
Isomorph-Free Exhaustive Generation
in SAT Solving

Curtis Bright
University of Windsor

February 17, 2022

Tutorial at the Dagstuhl Seminar

New Perspectives in Symbolic Computation and Satisfiability Checking

1/37

Roadmap

Past: What is isomorph-free exhaustive generation?

Present: Bringing isomorph-free generation to SAT solvers.

Future: Release the untapped potential of isomorph-free SAT solving!

2/37

Isomorphisms

Two combinatorial objects are isomorphic if one can be
transformed into the other through a mapping that preserves the
structure of the object.

Two graphs both with eight vertices, but different edges.

3/37

Isomorphisms

Two combinatorial objects are isomorphic if one can be
transformed into the other through a mapping that preserves the
structure of the object.

1 2

3 4

7

65

8

4 7

3 1

5

68

2

Morally speaking, they are the same graph!

3/37

Isomorphisms

When generating combinatorial objects we really only care about
generating them up to isomorphism. Unfortunately, objects usually
have many isomorphic representations.

1

2 3

1

2 3

1

2 3

0 1 0
1 0 0
0 0 0

0 0 1
0 0 0
1 0 0

0 0 0
0 0 1
0 1 0

4/37

The Importance of Isomorph-Free Generation

For example, a graph with n vertices can have up to n! distinct
isomorphic adjacency matrices. This makes the size of the search
space for graphs much larger than it needs to be.

To exhaustively generate combinatorial objects it is of utmost
importance to detect and remove isomorphic copies of objects as
early as possible.

5/37

Methods for Isomorph-Free Generation

There are a number of methods for isomorph-free exhaustive
generation. In this tutorial I’ll cover two approaches:

Recorded objects: All intermediate objects are recorded up to
isomorphism as the search progresses. (Folklore method)

Orderly generation: Only “canonical” intermediate objects are
recorded as the search progresses. Developed independently by
Igor Faradžev and Ronald Read in 1978.

6/37

Recorded Objects Method

As the search progresses all intermediate objects are recorded.

An intermediate object is immediately rejected if it is ever found to
be isomorphic to a previously recorded intermediate object.

7/37

Example: Generating Graphs Using Recorded Objects

✗ ✗ ✗ ✗

Recorded objects:

8/37

Implementing Recorded Objects

To implement the “recorded objects” method we need a fast way of
checking if an intermediate object is isomorphic to a previously
recorded object.

In practice, a “certificate” of the isomorphism class of each new
object is computed.1

A hash table is used to store the certificates of each object. If the
hash of a certificate is not in the table then the object is genuinely
new and recorded.

1B. McKay, A. Piperno. Practical Graph Isomorphism, II. Journal of Symbolic
Computation, 2014.

9/37

Implementing Recorded Objects II

If a hash is in the table of recorded objects this does not imply the
object is genuinely new as there may be a hash collision.

Only if the certificate itself has previously been recorded can an
object safely be rejected.

Thus, it is not enough to only store hashes—the certificates
themselves must be stored.

10/37

Pros and Cons of Recorded Objects

▶ Relatively easy to implement, assuming that you have access to
a isomorphism certificate generator.

▶ Requires storing the certificates of every recorded object and
these can be relatively large.

▶ Does not parallelize well, since all processors need access to the
table of recorded objects.

11/37

Orderly Generation Method

Only “canonical” intermediate objects are recorded. The notion of
canonicity must be defined so that:

1. Every isomorphism class has exactly one canonical
representative.

2. If an object is canonical then its parent in the search tree is
also canonical.

In other words, if an object is not canonical then all of its children
are not canonical. Thus, all intermediate noncanonical objects can
be rejected.

12/37

Canonicity Example

An adjacency matrix of a graph can be considered canonical if its
rows concatenated together are lexicographically greatest (among
all of the adjacency matrices isomorphic to the same graph).

For example,
[

0 1 0
1 0 0
0 0 0

]
,
[

0 0 1
0 0 0
1 0 0

]
, and

[
0 0 0
0 0 1
0 1 0

]

are all isomorphic adjacency matrices but only the first is canonical.

13/37

Example: Orderly Generation of Graphs

[0]

[0 0
0 0] [0 1

1 0]

[
0 0 0
0 0 0
0 0 0

][
0 0 1
0 0 0
1 0 0

][
0 0 0
0 0 1
0 1 0

][
0 0 1
0 0 1
1 1 0

] [
0 1 0
1 0 0
0 0 0

][
0 1 1
1 0 0
1 0 0

][
0 1 0
1 0 1
0 1 0

][
0 1 1
1 0 1
1 1 0

]

✗ ✗ ✗ ✗

Canonical adjacency matrices:

[0] [0 0
0 0] [0 1

1 0]
[

0 0 0
0 0 0
0 0 0

] [
0 1 0
1 0 0
0 0 0

] [
0 1 1
1 0 0
1 0 0

] [
0 1 1
1 0 1
1 1 0

]

14/37

Implementing Orderly Generation

To perform orderly generation we need a canonicity checking
method which in general is a difficult problem.

