
SAT Solvers and
Combinatorics Problems

Curtis Bright
University of Windsor

Computational Proof Techniques
for Combinatorics on Words

CanaDAM 2021
May 25, 2021

1/19

SAT:
Boolean satisfiability problem

SAT solvers use clever trial-and-error to find solutions

2/19

Effectiveness of SAT solvers
SAT solvers are incredibly effective at solving some kinds of search
problems that have nothing to do with logic.1

I Discrete optimization
I Hardware and software verification
I Combinatorial problems like

colouring the positive integers as
far as possible so that a, b, and
a+ b are never all the same colour2

Additionally, SAT solvers produce unsatisfiability certificates when
no solutions exist.

1C. Bright, J. Gerhard, I. Kotsireas, V. Ganesh. Effective Problem Solving Using
SAT Solvers. Maple in Mathematics Education and Research, 2019.

2M. Heule. Schur Number Five. AAAI 2018.
3/19

Combinatorial problems solved by SAT
2008 Kouril and Paul determined the sixth van der Waerden number on

two colours.

2013 Bundala and Zavodny computed optimal sorting networks for up to
sixteen inputs.

2014 Konev and Lisitsa solved a special case of the Erdős discrepancy
conjecture.

2016 Heule, Kullmann, and Marek solved the Boolean Pythagorean triples
problem.

2016 Bright et al. determined the smallest counterexample of the
Williamson conjecture.

2018 Heule computed the fifth Schur number.

2019 Bright, Kotsireas, and Ganesh found the first Williamson matrices of
order 70.

2020 Heule et al. resolved Keller’s conjecture.

2021 Bright et al. gave the first certifiable solution of Lam’s Problem.

4/19

A colouring challenge

Can you colour the positive integers using a fixed number of
colours while ensuring that any k integers in arithmetic progression

a, a+ b, a+ 2b, . . . , a+ (k − 1)b

are not all coloured the same way?

In 1927, van der Waerden proved no!

5/19

A colouring challenge

Can you colour the positive integers using a fixed number of
colours while ensuring that any k integers in arithmetic progression

a, a+ b, a+ 2b, . . . , a+ (k − 1)b

are not all coloured the same way?

In 1927, van der Waerden proved no!

5/19

Finite van der Waerden colouring

With two colours and k = 3 you can colour the positive integers up
to eight with the colouring

01100110 (represented as a binary word).

This cannot be extended farther; either way produces k integers of
the same colour in arithmetic progression:

011001100
↑ ↑ ↑

011001101
↑ ↑ ↑

6/19

Van der Waerden numbers

The var der Waerden number Wr ,k is the largest number such that
there exists an r -colouring of {1, . . . ,Wr ,k − 1} without colouring
k integers in arithmetic progression in the same way.

For example, W2,3 > 8 since 01100110 is a 2-colouring avoiding
arithmetic progressions of length 3 of the same colour.

In fact, this is the longest possible such colouring, so W2,3 = 9. A
SAT solver can be used to provide a certificate showing W2,3 ≤ 9.

7/19

Specifying a problem in SAT

Most modern SAT solvers require specifying a problem as logical
clauses (e.g., x ∨ y ∨ ¬z) written

`1 ∨ · · · ∨ `n

which is true when at least one `i is true. Each `i must be a single
variable or negated variable.

Given a set of clauses a SAT solver will search for an assignment to
the variables making all of the clauses true.

8/19

Van der Waerden in SAT

Let ri be a variable that is true exactly when i is coloured red.

We want to avoid colouring k integers in arithmetic progression
(e.g., 1, 2, 3 with k = 3) all the same colour.

1, 2, 3 not all coloured blue: r1 ∨ r2 ∨ r3
1, 2, 3 not all coloured red: ¬r1 ∨ ¬r2 ∨ ¬r3

Similarly, we include clauses of this form for all triples of integers in
arithmetic progression.

9/19

Complete encoding

Suppose we want to use a SAT solver to test if W2,k > n.

Then we use the SAT instance defined by the clauses

ra ∨ ra+b ∨ · · · ∨ ra+(k−1)b

¬ra ∨ ¬ra+b ∨ · · · ∨ ¬ra+(k−1)b

for all 1 ≤ a, b ≤ n with a+ (k − 1)b ≤ n.

If the instance is satisfiable then W2,k > n and an explicit
colouring of {1, . . . , n} is found; otherwise W2,k ≤ n.

