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The research areas of SMT [SAT Modulo Theories]
solving and symbolic computation are quite
disconnected. [. . . ] More common projects would
allow to join forces and commonly develop
improvements on both sides.

Dr. Erika Ábrahám
RWTH Aachen University
ISSAC 2015 Invited talk
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Hadamard matrices
I 125 years ago Jacques Hadamard defined what are now

known as Hadamard matrices.
I Square matrices with ±1 entries and pairwise orthogonal

rows.

Jacques Hadamard. Résolution d’une question relative aux déterminants.
Bulletin des sciences mathématiques, 1893.
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Williamson matrices

I In 1944, John Williamson discovered a way to construct
Hadamard matrices of order 4n via four symmetric
matrices A, B , C , D of order n with ±1 entries.

I Such matrices are circulant (each row a shift of the
previous row) and satisfy

A2 + B2 + C 2 + D2 = 4nI

where I is the identity matrix.
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The Williamson conjecture

Only a finite number of Hadamard matrices of
Williamson type are known so far; it has been
conjectured that one such exists of any order 4t.

Dr. Richard Turyn
Raytheon Company

1972
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Williamson matrices in odd orders
I In 1944, Williamson found twenty-three sets of Williamson matrices

in the orders 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 25, 37, and 43.

I In 1962, Baumert, Golomb, and Hall found one in order 23.
I In 1965, Baumert and Hall found seventeen sets of Williamson

matrices in the orders 15, 17, 19, 21, 25, and 27.
I In 1966, Baumert found one in order 29.
I In 1972, Turyn found an infinite class of them, including one in

each order 27, 31, 37, 41, 45, 49, 51, 55, 57, 61, 63, and 69.
I In 1977, Sawade found four in order 25 and four in order 27.
I In 1977, Yamada found one in order 37.
I In 1988, Koukouvinos and Kounias found four in order 33.
I In 1992, Ðoković found one in order 31.
I In 1993, Ðoković found one in order 33 and one in order 39.
I In 1995, Ðoković found two in order 25 and one in order 37.
I In 2001, van Vliet found one in order 51.
I In 2008, Holzmann, Kharaghani, and Tayfeh-Rezaie found one in

order 43.
I In 2018, Bright, Kotsireas, and Ganesh found one in order 63.
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L. Baumert, S. Golomb, M. Hall. Discovery of an Hadamard matrix of
order 92. Bulletin of the American mathematical society, 1962.
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A Hadamard matrix of order 4 · 63 = 252
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Status of the conjecture

I The Williamson conjecture for odd orders is false, 35
being the smallest counterexample.
D. Ðoković. Williamson matrices of order 4n for n = 33, 35, 39.
Discrete mathematics, 1993.

I The Williamson conjecture for even orders is open.
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Williamson matrices in even orders

I In 1944, Williamson found Williamson matrices in the
orders 2, 4, 8, 12, 16, 20, and 32.

I In 2006, Kotsireas and Koukouvinos found them in all
even orders up to 22.

I In 2016, Bright, Ganesh, Heinle, Kotsireas, Nejati, and
Czarnecki found them in all even orders up to 34.

I In 2017, Bright, Kotsireas, and Ganesh found them in all
even orders up to 64.

I In 2018, Bright, Kotsireas, and Ganesh found them in all
even orders up to 70.
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How we performed our enumerations

Williamson
conjecture

Preprocessor Programmatic
SAT solver

Diophantine solver
Fourier transform Fourier transform

Williamson
matrices

Counterexample

Partial
assignment

Conflict
clause

External
call Result

SAT instances
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Preprocessing: Compression

I When the order n is a multiple of 3 we can compress a
row to obtain a row of length n/3:

A = [a0, a1, a2, a3, a4, a5, a6, a7, a8]

A′ =
[
a0 + a3 + a6, a1 + a4 + a7, a2 + a5 + a8

]
.
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Discrete Fourier transform

I Recall the discrete Fourier transform of a sequence
A = [a0, . . . , an−1] is a sequence DFTA whose kth entry is

n−1∑
j=0

aj exp(2πijk/n).
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Power spectral density

I The power spectral density of a sequence
A = [a0, . . . , an−1] is a sequence PSDA whose kth entry is∣∣∣∣n−1∑

j=0

aj exp(2πijk/n)
∣∣∣∣2.

16/25



PSD criterion
I If A, B , C , D are the initial rows of Williamson matrices

(or any compression of them) then

PSDA +PSDB +PSDC +PSDD

is a constant sequence whose entries are 4n.

D. Ðoković, I. Kotsireas. Compression of periodic complementary
sequences and applications. Designs, codes and cryptography, 2015.
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Preprocessing

I Suppose n is even, so 2-compressions of rows of
Williamson matrices are {0,±2}-sequences of length n/2.

I The space of sequences of length n/2 is much smaller
than the space of sequences of length n, and for n around
70 we can find all sequences of length n/2 which satisfy
the PSD criterion.
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Uncompression

I We use a SAT solver to uncompress the sequences found
in the preprocessing stage.

I Let the entries of the first row of A be represented by the
Boolean variables a0, . . . , an−1 with true representing 1
and false representing −1.
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SAT instances

I Say the 2-compression of A is [2, 0].
I This tells us that both a0 and a2 are true and exactly one

of a1 and a3 are true, so we use the following clauses:

a0

a2

¬a1 ∨ ¬a3

a1 ∨ a3
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SAT instances: Problem

I How can the PSD criterion be encoded into a SAT
instance?

I We use a SAT solver custom-tailored to this problem
which can programmatically learn logical facts.
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Programmatic SAT example

I Say the SAT solver, in the process of searching for a
solution to the SAT instance, assigns all ak to true.

I In this case PSDA will contain an entry larger than 4n
meaning the PSD criterion cannot hold.

I Regardless of the values of B , C , and D, we know A will
never be part of a set of Williamson matrices, so we learn
the clause

¬a0 ∨ ¬a1 ∨ · · · ∨ ¬an−1.
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Programmatic results

I For orders around 45 the programmatic approach was
found to perform thousands of times faster than an
approach which only used CNF clauses.

I Performed better as the order increased.
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Enumeration results

I Enumerated all Williamson matrices with orders divisible
by 2 or 3 up to order 70.

I Found over 100,000 new Williamson matrices in even
orders and one new set of Williamson matrices in
order 63.

I Available on the MathCheck website:
https://sites.google.com/site/uwmathcheck/
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Conclusion

I The SAT+CAS paradigm is very general and can be
applied to problems in a large number of domains.

I Especially good for problems that require high-level
mathematics as well as some kind of unstructured
brute-force search.

I Pro: Make use of the immense amount of engineering
effort that has gone into CAS and SAT solvers.

I Con: Can be difficult to split the problem in a way that
takes advantage of this.
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