However, verifying that a matrix is noncanonical is often easy—it
requires finding a single permutation of the vertices which gives a
lexicographically larger adjacency matrix.

15/37

Implementing Orderly Generation II

In practice, a backtracking algorithm can be used to determine
canonicity by iterating through permutations on the vertices:

▶ Permute the vertices of the graph.
▶ Compare the rows of the permuted adjacency matrix to the

rows of the original adjacency matrix:
▶ If they are greater then matrix is not canonical.
▶ Otherwise backtrack and try a new permutation.

▶ The matrix is canonical if there are no more permutations.

It is possible to backtrack early (after only a few vertices have been
permuted) if the first rows of a smaller matrix is uncovered.

16/37

Pros and Cons of Orderly Generation

▶ Canonicity testing is often fast, but it can sometimes can be
relatively slow (especially when a matrix is canonical).

▶ Does not require memory to record intermediate objects as the
search progresses.

▶ Parallelizes easily. Separate processors can search separate parts
of the search space without needing to communicate.

17/37

SAT Approaches

The satisfiability community has their own extensive literature on
methods for dealing with highly symmetric search spaces.

A typical approach is to add “symmetry breaking” constraints that
remove as many isomorphic solutions as possible.

For example, you can order the rows of an adjacency matrix of a
graph lexicographically.2 However, typically many distinct
isomorphic representations still exist, like

[
0 0 1
0 0 1
1 1 0

]
and

[
0 1 1
1 0 0
1 0 0

]
.

2M. Codish, A. Miller, P. Prosser, P. Stuckey. Constraints for symmetry breaking in
graph representation. Constraints, 2019.

18/37

SAT with Isomorph-free Exhaustive Generation

Remarkably, there seems to be almost no work using isomorph-free
exhaustive generation methods in a SAT solver.

I am not the first to notice this.3 I hope this will change as a result
of initiatives like the SC-square project.

I will now talk about two applications where using isomorph-free
generation inside a SAT solver is extremely useful.

3T. Junttila, M. Karppa, P. Kaski, J. Kohonen. An adaptive prefix-assignment
technique for symmetry reduction. Journal of Symbolic Computation, 2020.

19/37

Application I:
Lam’s Problem

Based on work with
Kevin Cheung, Brett Stevens, Ilias Kotsireas, and Vijay Ganesh.

20/37

History

Mathematicians tried to derive Euclid’s “parallel postulate” from
his other axioms for geometry for over two thousand years.

The discovery of alternative geometries
in the 1800s showed this is impossible!

21/37

History

Mathematicians tried to derive Euclid’s “parallel postulate” from
his other axioms for geometry for over two thousand years.

The discovery of alternative geometries
in the 1800s showed this is impossible!

21/37

Finite Projective Planes

Finite projective planes satisfy the following axioms:
▶ Every pair of points define a unique line.
▶ Every pair of lines meet at a unique point.
▶ Every line contains n + 1 points for some order n.

order 1 order 2 order 3

22/37

Projective Planes of Small Orders

1 2 3 4 5 6 7 8 9 10
✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗

Lam’s problem

23/37

Resolution of Lam’s Problem

Lam et al.4 used custom-written software to show that a projective
plane of order ten does not exist.

We must simply trust their searches ran to completion—the
authors were upfront that mistakes were a real possibility.

We generated the first certifiable resolution of Lam’s problem5 and
found they had missed some intermediate objects.

4C. Lam, L. Thiel, S. Swiercz. The Nonexistence of Finite Projective Planes of
Order 10. Canadian Journal of Mathematics, 1989.

5C. Bright, K. Cheung, B. Stevens, I. Kotsireas, V. Ganesh. A SAT-based
Resolution of Lam’s Problem. AAAI 2021.

24/37

SAT Encoding

A projective plane of order n is equivalent to a quad-free
(0, 1)-matrix with n + 1 ones in each row and column. A quad-free
matrix contains no rectangle with 1s in the corners.

1 1 0
1 0 1
0 1 1

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1

1 0 0 0 1 0 0 0 1 1 0 0 0
0 0 1 1 0 0 0 1 0 1 0 0 0
0 1 0 0 0 1 1 0 0 1 0 0 0
1 0 0 0 0 1 0 1 0 0 1 0 0
0 1 0 1 0 0 0 0 1 0 1 0 0
0 0 1 0 1 0 1 0 0 0 1 0 0
1 0 0 1 0 0 1 0 0 0 0 1 0
0 1 0 0 1 0 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 0 1 1 1 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1 0 0 0 1
1 1 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 1 1 1

order 1 order 2 order 3

These constraints are encoded in Boolean logic along with
symmetry breaking constraints. However, many isomorphic
intermediate solutions (partial projective planes) still exist.

