
Using Walnut: Recent results in

combinatorics on words and number theory

Narad Rampersad

Department of Mathematics and Statistics

University of Winnipeg

(Joint work with Jeffrey Shallit)

We explore the use of Walnut, a theorem prover for the class

of automatic sequences (sequence computed by finite

automata), to obtain some results in combinatorics on words

and number theory.

We first show how Walnut can be used to obtain congruences

for combinatorial sequences like the Catalan numbers

1, 1, 2, 5, 14, 42, 132, 429, 1430, . . .

which count, among other things, the number of strings of

properly nested parentheses of length 2n, or the number of

binary trees on n vertices.

We will be working with base-p expansions. If

n = n0 + n1p+ n2p
2 + · · ·+ nrp

r

we write

(n)p = n0n1n2 · · ·nr

for the the base-p expansion of n written least-significant-digit

first.

Let us start with the binomial coefficients:

Theorem (Lucas 1878)

Let p be prime and let

n = n0 + n1p+ n2p
2 + · · ·+ nrp

r

k = k0 + k1p+ k2p
2 + · · ·+ krp

r.

Then (
n

k

)
≡p

r∏
i=0

(
ni

ki

)
.

(By convention
(
n
k

)
= 0 if n < k.)

▶ Take p = 2. We see that
(
n
k

)
is even exactly when there is

some i such that (ki, ni) = (1, 0).

▶ e.g.,

293930 =

(
21

12

)
≡2

(
1

0

)(
0

0

)(
1

1

)(
0

1

)(
1

0

)
≡2 0

51895935 =

(
29

12

)
≡2

(
1

0

)(
0

0

)(
1

1

)(
1

1

)(
1

0

)
≡2 1

▶ This can be checked with a finite automaton.

(k,n): BINOM2[n][k]=@0

1

[0,0], [0,1], [1,1]

0[1,0]

 [0,0], [1,0], [0,1], [1,1]

▶ The machine reads (k, n)2, digit-by-digit, and follows the

arcs labeled by each pair of digits read.

▶ If the machine ends in the state labeled 1, then
(
n
k

)
is

odd; otherwise it is even.

The sequence of Catalan numbers

Cn =
1

n+ 1

(
2n

n

)
=

(
2n

n

)
−

(
2n

n− 1

)
modulo p can also be computed with a finite automaton: For

p = 2 we get

1

1

10

0

01

0,1

Interpreting the automaton gives the following folklore

theorem:

Theorem

Cn is odd iff (n)2 = 1k0j; i.e., iff n = 2k − 1.

(Here 1k means a string of k 1’s and 0j means a string of j

0’s.)

▶ Rowland and Zeilberger and Rowland and Yassawi gave

different algorithms to produce automata for the Catalan

numbers modulo p, the Motzkin numbers modulo p, the

Delannoy numbers modulo p, etc.

▶ Let’s now look at the Catalan numbers Cn modulo 3.

(Alter and Kubota (1973) studied the general case

Cn mod p.)

▶ Let c3 = (Cn mod 3)n≥0.

Theorem (Deutsch and Sagan 2006)

The runs of 0’s in c3 begin at positions n where either

(n)3 = 21i or (n)3 = 21i0{0, 1}j, i ≥ 1, j ≥ 0,

and have length (3i+2 − 3)/2.

Theorem cont’d. (Deutsch and Sagan 2006)

The blocks of non-zero values in c3 are given by the following:

▶ The block 11222 occurs at position 0.

▶ The block 111222 occurs at all positions n where

(n)3 = 2i0w for some i ≥ 2 and some w ∈ {0, 1}∗ that

contains an odd number of 1’s.

▶ The block 222111 occurs at all positions n where

(n)3 = 2i0w for some i ≥ 2 and some w ∈ {0, 1}∗ that

contains an even number of 1’s.

We can obtain this result purely by computer using a program

called Walnut (developed by Jeffrey Shallit’s student Hamoon

Mousavi). Suppose we are given

▶ A finite automaton reading input n in base-k and

outputing the n-th term of a sequence s; and,

▶ A formula φ in first-order-logic involving variables,

constants, quantifiers, logical operations, ordering,

addition and subtraction of natural numbers, and indexing

into s.

