 22.
- In 2016, Bright, Ganesh, Heinle, Kotsireas, Nejati, and Czarnecki found them in all even orders up to 34.
- In 2017, Bright, Kotsireas, and Ganesh found them in all even orders up to 64.
- In 2018, Bright, Kotsireas, and Ganesh found them in all even orders up to 70 .

How we performed our enumerations

Preprocessing: Compression

- When the order n is a multiple of 3 we can compress a row to obtain a row of length $n / 3$:

$$
A^{\prime}=\left[a_{0}+a_{3}+a_{6}, \quad a_{1}+a_{4}+a_{7}, \quad a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right]
$$

Discrete Fourier transform

- Recall the discrete Fourier transform of a sequence $A=\left[a_{0}, \ldots, a_{n-1}\right]$ is a sequence DFT_{A} whose k th entry is

$$
\sum_{j=0}^{n-1} a_{j} \exp (2 \pi i j k / n)
$$

Power spectral density

- The power spectral density of a sequence $A=\left[a_{0}, \ldots, a_{n-1}\right]$ is a sequence PSD_{A} whose k th entry is

$$
\left|\sum_{j=0}^{n-1} a_{j} \exp (2 \pi i j k / n)\right|^{2} .
$$

PSD criterion

- If A, B, C, D are the initial rows of Williamson matrices (or any compression of them) then

$$
\mathrm{PSD}_{A}+\mathrm{PSD}_{B}+\mathrm{PSD}_{C}+\mathrm{PSD}_{D}
$$

is a constant sequence whose entries are $4 n$.

D. Đoković, I. Kotsireas. Compression of periodic complementary sequences and applications. Designs, codes and cryptography, 2015.

Preprocessing

- Suppose n is even, so 2-compressions of rows of Williamson matrices are $\{0, \pm 2\}$-sequences of length $n / 2$.
- The space of sequences of length $n / 2$ is much smaller than the space of sequences of length n, and for n around 70 we can find all sequences of length $n / 2$ which satisfy the PSD criterion.

Uncompression

- We use a SAT solver to uncompress the sequences found in the preprocessing stage.
- Let the entries of the first row of A be represented by the Boolean variables a_{0}, \ldots, a_{n-1} with true representing 1 and false representing -1 .

SAT instances

- Say the 2-compression of A is $[2,0]$.
- This tells us that both a_{0} and a_{2} are true and exactly one of a_{1} and a_{3} are true, so we use the following clauses:

$$
\begin{gathered}
a_{0} \\
a_{2} \\
\neg a_{1} \vee \neg a_{3} \\
a_{1} \vee a_{3}
\end{gathered}
$$

SAT instances: Problem

- How can the PSD criterion be encoded into a SAT instance?

SAT instances: Problem

- How can the PSD criterion be encoded into a SAT instance?
- We use a SAT solver custom-tailored to this problem which can programmatically learn logical facts.

Programmatic SAT example

- Say the SAT solver, in the process of searching for a solution to the SAT instance, assigns all a_{k} to true.
- In this case PSD_{A} will contain an entry larger than $4 n$ meaning the PSD criterion cannot hold.
- Regardless of the values of B, C, and D, we know A will never be part of a set of Williamson matrices, so we learn the clause

$$
\neg a_{0} \vee \neg a_{1} \vee \cdots \vee \neg a_{n-1}
$$

Programmatic results

- For orders around 45 the programmatic approach was found to perform thousands of times faster than an approach which only used CNF clauses.
- Performed better as the order increased.

Enumeration results

- Enumerated all Williamson matrices with orders divisible by 2 or 3 up to order 70 .
- Found over 100,000 new Williamson matrices in even orders and one new set of Williamson matrices in order 63.
- Available on the MathCheck website: https://sites.google.com/site/uwmathcheck/

Conclusion

- The SAT+CAS paradigm is very general and can be applied to problems in a large number of domains.
- Especially good for problems that require high-level mathematics as well as some kind of unstructured brute-force search.
- Pro: Make use of the immense amount of engineering effort that has gone into CAS and SAT solvers.
- Con: Can be difficult to split the problem in a way that takes advantage of this.