10/19

PySAT implementation

PySAT is a Python package that can be used to generate and solve
SAT instances. The following code tests if W2,k > n:

from pysat.solvers import Solver
with Solver () as s:

Run over all arithmetic progressions
for b in range(1, n+1):

for a in range(1, n-(k-1)*b+1):
Form indices in arithmetic progression
indices = range(a, a+(k-1)*b+1, b)
s.add_clause(indices)
s.add_clause ([-x for x in indices])

result = s.solve()

11/19

Finding W2,k exactly

To determine the value of W2,k , start n at k and increase n by 1
until you are able to show W2,k ≤ n.

Clauses generated from previous values of n are still valid and can
be reused—only need to add clauses that include the integer n.

Avoid monochromatic arithmetic progressions
that include the integer n
for b in range(1, n):

indices = range(n, 0, -b)[:k]
if len(indices) == k:

Only add clauses of length k
s.add_clause(indices)
s.add_clause ([-x for x in indices])

12/19

Results

Results of using PySAT to find small van der Waerden numbers:

W2,2 = 3 0.00 seconds
W2,3 = 9 0.00 seconds
W2,4 = 35 0.00 seconds
W2,5 = 178 56.34 seconds
W2,6 > 214 37.99 seconds
W2,6 > 215 9749.85 seconds

In 2008, Kouril and Paul used a custom SAT solver and a cluster of
over 200 machines for about 250 days to show that W2,6 = 1132.

13/19

Finite projective planes

A quad-free matrix contains no rectangle with 1s in the corners.

A finite projective plane is equivalent to a quad-free (0, 1)-matrix
with the same number of 1s in each row and column.

1 1 0
1 0 1
0 1 1

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1

1 0 0 0 1 0 0 0 1 1 0 0 0
0 0 1 1 0 0 0 1 0 1 0 0 0
0 1 0 0 0 1 1 0 0 1 0 0 0
1 0 0 0 0 1 0 1 0 0 1 0 0
0 1 0 1 0 0 0 0 1 0 1 0 0
0 0 1 0 1 0 1 0 0 0 1 0 0
1 0 0 1 0 0 1 0 0 0 0 1 0
0 1 0 0 1 0 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 0 1 1 1 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1 0 0 0 1
1 1 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 1 1 1

order 1 order 2 order 3

In order n, each row and column contains n + 1 ones.

14/19

Projective planes of small orders

1 2 3 4 5 6 7 8 9 10
3 3 3 3 3 7 3 3 3 7

Lam’s problem

15/19

Resolution of Lam’s problem

Lam et al.3 used custom-written software to show that a projective
plane of order ten does not exist.

We must trust the searches ran to completion—the authors were
upfront that mistakes were a real possibility.

Using a SAT solver, we generated the first certifiable resolution of
Lam’s problem.4

3C. Lam, L. Thiel, S. Swiercz. The Nonexistence of Finite Projective Planes of
Order 10. Canadian Journal of Mathematics, 1989.

4C. Bright, K. Cheung, B. Stevens, I. Kotsireas, V. Ganesh. A SAT-based
Resolution of Lam’s Problem. AAAI 2021.

16/19

Lam’s problem encoding

If xi ,j represents that entry (i , j) of the projective plane contains a 1
then specifying a matrix is quad-free can be done using the clauses

¬xi ,j ∨ ¬xi ,j ′ ∨ ¬xi ′,j ∨ ¬xi ′,j ′

for all distinct pairs of indices (i , j) and (i ′, j ′).

The constraints that there are exactly eleven 1s in each row and
column are reformulated and expressed in a convenient way for a
SAT solver.

17/19

Discrepancies

The lack of verifiable certificates has real
consequences. We found discrepancies with
the intermediate results of both Lam’s search
and an independent verification from 2011.

On the right is a 51-column partial projective
plane of order ten said to not exist in
2011—but we found with a SAT solver.

18/19

Conclusion

Many problems in combinatorics stand to benefit from fast and
verifiable search tools.

Don’t reinvent the wheel! It’s hard to beat a SAT solver at search.

A major issue with SAT solvers is that not all mathematical
constraints can effectively be expressed in Boolean logic—this can
be overcome by combining SAT with computer algebra.5

Thank You!
curtisbright.com

5C. Bright, I. Kotsireas, V. Ganesh. SAT Solvers and Computer Algebra Systems:
A Powerful Combination for Mathematics. CASCON 2019.

19/19

http://www.curtisbright.com

