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Problem Statement

Many problems have an underlying Boolean structure, but are
not easily expressed using standard SAT/SMT solvers.

Acyclicity (Gebser’14) Constrained Clustering (Métivier’12) Hamiltonicity (Velev’09)
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Finite domain search + complex predicates.



Goals
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The Essential Tool for

Mathematics and Modeling EDgE %

Computer algebra systems (CAS) contain SOTA algorithms for solving complex properties

Wolfram
Mathematica

SAT solvers are one of the best general approaches for finite domain search

* Goal 1: incorporate algorithms from a CAS with a SAT solver for:
e Counterexample Construction for Math Conjectures
* Bug Finding

Goal 2: design an easily extensible language/API for such a system
e Currentfocusis on graph theory



DPLL(CAS) Architecture
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Extensibility preferred to a “one-algorithm-fits-all” approach.



Graph Variable Representation

graph x(6)

* One Boolean per each potential vertex

* One Boolean per each potential edge

* Mapping between graph components and Booleans
to facilitate defining SAT-based graph constraints




Case Study: Ruskey-Savage Conjecture

Conjecture: For every d = 2, any matching of the hypercube Qg4
extends to a Hamiltonian cycle.

* Matching — independent set of edges that share no vertices
* Maximal — cannot add edges without violating the matching property
* Perfect —it coversall vertices

* Hamiltonian cycle — cycle that touches every vertex

Q3

* Previously shown true for d < 4



Case Study Specification (d = 5)

graph x(32)
sage.CubeGraph G(5)
//I¥Nx.matching(x, G) = extends_to_hamiltonian(x, G)

assert( matching(x,G) A N;lf;fc Blasted to SAT
imperfect_matching(x,G) A-%5
maximal_matching(x,G) ),
. . ~25 LOC :
query( extends_to_Hamiltonian_cycle(x,G)) <« Checked withSAGE




1: EXTENDSTOHAMILTONIAN()
2: g < s.getGraph(QG)
3: q <+ CubeGraph(5)




Case Study Approach
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e Unsat after ~8 hours on laptop
(Conjecture holds for d = 5)

* For a pure SAT encoding, we need
encode non-trivial Hamiltonicity
constraints



A Sage-only approach...

* Without SAT, we need a problem-specific search routine

#Checks of

extends_to_Hamiltonian_cycle
Matchings 13,803,794,944
Imperfect Matchings 4,619,529,024
Maximal Imperfect Matchings 6,911,604

e A Sage-only approach is:
* Potentially less efficient
e Potentially more error-prone



Case Study 2: Edge-antipodal colourings

* Conjecture: For every dimension d = 2, in every edge-antipodal 2-
edge-coloring of 04, there exists a monochromatic path between two
antipodal vertices.

. . #edges/2 96
* For d = 6, search space of all colorings is: 22 = 227",



Case Study 2 Approach

SAT Solver

* For a pure SAT encoding, we need to
ensure none of the antipodal vertices
are connected by a path

Interface . * 32 connectivity constraints

 UNSAT after 1.5 hours (d = 6 holds)




Cumulative Time (s)

What’s the bottleneck?
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Implementation Correctness

e SAT solver resolution proofs
* Use Drup-trim

* SAGE computations
* Interactions between them



Future Work and Conclusions

* Moving to the SMT domain
* Improved generation of proof objects / correctness checking

* Exploiting symmetry breaking capabilities

* Encoding complex predicates is facilitated by using off-the-shelf CAS algorithms
* Promotes rapid extensibility/prototyping

* Demonstrated two case studies on hypercubes
e “Fun case studies”



