A New Lower Bound in the abc Conjecture

Curtis Bright
University of Windsor

June 5, 2023

CanaDAM 2023
Number Theory and Algebraic Connections

Introduction

The abc conjecture (Oesterlé and Masser, 1985) has been called "The most important unsolved problem in Diophantine analysis".

If true, it would enable the resolution of many Diophantine equations-equations to be solved over the integers. For example, the $a b c$ conjecture implies Fermat's last theorem.

The abc conjecture

Three natural numbers a, b, c are said to be an $a b c$ triple if they do not share a common factor and

$$
a+b=c .
$$

The $a b c$ conjecture says that an $a b c$ triple cannot be very smooth (divisible by only small primes) when c is large.
typical triple: $\quad 3^{10} \cdot 109+1=2 \cdot 11 \cdot 292561$
exceptional triple: $\quad 3^{10} \cdot 109+2=23^{5}$

How to measure smoothness

The radical of a number is the product of the distinct primes in its prime factorization:

$$
\operatorname{rad}\left(2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7\right)=2 \cdot 3 \cdot 5 \cdot 7
$$

The $a b c$ conjecture is that $a b c$ triples have relatively large radical in the sense that for every $\epsilon>0$

$$
c<\operatorname{rad}(a b c)^{1+\epsilon}
$$

with finitely many exceptions. For $\epsilon=0$ the conjecture is false.

The most exceptional triples known

We construct infinitely many $a b c$ triples with

$$
\exp \left(\frac{6.563 \sqrt{\log c}}{\log \log c}\right) \operatorname{rad}(a b c)<c
$$

thereby providing a lower bound on the best possible form of the conjecture.

We improve on the work of van Frankenhuysen, who in 1999 showed the existence of $a b c$ triples with 6.068 in place of 6.563 .

Lattices

The lattice spanned by vectors $\boldsymbol{b}_{1}=[3,5]$ and $\boldsymbol{b}_{2}=[6,0]$:

The odd prime number lattice

Consider the lattice L_{n} generated by the rows $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}$ of

$$
\left[\begin{array}{c}
\boldsymbol{b}_{1} \\
\boldsymbol{b}_{2} \\
\boldsymbol{b}_{3} \\
\vdots \\
\boldsymbol{b}_{n}
\end{array}\right]=\left[\begin{array}{lllll}
\log 3 & & & & \\
& \log 5 & & & \\
& & \log 7 & & \\
& & & \ddots & \\
& & & & \log p_{n}
\end{array}\right]
$$

where p_{i} denotes the i th odd prime number.
There is an isomorphism between the points of L_{n} and the positive rationals with $\left\{p_{1}, \ldots, p_{n}\right\}$-smooth prime factorization:

$$
\sum_{i=1}^{n} e_{i} \boldsymbol{b}_{i} \leftrightarrow \prod_{i=1}^{n} p_{i}^{e_{i}}
$$

The lattice-number isomorphism

The height lemma

The ℓ_{1} norm (Manhattan norm) of a vector is the sum of the absolute value of its components.

The logarithmic height h of a positive rational b / c is $\log \max \{b, c\}$.

$$
\begin{gathered}
\|x\|_{1}=8 \log 3+4 \log 5 \\
h\left(3^{8} / 5^{4}\right)=8 \log 3
\end{gathered}
$$

In general, if b / c is the rational associated to \boldsymbol{x} then

$$
\|x\|_{1} \geq h(b / c)
$$

Lattice volume

The volume (or determinant) of a lattice is the volume of the parallelepiped generated by its basis vectors.

The volume of L_{n} is the product of the diagonal basis entries:

$$
\operatorname{det}\left(L_{n}\right)=\prod_{i=1}^{n} \log p_{i}
$$

A special sublattice

The kernel sublattice $L_{n, m}$ consists of the points of L_{n} whose corresponding $\left\{p_{1}, \ldots, p_{n}\right\}$-smooth rational b / c get sent to 1 under the reduce mod 2^{m} mapping.

That is,

$$
L_{n, m}:=\left\{\sum_{i=1}^{n} e_{i} \boldsymbol{b}_{i}: \prod_{i=1}^{n} p_{i}^{e_{i}} \equiv 1 \quad\left(\bmod 2^{m}\right)\right\} .
$$

What does $L_{2, m}$ look like?

