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Motivation

SAT solvers are great at solving search problems specified by
simple constraints (clauses).

Computer algebra systems (CASs) are great at many sophisticated
mathematical problems involving little search.

Problems involving both sophisticated mathematics and search are
good candidates for a SAT+CAS approach.
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Examples of Related Work

There has been a lot of research recently involving SAT and
computer algebra or related methods.

A small and incomplete sample:

▶ Proving the correctness of multiplier circuits (Kaufmann, Biere).

▶ Finding new algorithms for 3× 3 matrix multiplication (Heule,
Kauers, Seidl).

▶ SAT modulo symmetries for generating combinatorial objects in an
isomorph-free way (Kirchweger, Peitl, Scheucher, Fazekas, Szeider).

▶ Making progress on conjectures in geometric group theory (Savela,
Oikarinen, Järvisalo).

▶ Computing directed Ramsey numbers (Neiman, Mackey, Heule).

▶ Debugging of digital circuits (Mahzoon, Große, Drechsler).
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This Talk

I will overview four applications of SAT + CAS that I have worked
on from the following publications:

2020 Applying Computer Algebra Systems with SAT Solvers to the
Williamson Conjecture, Journal of Symbolic Computation.

2021 A SAT-based Resolution of Lam’s Problem, AAAI.

2022 An SC-Square Approach to the Minimum Kochen–Specker
Problem, 7th SC2 Workshop.

2023 A Hybrid SAT and Lattice Reduction Approach for Integer
Factorization, 8th SC2 Workshop.
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2020

Williamson Matrices

Applying Computer Algebra Systems with SAT Solvers to the
Williamson Conjecture
Journal of Symbolic Computation (Bright, Kotsireas, Ganesh)

4/42



Motivation

Consider the problem of sending data over a noisy channel. To be
resilient, you and your recipient agree on a set of codewords that
used to encode the message.

To improve the error-correction properties, you want to make the
codewords as “different” as possible.

With n binary codewords of length n you could try to maximize the
bitwise difference between codewords. In the best case, every pair
of codewords differ in exactly half their bits.

1 1 1 1 1 1 0 0 1 0 1 0 1 0 0 1

Every pair of codewords differ in 2 bits.
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Hadamard Matrices

Represent codewords as {±1}-vectors and stack them together to
form an n × n matrix:

+ + + +

+ + − −
+ − + −
+ − − +

The rows are maximally different when the rows are pairwise
orthogonal. This is known as a Hadamard matrix.

In 1893, Jacques Hadamard proved that n must be a multiple of 4
to be the order of a Hadamard matrix when n > 2. But finding a
Hadamard matrix of order n can be difficult.
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Williamson Matrices

In 1944, John Williamson found a construction for Hadamard
matrices of order 4n based on searching for symmetric matrices
A,B,C ,D ∈ {±1}n×n that satisfy the algebraic relationship

A2 + B2 + C 2 + D2 = 4nI n×n.

The matrices are also assumed to be circulant (each row is a cyclic
shift of the previous row).

Williamson matrices of order 5.
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Naive SAT encoding

Let the Boolean variable ai represent the ith entry in the initial
row of the matrix A contains a 1.

a0
true

a1
true

a2
false

a3
false

a4
true

Using similar variables for B, C , and D, we can express that the
off-diagonal entries of A2 + B2 + C 2 + D2 are zero using
arithmetic circuits (and written in conjunctive normal form).
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Computer Algebra Techniques

The naive SAT encoding is not competitive with computer
algebraic approaches, because SAT solvers have no conception of
the mathematical properties of Williamson matrices.

There are several properties we exploit, but I will just focus on one
called the power spectral density (PSD). A vector’s PSD is the
squared magnitudes of its discrete Fourier transform.

That is, if X := [x0, . . . , xn−1] and ω := exp(2πi/n) then

PSD(X , k) :=

∣∣∣∣n−1∑
j=0

xjω
jk

∣∣∣∣2.
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PSD Criteria

Theorem. A, B, C , D are the first rows of a set of Williamson
matrices of order n if and only if

PSD(A, k) + PSD(B, k) + PSD(C , k) + PSD(D, k) = 4n

for k = 0, . . . , n − 1.

Corollary. PSDs are nonegative, so Williamson matrices satisfy

PSD(A, k) ≤ 4n (∗)

for all k = 0, . . . , n − 1 (and similarly for B, C , D).

Encoding (∗) into pure SAT would be painful, and no SMT solver
that I know of supports the discrete Fourier transform.
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SAT+CAS Method

Once the variables encoding a potential Williamson matrix are
assigned, the CAS computes its PSD values. . .