▶ We can also multiply by a constant (this is just repeated

addition), but we can’t multiply two variables.

▶ If φ has no free variables, Walnut will output either that

φ is either TRUE or FALSE.

▶ If φ has free variables, Walnut will produce an automaton

that accepts the base-k representations of the values of

the free variables that satisfy φ.

Applying the Rowland–Zeilberger method gives the automaton

1

1
0,1

2

2

0

0

2

2

1

2

1

0

0,1,2
1

2

0

for c3

which is rather more complicated than the modulo 2

automaton.

The formula

φ = ∃i∀j((j ≥ 0 ∧ j < 4) ⇒ c3(i+ j) = 1)

asserts that there is a “run” of at least four 1’s in c3.

In Walnut’s language, this is

eval run4ones "?lsd_3 Ei Aj ((j>=0 & j<4) =>

CAT3[i+j]=@1)":

and evaluates to “FALSE”.

For the runs of 0’s we use the Walnut command

eval cat3max0 "?lsd_3 n>=1 &

(At t<n => CAT3[i+t]=@0) &

CAT3[i+n]!=@0 & (i=0|CAT3[i-1]!=@0)":

which produces the automaton

0 1[2,0] 2[1,1]

[1,1]

3[0,0]

[0,0], [1,0]

Examining the transition labels of the first component of the

input gives the claimed representation for the starting

positions of the runs of 0’s

(i)3 = 21k or (i)3 = 21k0{0, 1}j

and examining the transition labels of the second component

gives the claimed length

(n)3 = 01k; i.e., n = (3k+2 − 3)/2.

For p = 5, the Rowland–Zeilberger method gives the

automaton

1

2

2

44

1
0,1

0

3

0,2

3,4

4

11

4

2,3

0

1
0,2

3,4

0,1,2,3,4

3,4
0,2

3
1

1

3,40,2

for

c5 := Cn mod 5.

Using Walnut, one can obtain the following automaton for the

runs of 0’s in c5:

0 1[3,1]

[2,2]

2[0,0], [1,0]

[0,0], [1,0], [2,0]

From this automaton we derive:

Theorem

The runs of 0’s in c5 begin at positions n where either

(n)5 = 32i or (n)5 = 32i{0, 1}{0, 1, 2}j, i ≥ 0, j ≥ 0,

and have length (5i+2 − 3)/2.

We can easily characterize the non-zero blocks in c5 as well.

▶ We also obtained similar results for the Motzkin numbers

modulo 3 and 5 as well.

▶ �Walnut can be used on any k-automatic sequence; i.e.,

any sequence whose n-th term can be computed by an

automaton reading n in base-k as its input.

▶ Let’s consider a new automatic sequence.

▶ In the rest of the talk, binary representations will be

most-significant-digit first.

The Rudin-Shapiro coefficients

(a(n))n≥0 = (1, 1, 1,−1, 1, 1,−1, 1, . . .)

form an infinite sequence of ±1 defined recursively by the

identities

a(2n) = a(n)

a(2n+ 1) = (−1)na(n)

and the initial condition a(0) = 1.

▶ The sequence a(n) was introduced independently by

Golay (1949), Rudin (1949), and Shapiro (1952).

▶ Rudin’s motivation was the study of the absolute value of

certain Fourier series; Golay was interested in optics.

▶ The function a(n) can also be defined as a(n) = (−1)rn ,

where rn counts the number of (possibly overlapping)

occurrences of 11 in the binary representation of n.

Brillhart and Morton (1978) studied sums of these coefficients,

and defined the two sums

s(n) =
∑

0≤i≤n

a(i) t(n) =
∑

0≤i≤n

(−1)ia(i). (1)

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

s(n) 1 2 3 2 3 4 3 4 5 6 7 6 5 4

t(n) 1 0 1 2 3 2 1 0 1 0 1 2 1 2

Table: First few values of s(n) and t(n).

▶ Brillhart and Morton proved many properties of these

sums; typically by a tedious induction.

▶ We show how to replace nearly all of these inductions

with techniques from logic and automata theory.

▶ The Rudin-Shapiro sequence is 2-automatic and therefore

also 4-automatic.

