MathCheck: A Math Assistant
Combining SAT with
Computer Algebra Systems

Ed Zulkoski, Vijay Ganesh, Krzysztof Czarnecki

University of Waterloo
August 7, 2015

IIIIIIIIIIII

WATERLOO
2|

Problem Statement

Many problems have an underlying Boolean structure, but are
not easily expressed using standard SAT/SMT solvers.

Acyclicity (Gebser’14) Constrained Clustering (Métivier’12) Hamiltonicity (Velev’09)

A B C D E F
5] X X X
2 X X
e t3 X X X
(ta X X X X
D) . W x
X X X

(F) :
tz

Finite domain search + complex predicates.

Goals

Mapie 18

The Essential Tool for

Mathematics and Modeling EDgE %

Computer algebra systems (CAS) contain SOTA algorithms for solving complex properties

Wolfram
Mathematica

SAT solvers are one of the best general approaches for finite domain search

* Goal 1: incorporate algorithms from a CAS with a SAT solver for:
e Counterexample Construction for Math Conjectures
* Bug Finding

Goal 2: design an easily extensible language/API for such a system
e Currentfocusis on graph theory

DPLL(CAS) Architecture

s ~
SAT Solver
. | Learned . _ ,.
DR = LB:’J:JEE:(NL hl{-}d(‘l[(bﬂ} Cl: e SAT lllﬂd{}l{'@}}
G2B : GC + Bool LSS
¢ € La T28B : Pred <+ Bool
» Preprocessor > Interface
UNSAT
Graph Graph \.,
. . Proof
Predicates Constraints
A
[] [] [] (l L] [) ”
Extensibility preferred to a “one-algorithm-fits-all” approach.

Graph Variable Representation

graph x(6)

* One Boolean per each potential vertex

* One Boolean per each potential edge

* Mapping between graph components and Booleans
to facilitate defining SAT-based graph constraints

Case Study: Ruskey-Savage Conjecture

Conjecture: For every d = 2, any matching of the hypercube Qg4
extends to a Hamiltonian cycle.

* Matching — independent set of edges that share no vertices
* Maximal — cannot add edges without violating the matching property
* Perfect —it coversall vertices

* Hamiltonian cycle — cycle that touches every vertex

Q3

* Previously shown true for d < 4

Case Study Specification (d = 5)

graph x(32)
sage.CubeGraph G(5)
//I¥Nx.matching(x, G) = extends_to_hamiltonian(x, G)

assert(matching(x,G) A N;lf;fc Blasted to SAT
imperfect_matching(x,G) A-%5
maximal_matching(x,G)),
. . ~25 LOC :
query(extends_to_Hamiltonian_cycle(x,G)) <« Checked withSAGE

1: EXTENDSTOHAMILTONIAN()
2: g < s.getGraph(QG)
3: q <+ CubeGraph(5)

Case Study Approach

S

-4

Solver

‘“i

Interface

e Unsat after ~8 hours on laptop
(Conjecture holds for d = 5)

* For a pure SAT encoding, we need
encode non-trivial Hamiltonicity
constraints

A Sage-only approach...

* Without SAT, we need a problem-specific search routine

#Checks of

extends_to_Hamiltonian_cycle
Matchings 13,803,794,944
Imperfect Matchings 4,619,529,024
Maximal Imperfect Matchings 6,911,604

e A Sage-only approach is:
* Potentially less efficient
e Potentially more error-prone

Case Study 2: Edge-antipodal colourings

* Conjecture: For every dimension d = 2, in every edge-antipodal 2-
edge-coloring of 04, there exists a monochromatic path between two
antipodal vertices.

. . #edges/2 96
* For d = 6, search space of all colorings is: 22 = 227",

Case Study 2 Approach

SAT Solver

* For a pure SAT encoding, we need to
ensure none of the antipodal vertices
are connected by a path

Interface . * 32 connectivity constraints

 UNSAT after 1.5 hours (d = 6 holds)

Cumulative Time (s)

What’s the bottleneck?

16000

14000t

12000t

10000t

8000t

6000F

4000t

2000¢

T T T

ExtendsToHamiltonian
SAT Solver

-

0
0

lteration

6000

5000

4000}

3000¢

2000t

Cumulative Time (s)

1000}

— AntipodalMonochromatic
-- SAT Solver

-
-
-
I
-
--—
p—
-
-

e I

0
0

10000 20000 30000 40000 50000 60000 70000 80000 90000
Iteration

13

Implementation Correctness

e SAT solver resolution proofs
* Use Drup-trim

* SAGE computations
* Interactions between them

Future Work and Conclusions

* Moving to the SMT domain
* Improved generation of proof objects / correctness checking

* Exploiting symmetry breaking capabilities

* Encoding complex predicates is facilitated by using off-the-shelf CAS algorithms
* Promotes rapid extensibility/prototyping

* Demonstrated two case studies on hypercubes
e “Fun case studies”