SAT solver CAS

Since PSD(A, 4) = 36 > 4n, this matrix cannot be Williamson
(regardless of B, C , D), so the CAS produces a conflict clause
blocking A and the search continues.
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Results
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SAT+CAS vs. SAT Speedup

With this approach we exhaustively searched all even orders n ≤ 70
and found the first known Williamson matrices of order 70 (even
orders had previously been searched only up to order 22).

12/42



2021

Lam’s Problem

A SAT-based Resolution of Lam’s Problem
AAAI (Bright, Cheung, Stevens, Kotsireas, Ganesh)
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Euclid’s Postulates

In 300 B.C., the ancient mathematician Euclid presented five
axioms that completely characterized geometry—or so he thought.

His final axiom, the parallel postulate, was
somewhat more complicated. Could it be
derived from the other axioms?

It took over 2000 years to answer, but the answer is no: there are
alternate models of geometry that satisfy Euclid’s axioms but not
the parallel postulate.
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Projective Geometry

For example, consider the following axioms for projective geometry:

(1) There is exactly one line between any two points.

(2) Any two lines meet in exactly one point.

The extended Euclidean plane is the Euclidean plane with a “line
at infinity” added so that formerly parallel lines do now intersect.

line at infinity

Question: Do finite structures satisfying (1) and (2) exist?
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Projective Planes of Orders 1–3

A projective plane is of order n if each line contains n + 1 points.

1 1 0

1 0 1

0 1 1

1 1 0 1 0 0 0

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1

1 0 0 0 1 1 0

0 1 0 0 0 1 1

1 0 1 0 0 0 1

1 0 0 0 1 0 0 0 1 1 0 0 0

0 0 1 1 0 0 0 1 0 1 0 0 0

0 1 0 0 0 1 1 0 0 1 0 0 0

1 0 0 0 0 1 0 1 0 0 1 0 0

0 1 0 1 0 0 0 0 1 0 1 0 0

0 0 1 0 1 0 1 0 0 0 1 0 0

1 0 0 1 0 0 1 0 0 0 0 1 0

0 1 0 0 1 0 0 1 0 0 0 1 0

0 0 1 0 0 1 0 0 1 0 0 1 0

0 0 0 1 1 1 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1 1 0 0 0 1

1 1 1 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 1 1 1
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Orders of Projective Planes

1 2 3 4 5 6 7 8 9 10
✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ?

Lam’s problem

Somehow, this problem has a
beauty that fascinates me as well
as many other mathematicians.

Clement Lam
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Orders of Projective Planes

1 2 3 4 5 6 7 8 9 10
✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗

Lam’s problem
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Naive SAT Encoding

A projective plane of order n is equivalent to a quad-free binary
matrix with n + 1 ones in each row and column. A quad is a
rectangle with 1s in the corners:

1 0 0 1

0 0 0 0

1 0 0 1

These constraints can be encoded in Boolean logic relatively
straightforwardly, but this is not sufficient.

For example, there are a huge number of symmetries in the search
(e.g., the rows and columns of a projective plane can be permuted).
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SAT+CAS Method

During the search the SAT solver finds partial solutions by finding
complete definitions for the first few lines of the plane. . .

SAT solver CAS
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SAT+CAS Method

During the search the SAT solver finds partial solutions by finding
complete definitions for the first few lines of the plane. . .

SAT solver CAS
isomorphism
certificateprev. seen

certificate

block the intermediate object
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Results

Using theorems from coding theory, Lam’s problem can be split
into three cases to be solved separately.

Each case involves generating all possibilities for part of the
incidence matrix (e.g., all possibilities for its first 19 columns). A
SAT+CAS search does this 150 times faster than pure SAT.

Case SAT-based CAS-based SAT+CAS
1 5 minutes 3 minutes 0.1 minutes
2 − 16,000 hours 30 hours
3 − 20,000 hours 16,000 hours

Total running times for solving each case.
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2022

Kochen–Specker Systems

An SC-Square Approach to the Minimum Kochen–Specker
Problem
SC-Square Workshop; preprint at arXiv:2306.13319 (Li, Bright,
Ganesh)
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The Free Will Theorem

Conway and Kochen proved the Free Will Theorem in 2006—if
humans have have free will then so do quantum particles.1

Their proof relies on a finite set of vectors called a
Kochen–Specker (KS) system.

