MathCheck: A Math Assistant Combining SAT with Computer Algebra Systems

Ed Zulkoski, Vijay Ganesh, Krzysztof Czarnecki
University of Waterloo
August 7, 2015

Problem Statement

Many problems have an underlying Boolean structure, but are **not easily expressed** using standard SAT/SMT solvers.

Acyclicity (Gebser'14)

A

B

C

E

Constrained Clustering (Métivier'12)

Hamiltonicity (Velev'09)

Finite domain search + complex predicates.

Goals

- Computer algebra systems (CAS) contain SOTA algorithms for solving complex properties
- SAT solvers are one of the best general approaches for finite domain search
- **Goal 1**: incorporate algorithms from a CAS with a SAT solver for:
 - Counterexample Construction for Math Conjectures
 - Bug Finding
- Goal 2: design an easily extensible language/API for such a system
 - Current focus is on graph theory

DPLL(CAS) Architecture

Extensibility preferred to a "one-algorithm-fits-all" approach.

Graph Variable Representation

graph x(6)

- One Boolean per each <u>potential</u> vertex
- One Boolean per each <u>potential</u> edge

 Mapping between graph components and Booleans to facilitate defining SAT-based graph constraints

Case Study: Ruskey-Savage Conjecture

Conjecture: For every $d \ge 2$, any matching of the hypercube Q_d extends to a Hamiltonian cycle.

- Matching independent set of edges that share no vertices
 - Maximal cannot add edges without violating the matching property
 - Perfect it covers all vertices
- Hamiltonian cycle cycle that touches every vertex
- Previously shown true for $d \leq 4$

Case Study Specification (d = 5)

```
graph x(32)

sage.CubeGraph G(5)

//\forall x.matching(x,G) \Rightarrow extends\_to\_hamiltonian(x,G)

assert( matching(x,G) \land \qquad \qquad ^{\sim 10 \ LOC} Blasted to SAT

imperfect_matching(x,G) \land \sim ^{\sim 5 \ LOC} maximal_matching(x,G) ),

query( extends_to_Hamiltonian_cycle(x,G))
```

- 1: EXTENDSTOHAMILTONIAN()
- 2: $g \leftarrow s.getGraph(G)$
- 3: $q \leftarrow CubeGraph(5)$

Case Study Approach

- Unsat after 8 hours on laptop (Conjecture holds for d=5)
- For a pure SAT encoding, we need encode non-trivial Hamiltonicity constraints

A Sage-only approach...

• Without SAT, we need a problem-specific search routine

	#Checks of extends_to_Hamiltonian_cycle
Matchings	13,803,794,944
Imperfect Matchings	4,619,529,024
Maximal Imperfect Matchings	6,911,604

- A Sage-only approach is:
 - Potentially less efficient
 - Potentially more error-prone

Case Study 2: Edge-antipodal colourings

• Conjecture: For every dimension $d \ge 2$, in every edge-antipodal 2-edge-coloring of Q_d , there exists a monochromatic path between two antipodal vertices.

• For d=6, search space of all colorings is: $2^{2^{\#edges/2}}=2^{2^{96}}$.

Case Study 2 Approach

- For a pure SAT encoding, we need to ensure **none** of the antipodal vertices are connected by a path
 - 32 connectivity constraints

• UNSAT after 1.5 hours (d = 6 holds)

What's the bottleneck?

Implementation Correctness

- SAT solver resolution proofs
 - Use Drup-trim
- SAGE computations
- Interactions between them

Future Work and Conclusions

- Moving to the SMT domain
 - Improved generation of proof objects / correctness checking
- Exploiting symmetry breaking capabilities
- Encoding complex predicates is facilitated by using off-the-shelf CAS algorithms
 - Promotes rapid extensibility/prototyping
- Demonstrated two case studies on hypercubes
 - "Fun case studies"