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Introduction

The abc conjecture (Oesterlé and Masser, 1985) has been called
“The most important unsolved problem in Diophantine analysis”.

If true, it would enable the resolution of many Diophantine
equations—equations to be solved over the integers. For
example, the abc conjecture implies Fermat’s last theorem.
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The abc conjecture

Three natural numbers a, b, c are said to be an abc triple if
they do not share a common factor and

a + b = c .

The abc conjecture says that an abc triple cannot be very
smooth (divisible by only small primes) when c is large.

typical triple: 310 · 109+ 1 = 2 · 11 · 292561
exceptional triple: 310 · 109+ 2 = 235
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How to measure smoothness

The radical of a number is the product of the distinct primes in
its prime factorization:

rad(28 · 34 · 52 · 7) = 2 · 3 · 5 · 7.

The abc conjecture is that abc triples have relatively large
radical in the sense that for every ε > 0

c < rad(abc)1+ε

with finitely many exceptions. For ε = 0 the conjecture is false.
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The most exceptional triples known

We construct infinitely many abc triples with

exp
(6.563√log c

log log c

)
rad(abc) < c ,

thereby providing a lower bound on the best possible form of
the conjecture.

We improve on the work of van Frankenhuysen, who in 1999
showed the existence of abc triples with 6.068 in place of 6.563.

5/23



Lattices
The lattice spanned by vectors b1 = [3, 5] and b2 = [6, 0]:
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The odd prime number lattice
Consider the lattice Ln generated by the rows b1, . . . , bn of

b1

b2

b3
...
bn

 =


log 3

log 5
log 7

. . .

log pn


where pi denotes the ith odd prime number.
There is an isomorphism between the points of Ln and the
positive rationals with {p1, . . . , pn}-smooth prime factorization:

n∑
i=1

eibi ↔
n∏

i=1

peii .

7/23



The lattice–number isomorphism
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The height lemma

The `1 norm (Manhattan norm) of a vector is the sum of the
absolute value of its components.

The logarithmic height h of a positive rational b/c is
log max{b, c}.

10

−10

‖x‖1 = 8 log 3 + 4 log 5

h(38/54) = 8 log 3

In general, if b/c is the rational associated to x then

‖x‖1 ≥ h(b/c).
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Lattice volume
The volume (or determinant) of a lattice is the volume of the
parallelepiped generated by its basis vectors.

det(L2) = log 3 · log 5

The volume of Ln is the product of the diagonal basis entries:

det(Ln) =
n∏

i=1

log pi
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A special sublattice

The kernel sublattice Ln,m consists of the points of Ln whose
corresponding {p1, . . . , pn}-smooth rational b/c get sent to 1
under the reduce mod 2m mapping.

That is,

Ln,m :=

{ n∑
i=1

eibi :
n∏

i=1

peii ≡ 1 (mod 2m)
}
.
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What does L2,m look like?

L2,1
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What does L2,m look like?

L2,2
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What does L2,m look like?

L2,3

12/23



What does L2,m look like?

L2,4
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What does L2,m look like?

L2,5
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What does L2,m look like?

L2,6
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What does L2,m look like?

L2,7
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What does L2,m look like?

L2,8
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What does L2,m look like?

L2,9
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What does L2,m look like?

L2,10
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Kernel vectors → good triples

We just saw (−22 log 3, 2 log 5) ∈ L2,10, i.e.,

3−22 · 52 ≡ 1 (mod 210)

which can be rewritten as

210k + 52 = 322

for an integer k . This abc triple satisfies

c = 322 rad(abc) = 2 · 3 · 5 · 7 · 173 · 12653,
≈ 3.1 · 1010 ≈ 4.6 · 108,

so rad(abc) is small (about 1.5% of c).
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Arbitrarily large c/rad(abc)
Let b/c be the smooth rational corresponding to a vector in
Ln,m. By construction of the kernel sublattice,

b/c ≡ 1 (mod 2m).