1J. Conway, S. Kochen. The Free Will Theorem. Foundations of Physics, 2006.
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The Stern–Gerlach Experiment (1922)

Shoot an atom of orthohelium through a magnetic field:

The spin of the atom (in this direction) is +1, −1, or 0.

Image Source: S. Weinert 21/42



The SPIN Axiom

The “squared spin” in any three mutually orthogonal directions will
be 0 in exactly one of these directions.

1

1
0

0

1
1

1

0
1

The 101 “conspiracy”

In particular, two orthogonal directions cannot both have a squared
spin of 0.
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The KS Theorem (1967)

It is impossible to assign {0, 1} values to the following 31 vectors
in a way that maintains the 101 conspiracy.

1

1

0

31 vector KS system of Conway and Kochen

The atom cannot have a predetermined spin in every direction!

Image Source: S. Uijlen, B. Westerbaan 23/42



KS Graphs and 101-colourability

Consider the graph formed by a KS system by connecting all pairs
of orthogonal vectors:

1
1

0

1

0

0

1

0

1
1

 0

 0

 1

 1

 1

 1

 1

 0

 0

 1

 1

 1

 1

 1

 0

 1

 1

 0

 1

 1

The property required for the KS theorem is that the graph cannot
be 101-coloured (triangles have exactly one colour-0 vertex and
edges have at most one colour-0 vertex).
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Are 31 Vectors Minimal in 3D?

It was known that at least 22 vectors are required.2 The
computation took 75 CPU years using the graph enumeration
library nauty.

In 2021, I started working with the undergraduate student Zhengyu
Li on improving the lower bound.

My intuition was that a SAT+CAS solver would be more effective
than nauty alone (which cannot exploit all the known conditions a
KS graph must satisfy).

2S. Uijlen, B. Westerbaan. A Kochen-Specker System Has at Least 22 Vectors.
New Generation Computing, 2016.
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SAT Encoding

Each edge in a graph is either present or not; say there is an edge
between vertices i and j when eij is true. This gives an adjacency
matrix of Boolean variables:

1

2 3

e12

e23

e13

 0 e12 e13
e12 0 e23
e13 e23 0



KS graphs must be squarefree, so for each 4-tuple of graph vertices
(i , j , k, l), include the constraint

¬eij ∨ ¬ejk ∨ ¬ekl ∨ ¬eli .
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Symmetries

Other KS constraints can also be encoded into SAT with some
cleverness, but the solver generates many isomorphic copies of the
same graph.

1

2 3

1

2 3

1

2 30 1 0
1 0 0
0 0 0

 0 0 1
0 0 0
1 0 0

 0 0 0
0 0 1
0 1 0



In general, an n-vertex graph has n! representations.
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SAT Symmetry Breaking

A typical approach is to add symmetry breaking constraints that
remove as many isomorphic solutions as possible.

For example, lex-order the rows of the adjacency matrix.3

However, many distinct isomorphic representations still exist, like[
0 0 1
0 0 1
1 1 0

]
and

[
0 1 1
1 0 0
1 0 0

]
.

Thus, we combine SAT with isomorph-free exhaustive generation.

3M. Codish, A. Miller, P. Prosser, P. Stuckey. Constraints for symmetry breaking in
graph representation. Constraints, 2019.
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Orderly Generation

Only “canonical” intermediate objects are recorded. The notion of
canonicity is defined so that every isomorphism class has exactly
one canonical representative.

Developed independently by Faradžev and Read in 1978.4,5

4I. Faradžev. Constructive enumeration of combinatorial objects. Problèmes
combinatoires et théorie des graphes, 1978.

5R. Read. Every one a winner or how to avoid isomorphism search when
cataloguing combinatorial configurations. Annals of Discrete Mathematics, 1978.
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Definition of Canonicity

An adjacency matrix is canonical if its “vector representation” is
lex-minimal among all matrices in the same isomorphism class.

Adj. matrix
[
0 1 0
1 0 0
0 0 0

] [
0 0 1
0 0 0
1 0 0

] [
0 0 0
0 0 1
0 1 0

]
Vector rep. [ 1 0 0 ] >lex [ 0 1 0 ] >lex [ 0 0 1 ]

Canonical? ✗ ✗ ✓

Note that a noncanonical matrix never becomes canonical after
appending a row and column.
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Orderly Generation of Graphs

[ 0 ]

[ 0 0
0 0 ] [ 0 1

1 0 ]

[
0 0 0
0 0 0
0 0 0

][
0 0 1
0 0 0
1 0 0

][
0 0 0
0 0 1
0 1 0

][
0 0 1
0 0 1
1 1 0

] [
0 1 0
1 0 0
0 0 0

][
0 1 1
1 0 0
1 0 0

][
0 1 0
1 0 1
0 1 0

][
0 1 1
1 0 1
1 1 0

]
✗ ✗ ✗ ✗✓ ✓ ✓ ✓

Canonical testing introduces overhead, but every negative test
prunes a large part of the search space (and tests that are negative
are usually fast).
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Orderly Generation in SAT

During the search the SAT solver will find partial solutions
(complete definitions for the edges in some subgraphs). . .

