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Reduction

e Roughly, “problem A reduces to problem B” means there is
a way of solving A given some way of solving problem B.

o Intuitively, this says that B is at least as hard as A, and
possibly harder, so we write

A<B.
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Point lattices

o A point lattice is a discrete subset of R™ closed under
addition and subtraction.

@ A set of linearly independent vectors by, ..., b, generate a
lattice L by taking their “integer span”

L:{il‘ibi:l‘iGZ}.
=1

Example lattice in two dimensions:
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Shortest vector problem (SVP)

e Given a lattice described by basis vectors, find a shortest
nonzero vector in the lattice.

Example: Given the red vectors, find the blue vector:
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Hardness of SVP
o In n dimensions, all known algorithms for the shortest
vector problem run in exponential time in n.
o Using the max-norm the problem is known to be NP-hard,

and is still suspected to be NP-hard using the usual
Euclidean norm.

Approximate SVP

@ Since it is too hard to solve SVP exactly, we will be content
with finding an approximation to the shortest vector.

o Classically, the so-called LLL algorithm approximates the
shortest vector to within a factor of 2(n—1)/2,
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f(n)-unique-SVP

o As a special case of approximation, consider solving SVP in
lattices which have an especially short shortest vector.

e Say a vector is f(n)-unique if it is a factor of f(n) shorter
than all nonparallel vectors.

If f(n) is large enough, there is hope. ..
@ The 2"-unique-SVP is in P.

e The poly(n)-unique-SVP is in NP and coNP, so unlikely to
be NP-hard.
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The dihedral group of 10 elements—in colourized form
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The hidden subgroup problem (HSP)

o An example function f on Djg:
f®)=0 [f®=1 f@®=2 /[f@=3 [f)=4
f@=3 [f@=4 [f@®=0 [f=1 /[f(e)=2
o A function f on a group is said to hide a subgroup H if:
o f is constant (say, 0) on the subgroup H
o f is constant on the cosets of H and each coset has a distinct
value
o The hidden subgroup problem is to find H with as few
queries to f as possible.




Solving HSP by sampling cosets

o Construction of coset state:
@ Construct superposition over all elements in group G:

\m gezclg

@ Query f in an extra register:

\/EZM 1£(9)

geG

© Measure second register, say with result f(g):

\ﬁ h;[lg

@ Repeat this procedure to construct other coset samples, and
use these to solve HSP somehow.

v
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Dihedral coset problem (DCP)

o Find the constant d, given a collection of states of the form
\/LQ|0)|:E> + \%]1)]{5 + d) for random =,

where arithmetic is done mod n.

@ These can be thought of as cosets states of order 2
subgroups of Da,.

o If we could solve dihedral HSP by coset sampling, we could
use that procedure to solve this problem, so:

DCP < dihedral HSP by coset sampling
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Two-point problem

o Find the constant d, given a collection of states of the form
L)) + Z1)ly),
for random @, y integer vectors with entries in [0, M) and
r—y=d.

o Consider the function f which views x as a “base 2M”
integer:

f(x) = Z z;(2M)1
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Two-point problem continued

o Applying f to the second register,
LI0)If (@) + L5117 @)

is a valid input to the DCP.

o Its output (slightly modified) read in base 2M gives us d.

@ So if we could solve DCP we could solve the two-point
problem:
two-point problem < DCP




poly(n)-unique-SVP setup

o Create a superposition of points in Z",

1
1Z) = \/sz:!@

where & has entries in [0, M) for some large M.

o Create a superposition of lattice points by applying
n
fla) = wibi,
i=1

where by, ..., b, generate the lattice.
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Partitioning space into cubes

@ Suppose we could partition R™ into cubes such that every
cube has two points whose difference is the shortest vector.

@ Define a unique cube labeling function g and apply ¢ to our
lattice superposition.

o After measuring the result, the state collapses to a
superposition of two points whose difference is the shortest
vector. )
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Approximate partitioning

e If the shortest vector is poly(n)-unique, cubes which are
roughly the size of the shortest vector will only contain
vectors whose difference is a multiple of the shortest vector.
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Approximate partitioning continued

o But we want exactly two points in each cube.

o Idea: Scale up the basis vector by by a factor p to form a
superposition over a subset of the points.
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Approximate partitioning continued

o Shift the points over by mb; based on a boolean variable t.
o To —5|0)|Z) + —5[1)|Z) apply

f(t, ) = z1(pbr) + t(mb1) + sz i
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Solving poly(n)-unique-SVP

o How to determine the proper cube size and shift amount?
o Cube size needs to be within a factor of 2 of the shortest
vector. This requires O(n) cases to check, since LLL finds an
O(2™) approximation to the shortest vector.
o Determining the proper shift m € [0, p) requires p ~ n? cases
to check.
o After partitioning and collapsing, with high probability the
state will be a superposition of two vectors whose difference
is the shortest vector.

@ Then we can use a solution to the two-point problem to find
the shortest vector:

poly(n)-unique-SVP < two-point problem
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poly(n)-unique-SVP < two-point problem

< dihedral coset problem
< dihedral HSP by coset sampling
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