0/+1

0, 2 1/+11

2/–13
0

1, 3

3/–12

2

1, 3
03 1

0, 2

Figure: Base-4 automaton for the Rudin-Shapiro sequence

▶ States are labeled state number/output.

▶ The automaton reads the digits of the base-4

representation of n, starting with the most significant

digit.

▶ Leading zeros in the inputs are allowed.

The main accomplishment of Brillhart and Morton’s paper was

proving the following inequalities:

Theorem (Brillhart & Morton)

For n ≥ 1 we have √
3n/5 ≤ s(n) ≤

√
6n

0 ≤ t(n) ≤
√
3n.

▶ To establish the inequalities for s(n) and t(n) we first

determine automata that accept the pairs (n, s(n)) and

(n, t(n)).

▶ In order for the automata to be able to process n and

s(n) in parallel, it turns out that we need to represent n

in base-4 and s(n) and t(n) in base-2.

0

[0,0] 1[0,1]
2

[1,1]

[2,0]

[2,1]

3[1,0]

4[3,0]

[0,0]

[0,1]

[1,1], [3,1]

5

[2,0]

6

[2,1]

[1,0], [3,0]

[2,0]

[2,1]

[1,0], [3,0]

[0,0]

[0,1]

[3,1]

[2,0]

[2,1]

[3,0][1,0]

[0,0]

[0,1]

0

[0,0], [2,0]

1[1,0]

2

[3,0]

3

[0,1], [2,1]

4

[1,1]

5

[3,1]

[3,0]
[3,1]

6

[2,1]
[1,0]

[1,1]

[0,1]

[3,0]

[0,0]

[1,0] [0,1]

[1,1]

7

[2,0]

[2,0]

[3,0]

[1,0], [2,1]

[3,1]

[0,0]

[3,0]
[1,0]

[3,1]

[1,1]

[0,1], [2,1]

[1,0]

[0,0], [2,0]

Figure: Synchronized automata for s(n) (top) and t(n) (bottom).

▶ To prove the inequalities we need to compare n to s(n),

but these numbers are now represented in different bases.

▶ We deal with this by defining a kind of “pseudo-square”

function as follows: m(n) = [(n)2]4.

▶ In other words, m sends n to the integer obtained by

interpreting the base-2 expansion of n as a number in

base 4.

▶ We do this with the automaton link42:

reg link42 msd_4 msd_2 "([0,0]|[1,1])*":

▶ It’s not hard to show that

(n2 + 2n)/3 ≤ m(n) ≤ n2.

We can now prove:

Lemma

For n ≥ 1 we have 3n+7
5

≤ m(s(n)) ≤ 3n+ 1, and the upper

and lower bounds are tight.

We use the Walnut code

def maps "?msd_4 Ex $rss(n,x) & $link42(y,x)":

eval ms_lowerbnd "?msd_4 An,y (n>=1 & $maps(n,y))

=> y<=3*n+1":

eval ms_upperbnd "?msd_4 An,y (n>=1 & $maps(n,y))

=> 3*n+7<=5*y":

Tightness can be easily checked with Walnut.

Corollary

For n ≥ 1 we have

s(n) ≥
√

3n+ 7

5
.

▶ As a consequence, we get one of the claimed lower

bounds.

▶ We simply put the bounds m(s(n)) ≤ s(n)2 and
3n+7

5
≤ m(s(n)) together to get 3n+7

5
≤ s(n)2.

▶ Note that our lower bound is actually slightly stronger

than that of Brillhart-Morton!

▶ The upper bound s(n) ≤
√
6n is more difficult.

▶ If m(s(n)) ≤ 2n, then the result follows immediately

from the inequality (n2 + 2n)/3 ≤ m(n).

▶ We can easily compute the exceptional set of n for which

m(s(n)) > 2n: the binary representations of these n have

the form

{0, 2}∗ ∪ {0, 2}∗1{1, 3}∗.

▶ The analysis of these exceptional values is somewhat

technical (but still much easier than the original analysis

of Brillhart and Morton!)

Walnut can be downloaded here:

https://cs.uwaterloo.ca/~shallit/walnut.html

https://cs.uwaterloo.ca/~shallit/walnut.html

The End