SAT solver CAS

[
0 0 1
0 0 0
1 0 0

]
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Orderly Generation in SAT

During the search the SAT solver will find partial solutions
(complete definitions for the edges in some subgraphs). . .

SAT solver CAS

[
0 0 1
0 0 0
1 0 0

]
canonicity
of matrix

[ ∗ ∗ 1 ···
∗ ∗ 0 ···
1 0 ∗ ···...

...
...
. . .

]
noncanonical

block the partial solution
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KS Search Results
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Order of KS system
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Exhaustively searching for KS systems
SAT
nauty
SAT + orderly generation

No KS system was found, so it must have at least 24 directions.
An SMS solver found the same result.6

6M. Kirchweger, T. Peitl, S. Szeider. Co-Certificate Learning with SAT Modulo
Symmetries. To appear at IJCAI 2023.
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Proof Certificates

The CAS-generated clauses are tagged as “trusted” in the DRAT
proof and I modified DRAT-trim to skip the verification of such
clauses (originally used while working on Lam’s problem7).

A separate script verifies the tagged clauses by applying a
CAS-derived permutation to the blocked adjacency matrix to verify
the blocked matrix is noncanonical.

The uncompressed DRAT proofs up to order 22 were 1.9 TiB.

7C. Bright, K. Cheung, B. Stevens, I. Kotsireas, V. Ganesh. Nonexistence
Certificates for Ovals in a Projective Plane of Order Ten, IWOCA 2020.
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2023

Integer Factorization

A Hybrid SAT and Lattice Reduction Approach for Integer
Factorization
SC-Square Workshop (Ajani, Bright)
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Rivest–Shamir–Adleman Cryptosystem

The commonly-used cryptosystem RSA relies on the difficulty of
factoring large integers into primes.

In practice, the RSA algorithm involves a semiprime N = p · q for
two randomly chosen primes p and q of the same bitlength.

The best known attack on RSA involves factoring N, but no
efficient factoring algorithms are known (unless you use quantum
computation).
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Reduction to SAT

Multiplication circuits can be converted to SAT straightforwardly
by operating directly on the bit-representation of the integers.

It’s somewhat mind-boggling to realize that numbers can
be factored without using any number theory! No greatest
common divisors, no applications of Fermat’s theorems,
etc., are anywhere in sight.

Donald Knuth, TAOCP 4B

Computer algebra dramatically outperforms SAT on this problem.
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Side-channel Attacks

Due to the importance of the factorization problem,
cryptographers have studied many ways of attacking it.

One method is via side-channel attacks where random bits of the
factors of N are leaked.

The SAT approach has the advantage that it is easy to incorporate
extra information leaked about the factors of N: just add an
appropriate unit clause for each leaked bit.

37/42



Coppersmith’s Method

Most CAS-based methods cannot easily take advantage of leaked
bits, but Don Coppersmith showed that if the top or bottom 50%
of the bits of p or q are known then N can be efficiently factored
via lattice reduction.

However, Coppersmith’s method cannot be used if the leaked bits
are randomly distributed.
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SAT+CAS Method

When the top-half of the bits of p (or q) are assigned, pass them
to Coppersmith’s method. . .

SAT solver CAS

p =

11000101xxxxxxxx

If Coppersmith’s method succeeds, then N is factored. If not, learn
a clause forcing the high bits of p to change.
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SAT solver CAS
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11000101xxxxxxxx
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Varying the Proportion of Leaked Bits
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[The running times originally presented were inaccurate. The plot shown here is a corrected version.] 40/42



Varying the Bitlength of N
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[The running times originally presented were inaccurate. The plot shown here is a corrected version.] 41/42



A Promising Future!

I regularly see SAT+CAS solvers providing exponential speedups
over pure SAT and pure computer algebra approaches.

The approach is very flexible and can be applied in many problems
requiring search and advanced mathematics. There is a lot of
low-hanging fruit and much more remains to be done!

Thank You!

curtisbright.com
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