What does $L_{2, m}$ look like?

What does $L_{2, m}$ look like?

$L_{2,3}$

What does $L_{2, m}$ look like?

$L_{2,4}$

What does $L_{2, m}$ look like?

Kernel vectors \rightarrow good triples

We just saw $(-22 \log 3,2 \log 5) \in L_{2,10}$, i.e.,

$$
3^{-22} \cdot 5^{2} \equiv 1 \quad\left(\bmod 2^{10}\right)
$$

which can be rewritten as

$$
2^{10} k+5^{2}=3^{22}
$$

for an integer k. This abc triple satisfies

$$
\begin{aligned}
c & =3^{22} & \operatorname{rad}(a b c) & =2 \cdot 3 \cdot 5 \cdot 7 \cdot 173 \cdot 12653, \\
& \approx 3.1 \cdot 10^{10} & & \approx 4.6 \cdot 10^{8},
\end{aligned}
$$

so $\operatorname{rad}(a b c)$ is small (about 1.5% of c).

Arbitrarily large $c / \operatorname{rad}(a b c)$

Let b / c be the smooth rational corresponding to a vector in $L_{n, m}$. By construction of the kernel sublattice,

$$
b / c \equiv 1 \quad\left(\bmod 2^{m}\right)
$$

For simplicity suppose $c>b$, so we have the $a b c$ triple

$$
2^{m} k+b=c
$$

for some positive integer $k=a / 2^{m} \leq c / 2^{m}$. Examining the prime factorizations of a, b, c :

$$
\operatorname{rad}(a b c) \leq 2 k \operatorname{rad}(b c) \leq \frac{c}{2^{m-1}} \prod_{i=1}^{n} p_{i} .
$$

Thus $c / \operatorname{rad}(a b c) \rightarrow \infty$ as $m \rightarrow \infty$.

The existence of a short vector

Hermite's constant is the smallest γ_{n} such that a lattice of rank n always contains a nonzero vector \boldsymbol{x} with small Euclidean norm in the sense that

$$
\|\boldsymbol{x}\|^{2} \leq \gamma_{n} \operatorname{det}(L)^{2 / n} .
$$

Hermite (1850) showed $\gamma_{n} \leq \sqrt{4 / 3}^{n-1}$ but it is now known that γ_{n} grows linearly in n. Kabatiansky and Levenshtein (1978) showed $\gamma_{n} \leq n / 9.795$.

Hermite's constant in Manhattan

The ℓ_{1} Hermite constant is the smallest δ_{n} such that a lattice of full rank n always contains a nonzero vector \boldsymbol{x}

$$
\|\boldsymbol{x}\|_{1} \leq \delta_{n} \operatorname{det}(L)^{1 / n}
$$

Since $\|\boldsymbol{x}\|_{1} \leq \sqrt{n}\|\boldsymbol{x}\|_{2}$, we have $\delta_{n} \leq \sqrt{n \gamma_{n}}=O(n)$.

Let δ be a constant so $\delta_{n} \leq n / \delta$ for sufficiently large n. A result of Rankin (1948) implies we can take $\delta=3.659$.

Short vectors \rightarrow better abc triples

$$
\begin{aligned}
\log c & \leq\|\boldsymbol{x}\|_{1} & & \text { (height lemma) } \\
& \leq \frac{n}{\delta}\left(\operatorname{det}\left(L_{n, m}\right)\right)^{1 / n} & & \left(\ell_{1}\right. \text { Hermite const } \\
& =\frac{n}{\delta}\left(2^{m-1} \prod_{i=1}^{n} \log p_{i}\right)^{1 / n} & & \left(\text { volume of } L_{n, m}\right) \\
& :=R & & \text { (new variable } R)
\end{aligned}
$$

Rewriting the $\operatorname{rad}(a b c)$ bound in terms of R and n :

$$
\frac{(\delta R / n)^{n}}{\prod_{i=1}^{n} p_{i} \log p_{i}} \operatorname{rad}(a b c) \leq c
$$

The prime number theorem provides the growth rate of the denominator as $n \rightarrow \infty$.

