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Abstract
Solvers for the Boolean satisfiability (SAT) problem have been increasingly used to resolve
problems in mathematics due to their excellent search algorithms. This talk will describe a
new method for mathematical search that couples SAT solvers with computer algebra systems
(CAS), thereby combining the expressiveness of CASs with the search power of SAT solvers. This
paradigm has led to a number of results on long-standing mathematical questions such as the
first computer-verifiable resolution of Lam’s problem and the discovery of a new infinite class of
Williamson matrices.
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