From the shortest vector problem to the dihedral hidden subgroup problem

Curtis Bright

University of Waterloo

December 8, 2011

Reduction

- Roughly, "problem A reduces to problem B" means there is a way of solving A given some way of solving problem B.
- Intuitively, this says that B is at least as hard as A, and possibly harder, so we write

$$A \leq B$$
.

Point lattices

- A point lattice is a discrete subset of \mathbb{R}^n closed under addition and subtraction.
- A set of linearly independent vectors b_1, \ldots, b_n generate a lattice L by taking their "integer span"

$$L = \left\{ \sum_{i=1}^{n} x_i \boldsymbol{b}_i : x_i \in \mathbb{Z} \right\}.$$

Example lattice in two dimensions:

Shortest vector problem (SVP)

• Given a lattice described by basis vectors, find a shortest nonzero vector in the lattice.

Example: Given the red vectors, find the blue vector:

Hardness of SVP

- In n dimensions, all known algorithms for the shortest vector problem run in exponential time in n.
- Using the max-norm the problem is known to be NP-hard, and is still suspected to be NP-hard using the usual Euclidean norm.

Approximate SVP

- Since it is too hard to solve SVP exactly, we will be content with finding an approximation to the shortest vector.
- Classically, the so-called LLL algorithm approximates the shortest vector to within a factor of $2^{(n-1)/2}$.

f(n)-unique-SVP

- As a special case of approximation, consider solving SVP in lattices which have an especially short shortest vector.
- Say a vector is f(n)-unique if it is a factor of f(n) shorter than all nonparallel vectors.

If f(n) is large enough, there is hope...

- The 2^n -unique-SVP is in P.
- The poly(n)-unique-SVP is in NP and coNP, so unlikely to be NP-hard.

The hidden subgroup problem (HSP)

• An example function f on D_{10} :

$$f(\clubsuit) = 0 \qquad f(\clubsuit) = 1 \qquad f(\clubsuit) = 2 \qquad f(\clubsuit) = 3 \qquad f(\clubsuit) = 4$$
$$f(\clubsuit) = 3 \qquad f(\clubsuit) = 4 \qquad f(\clubsuit) = 0 \qquad f(\clubsuit) = 1 \qquad f(\clubsuit) = 2$$

- A function f on a group is said to hide a subgroup H if:
 - f is constant (say, 0) on the subgroup H
 - f is constant on the cosets of H and each coset has a distinct value
- The hidden subgroup problem is to find H with as few queries to f as possible.

Solving HSP by sampling cosets

- Construction of coset state:
 - **①** Construct superposition over all elements in group G:

$$\frac{1}{\sqrt{|G|}} \sum_{g \in G} |g\rangle$$

 \bigcirc Query f in an extra register:

$$\frac{1}{\sqrt{|G|}} \sum_{g \in G} |g\rangle |f(g)\rangle$$

3 Measure second register, say with result f(g):

$$\frac{1}{\sqrt{|H|}} \sum_{h \in H} |gh\rangle$$

• Repeat this procedure to construct other coset samples, and use these to solve HSP somehow.

Dihedral coset problem (DCP)

• Find the constant d, given a collection of states of the form

$$\frac{1}{\sqrt{2}}|0\rangle|x\rangle+\frac{1}{\sqrt{2}}|1\rangle|x+d\rangle$$
 for random $x,$

where arithmetic is done mod n.

- These can be thought of as cosets states of order 2 subgroups of D_{2n} .
- If we could solve dihedral HSP by coset sampling, we could use that procedure to solve this problem, so:

 $DCP \leq dihedral HSP$ by coset sampling

Two-point problem

 \bullet Find the constant d, given a collection of states of the form

$$\frac{1}{\sqrt{2}}|0\rangle|\boldsymbol{x}\rangle + \frac{1}{\sqrt{2}}|1\rangle|\boldsymbol{y}\rangle,$$

for random x, y integer vectors with entries in [0, M) and x - y = d.

• Consider the function f which views \boldsymbol{x} as a "base 2M" integer:

$$f(\boldsymbol{x}) \coloneqq \sum_{i=1}^{n} x_i (2M)^{i-1}$$

Two-point problem continued

 \bullet Applying f to the second register,

$$\frac{1}{\sqrt{2}}|0\rangle|f(\boldsymbol{x})\rangle+\frac{1}{\sqrt{2}}|1\rangle|f(\boldsymbol{y})\rangle$$

is a valid input to the DCP.

- Its output (slightly modified) read in base 2M gives us d.
- So if we could solve DCP we could solve the two-point problem:

two-point problem \leq DCP

poly(n)-unique-SVP setup

• Create a superposition of points in \mathbb{Z}^n ,

$$|m{Z}
angle\coloneqqrac{1}{\sqrt{M^n}}\sum_{m{x}}|m{x}
angle$$

where \boldsymbol{x} has entries in [0, M) for some large M.

• Create a superposition of lattice points by applying

$$f(\boldsymbol{x}) \coloneqq \sum_{i=1}^{n} x_i \boldsymbol{b}_i,$$

where b_1, \ldots, b_n generate the lattice.

Partitioning space into cubes

- Suppose we could partition \mathbb{R}^n into cubes such that every cube has two points whose difference is the shortest vector.
- ullet Define a unique cube labeling function g and apply g to our lattice superposition.
- After measuring the result, the state collapses to a superposition of two points whose difference is the shortest vector.

Approximate partitioning

• If the shortest vector is poly(n)-unique, cubes which are roughly the size of the shortest vector will only contain vectors whose difference is a multiple of the shortest vector.

Approximate partitioning continued

- But we want exactly two points in each cube.
- Idea: Scale up the basis vector b_1 by a factor p to form a superposition over a subset of the points.

Approximate partitioning continued

- Shift the points over by $m\mathbf{b}_1$ based on a boolean variable t.
- To $\frac{1}{\sqrt{2}}|0\rangle|\boldsymbol{Z}\rangle + \frac{1}{\sqrt{2}}|1\rangle|\boldsymbol{Z}\rangle$ apply

$$f(t, \boldsymbol{x}) \coloneqq x_1(\boldsymbol{p}\boldsymbol{b}_1) + t(\boldsymbol{m}\boldsymbol{b}_1) + \sum_{i=2}^n x_i \boldsymbol{b}_i.$$

$\overline{\text{Solving poly}(n)}$ -unique- $\overline{\text{SVP}}$

- How to determine the proper cube size and shift amount?
 - Cube size needs to be within a factor of 2 of the shortest vector. This requires O(n) cases to check, since LLL finds an $O(2^n)$ approximation to the shortest vector.
 - Determining the proper shift $m \in [0, p)$ requires $p \approx n^2$ cases to check.
- After partitioning and collapsing, with high probability the state will be a superposition of two vectors whose difference is the shortest vector.
- Then we can use a solution to the two-point problem to find the shortest vector:

poly(n)-unique-SVP \leq two-point problem

In summary

poly(n)-unique-SVP \leq two-point problem

 \leq dihedral coset problem

 \leq dihedral HSP by coset sampling