The $\operatorname{rad}(a b c)$ bound asymptotically

$$
f(n) \sim g(n) \text { means } \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1
$$

Using asymptotic expansions from the prime number theorem,

- $n \sim p_{n} / \log p_{n}$
- $\sum_{i=1}^{n} \log p_{i} \sim n \log p_{n}-n$
- $\sum_{i=1}^{n} \log \log p_{i} \sim n \log \log p_{n}$
the $\operatorname{rad}(a b c)$ bound becomes

$$
n \log \left(\frac{e \delta R}{p_{n}^{2}}\right)+\log \operatorname{rad}(a b c)<\log c .
$$

Optimal choice of R

For more extremal abc triples, we want to maximize

$$
n \log \left(\frac{e \delta R}{p_{n}^{2}}\right)
$$

in terms of R. With $R:=e p_{n}^{2} / \delta$ we have

$$
\begin{aligned}
n \log \left(\frac{e \delta R}{p_{n}^{2}}\right) & \sim \frac{4 \sqrt{(\delta / e) R}}{\log R} \\
& \geq \frac{4 \sqrt{(\delta / e) \log c}}{\log \log c}
\end{aligned}
$$

Putting it together

There are infinitely many $a b c$ triples satisfying

$$
\frac{4 \sqrt{(\delta / e) \log c}}{\log \log c}+\log \operatorname{rad}(a b c)<\log c
$$

Exponentiating and setting $\delta:=3.659 \ldots$

Putting it together

There are infinitely many $a b c$ triples satisfying

$$
\frac{4 \sqrt{(\delta / e) \log c}}{\log \log c}+\log \operatorname{rad}(a b c)<\log c
$$

Exponentiating and setting $\delta:=3.659 \ldots$

$$
\exp \left(\frac{4.64 \sqrt{\log c}}{\log \log c}\right) \operatorname{rad}(a b c)<c
$$

Lattice (improved)

Modify the odd prime number lattice L_{n} to have basis

$$
\left[\begin{array}{c}
\boldsymbol{b}_{1} \\
\boldsymbol{b}_{2} \\
\boldsymbol{b}_{3} \\
\vdots \\
\boldsymbol{b}_{n} \\
\boldsymbol{b}_{n+1}
\end{array}\right]=\left[\begin{array}{ccccc}
\log 3 & & & & \\
& \log 5 & & & \\
& & \log 7 & & \\
& \log 3 \\
& & & \ddots & \\
& & & \\
& & & & \log 7 \\
& & & & \\
& & & & \\
& & \\
& & n_{n}^{3}
\end{array}\right]
$$

The final row \boldsymbol{b}_{n+1} is included to make L_{n} full-rank. The entry n^{3} is chosen to be large enough to ensure the shortest nonzero vector in $L_{n, m}$ will not include \boldsymbol{b}_{n+1} (when $m \sim n \log _{2} n$).

$\operatorname{rad}(a b c)$ bound (improved)

The extra column gives better control on the size of b / c and consequently there are infinitely many $a b c$ triples satisfying

$$
\begin{gathered}
\frac{2^{m-1}}{\prod_{i=1}^{n} p_{i}} \operatorname{rad}(a b c) \leq c, \\
2 \log c \leq \frac{n+1}{\delta}\left(2^{m-1} n^{3} \prod_{i=1}^{n} \log p_{i}\right)^{1 /(n+1)} .
\end{gathered}
$$

Of all the differences (shown in red), asymptotically only the 2 matters and it improves the constant 4.64 in the exponent by a factor of $\sqrt{2}$.

Conclusion

There are infinitely many $a b c$ triples with

$$
\exp \left(\frac{6.563 \sqrt{\log c}}{\log \log c}\right) \operatorname{rad}(a b c)<c
$$

thus providing a new lower bound on the best possible form of the $a b c$ conjecture.

For these triples $c / \operatorname{rad}(a b c)$ grows about 64\% faster than the previously known most extremal examples. ${ }^{1}$

[^0]
[^0]: ${ }^{1}$ M. van Frankenhuysen. A lower bound in the abc conjecture. Journal of Number Theory, 2000.