25/37

Recorded Objects Isomorph Rejection in SAT

During the search the SAT solver will find partial solutions (by
finding complete definitions for the first few lines of the plane). . .

SAT solver CAS

26/37

Recorded Objects Isomorph Rejection in SAT

During the search the SAT solver will find partial solutions (by
finding complete definitions for the first few lines of the plane). . .

SAT solver CAS
isomorphism
certificateprev. seen

certificate

programmatically learn a clause
blocking the intermediate object

26/37

Lam’s Problem Results

In the hardest case of Lam’s problem, the first step is to find all
possibilities for the first 19 points of the plane. These SAT
instances have over 56 million solutions.

It can quickly be determined that only 0.5 million of these are
distinct up to isomorphism, but this indicates many unbroken
symmetries remain. . .

Using isomorph rejection during the search (instead of at the end)
generates the solutions 150 times faster.

27/37

Application II:
Kochen–Specker Systems

Based on work with
Brian Li and Vijay Ganesh.

28/37

The Free Will Theorem

In 2004, John Conway and Simon Kochen proved the “Free Will
Theorem”. It roughly states that if humans have free will then so
do elementary particles.

Their proof uses a configuration of three dimensional vectors called
a Kochen–Specker (KS) system.

29/37

Example KS System

If an agent is free to choose to measure the spin of a particle in
the following 31 directions. . .

. . . then the particle is free to choose its spin in these directions.

Subject to the laws of quantum mechanics it is impossible to
consistently assign outcomes for the spin in all 31 directions.

Image Source: S. Uijlen, B. Westerbaan 30/37

Can We Do Better?

It is unknown if there are fewer than 31 directions with this
property.

The current best known result is that at least 22 directions are
required.6

This was shown by translating a hypothetical 21-direction KS
system into a graph and using isomorph-free exhaustive generation
on 21-vertex graphs. The computation took 75 CPU years.

6S. Uijlen, B. Westerbaan. A Kochen-Specker System Has at Least 22 Vectors.
New Generation Computing, 2016.

31/37

Reduction to SAT

With some cleverness, many of the properties a “KS graph” must
satisfy can be reduced to Boolean logic.

We found that a SAT solver performs better than isomorph-free
generation. However, a SAT solver generates many copies of the
same graph.

Thus, we use a hybrid SAT and isomorph-free generation approach.

32/37

Orderly Generation in SAT

During the search the SAT solver will find partial solutions
(complete definitions for the edges in some subgraphs). . .

SAT solver CAS

[
0 0 1
0 0 0
1 0 0

]

33/37

Orderly Generation in SAT

During the search the SAT solver will find partial solutions
(complete definitions for the edges in some subgraphs). . .

SAT solver CAS

[
0 0 1
0 0 0
1 0 0

]

canonicity
of matrix

[
0 0 1
0 0 0
1 0 0

]

noncanonical

programmatically learn a clause
blocking the intermediate object

33/37

Skipping Canonicity Checking

To save on canonicity tests it is safe to skip canonicity checking
(and not block the object).

For example, hashes of canonical matrices can be recorded and any
object with the same hash can be accepted.

This doesn’t require much extra memory and even if hash collisions
occur it never results in solutions being undetected.

34/37

KS Search Results

The speedup factor that we found when using SAT-based orderly
generation in the search for KS systems of a given order:

order speedup factor
16 6.5
17 13.6
18 37.8
19 104.5

The order 21 case was resolved in 25.7 CPU days (over 1000 times
faster than the previous search).

The order 22 case was resolved in 5.3 CPU years. No KS system
was found, so a KS system must have at least 23 directions.

35/37

KS Search Results

The speedup factor that we found when using SAT-based orderly
generation in the search for KS systems of a given order:

order speedup factor
16 6.5
17 13.6
18 37.8
19 104.5

The order 21 case was resolved in 25.7 CPU days (over 1000 times
faster than the previous search).

The order 22 case was resolved in 5.3 CPU years. No KS system
was found, so a KS system must have at least 23 directions.

35/37

Future Work: Better Parallelization

How best to split the search space when using parallelization? The
obvious approach of splitting by finding all canonical subgraphs of
a given order results in poor performance.

The cube-and-conquer method offers miraculous results for some
combinatorial problems by splitting the search space into “cubes”
solved by SAT solvers.

During splitting, we blocked noncanonical graphs of small
order—but for large orders there are simply too many to block.
Can the splitting employ isomorph-free generation more effectively?

36/37

A Promising Future!

I hope I’ve convinced you that SAT and isomorph-free generation
methods deserve to be combined—despite little work pursuing this.

We have bolted together two methodologies that complement each
other well. Can they be combined in other more effective ways?

There is still much to be done and great potential to be unlocked!

37/37