For simplicity suppose c > b, so we have the abc triple

2mk + b = c

for some positive integer k = a/2m ≤ c/2m. Examining the
prime factorizations of a, b, c :

rad(abc) ≤ 2k rad(bc) ≤ c

2m−1

∏n
i=1 pi .

Thus c/rad(abc)→∞ as m→∞.
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The existence of a short vector

Hermite’s constant is the smallest γn such that a lattice of
rank n always contains a nonzero vector x with small Euclidean
norm in the sense that

‖x‖2 ≤ γn det(L)
2/n.

Hermite (1850) showed γn ≤
√

4/3
n−1

but it is now known
that γn grows linearly in n. Kabatiansky and Levenshtein (1978)
showed γn ≤ n/9.795.
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Hermite’s constant in Manhattan

The `1 Hermite constant is the smallest δn such that a lattice
of full rank n always contains a nonzero vector x

‖x‖1 ≤ δn det(L)
1/n.

Since ‖x‖1 ≤
√
n‖x‖2, we have δn ≤

√
nγn = O(n).

Let δ be a constant so δn ≤ n/δ for sufficiently large n. A
result of Rankin (1948) implies we can take δ = 3.659.
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Short vectors → better abc triples

log c ≤ ‖x‖1 (height lemma)

≤ n
δ

(
det(Ln,m)

)1/n
(`1 Hermite constant)

= n
δ

(
2m−1∏n

i=1 log pi
)1/n

(volume of Ln,m)
:= R (new variable R)

Rewriting the rad(abc) bound in terms of R and n:

(δR/n)n∏n
i=1 pi log pi

rad(abc) ≤ c .

The prime number theorem provides the growth rate of the
denominator as n→∞.
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The rad(abc) bound asymptotically

f (n) ∼ g(n) means lim
n→∞

f (n)
g(n)

= 1

Using asymptotic expansions from the prime number theorem,

I n ∼ pn/log pn
I
∑n

i=1 log pi ∼ n log pn − n

I
∑n

i=1 log log pi ∼ n log log pn

the rad(abc) bound becomes

n log
(eδR

p2
n

)
+ log rad(abc) < log c .
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Optimal choice of R

For more extremal abc triples, we want to maximize

n log
(eδR

p2
n

)
in terms of R . With R := ep2

n/δ we have

n log
(eδR

p2
n

)
∼ 4

√
(δ/e)R

logR

≥ 4
√
(δ/e) log c

log log c
.
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Putting it together

There are infinitely many abc triples satisfying

4
√

(δ/e) log c

log log c
+ log rad(abc) < log c .

Exponentiating and setting δ := 3.659. . .

exp
(4.64√log c

log log c

)
rad(abc) < c .
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Lattice (improved)

Modify the odd prime number lattice Ln to have basis

b1

b2

b3
...
bn
bn+1


=



log 3 log 3
log 5 log 5

log 7 log 7
. . .

...
log pn log pn

n3



The final row bn+1 is included to make Ln full-rank. The entry
n3 is chosen to be large enough to ensure the shortest nonzero
vector in Ln,m will not include bn+1 (when m ∼ n log2 n).
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rad(abc) bound (improved)

The extra column gives better control on the size of b/c and
consequently there are infinitely many abc triples satisfying

2m−1∏n
i=1 pi

rad(abc) ≤ c ,

2 log c ≤ n + 1
δ

(
2m−1n3

n∏
i=1

log pi
)1/(n+1)

.

Of all the differences (shown in red), asymptotically only the 2
matters and it improves the constant 4.64 in the exponent by a
factor of

√
2.
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Conclusion

There are infinitely many abc triples with

exp
(6.563√log c

log log c

)
rad(abc) < c ,

thus providing a new lower bound on the best possible form of
the abc conjecture.

For these triples c/rad(abc) grows about 64% faster than the
previously known most extremal examples.1

1M. van Frankenhuysen. A lower bound in the abc conjecture. Journal of Number
Theory, 2000.
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