
From the shortest vector problem to the
dihedral hidden subgroup problem

Curtis Bright

University of Waterloo

December 8, 2011

1 / 19

Reduction

Roughly, “problem A reduces to problem B” means there is
a way of solving A given some way of solving problem B.

Intuitively, this says that B is at least as hard as A, and
possibly harder, so we write

A ≤ B.

2 / 19

Point lattices

A point lattice is a discrete subset of Rn closed under
addition and subtraction.

A set of linearly independent vectors b1, . . . , bn generate a
lattice L by taking their “integer span”

L =

{ n∑
i=1

xibi : xi ∈ Z
}
.

Example lattice in two dimensions:

3 / 19

Shortest vector problem (SVP)

Given a lattice described by basis vectors, find a shortest
nonzero vector in the lattice.

Example: Given the red vectors, find the blue vector:

4 / 19

Hardness of SVP

In n dimensions, all known algorithms for the shortest
vector problem run in exponential time in n.

Using the max-norm the problem is known to be NP-hard,
and is still suspected to be NP-hard using the usual
Euclidean norm.

Approximate SVP

Since it is too hard to solve SVP exactly, we will be content
with finding an approximation to the shortest vector.

Classically, the so-called LLL algorithm approximates the
shortest vector to within a factor of 2(n−1)/2.

5 / 19

f(n)-unique-SVP

As a special case of approximation, consider solving SVP in
lattices which have an especially short shortest vector.

Say a vector is f(n)-unique if it is a factor of f(n) shorter
than all nonparallel vectors.

If f(n) is large enough, there is hope. . .

The 2n-unique-SVP is in P.

The poly(n)-unique-SVP is in NP and coNP, so unlikely to
be NP-hard.

6 / 19

The dihedral group of 10 elements—in colourized form

7 / 19

The hidden subgroup problem (HSP)

An example function f on D10:

f() = 0 f() = 1 f() = 2 f() = 3 f() = 4

f() = 3 f() = 4 f() = 0 f() = 1 f() = 2

A function f on a group is said to hide a subgroup H if:

f is constant (say, 0) on the subgroup H
f is constant on the cosets of H and each coset has a distinct
value

The hidden subgroup problem is to find H with as few
queries to f as possible.

8 / 19

Solving HSP by sampling cosets

Construction of coset state:
1 Construct superposition over all elements in group G:

1√
|G|

∑
g∈G

|g〉

2 Query f in an extra register:

1√
|G|

∑
g∈G

|g〉|f(g)〉

3 Measure second register, say with result f(g):

1√
|H|

∑
h∈H

|gh〉

Repeat this procedure to construct other coset samples, and
use these to solve HSP somehow.

9 / 19

Dihedral coset problem (DCP)

Find the constant d, given a collection of states of the form

1√
2
|0〉|x〉+ 1√

2
|1〉|x + d〉 for random x,

where arithmetic is done mod n.

These can be thought of as cosets states of order 2
subgroups of D2n.

If we could solve dihedral HSP by coset sampling, we could
use that procedure to solve this problem, so:

DCP ≤ dihedral HSP by coset sampling

10 / 19

Two-point problem

Find the constant d, given a collection of states of the form

1√
2
|0〉|x〉+ 1√

2
|1〉|y〉,

for random x, y integer vectors with entries in [0,M) and
x− y = d.

Consider the function f which views x as a “base 2M”
integer:

f(x) :=

n∑
i=1

xi(2M)i−1

11 / 19

Two-point problem continued

Applying f to the second register,

1√
2
|0〉|f(x)〉+ 1√

2
|1〉|f(y)〉

is a valid input to the DCP.

Its output (slightly modified) read in base 2M gives us d.

So if we could solve DCP we could solve the two-point
problem:

two-point problem ≤ DCP

12 / 19

poly(n)-unique-SVP setup

Create a superposition of points in Zn,

|Z〉 :=
1√
Mn

∑
x

|x〉

where x has entries in [0,M) for some large M .

Create a superposition of lattice points by applying

f(x) :=

n∑
i=1

xibi,

where b1, . . . , bn generate the lattice.

13 / 19

Partitioning space into cubes

Suppose we could partition Rn into cubes such that every
cube has two points whose difference is the shortest vector.

Define a unique cube labeling function g and apply g to our
lattice superposition.

After measuring the result, the state collapses to a
superposition of two points whose difference is the shortest
vector.

14 / 19

Approximate partitioning

If the shortest vector is poly(n)-unique, cubes which are
roughly the size of the shortest vector will only contain
vectors whose difference is a multiple of the shortest vector.

15 / 19

Approximate partitioning continued

But we want exactly two points in each cube.

Idea: Scale up the basis vector b1 by a factor p to form a
superposition over a subset of the points.

16 / 19

Approximate partitioning continued

Shift the points over by mb1 based on a boolean variable t.

To 1√
2
|0〉|Z〉+ 1√

2
|1〉|Z〉 apply

f(t,x) := x1(pb1) + t(mb1) +

n∑
i=2

xibi.

17 / 19

Solving poly(n)-unique-SVP

How to determine the proper cube size and shift amount?

Cube size needs to be within a factor of 2 of the shortest
vector. This requires O(n) cases to check, since LLL finds an
O(2n) approximation to the shortest vector.
Determining the proper shift m ∈ [0, p) requires p ≈ n2 cases
to check.

After partitioning and collapsing, with high probability the
state will be a superposition of two vectors whose difference
is the shortest vector.

Then we can use a solution to the two-point problem to find
the shortest vector:

poly(n)-unique-SVP ≤ two-point problem

18 / 19

In summary

poly(n)-unique-SVP ≤ two-point problem

≤ dihedral coset problem

≤ dihedral HSP by coset sampling

19 / 19

