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Many problems have an underlying Boolean structure, but are 
not easily expressed using standard SAT/SMT solvers.

Acyclicity (Gebser’14) Constrained Clustering (Métivier’12)

2

Finite domain search + complex predicates.

Hamiltonicity (Velev’09)

Problem Statement



Goals

• Computer algebra systems (CAS) contain SOTA algorithms for solving complex properties

• SAT solvers are one of the best general approaches for finite domain search

• Goal 1: incorporate algorithms from a CAS with a SAT solver for:
• Counterexample Construction for Math Conjectures

• Bug Finding

• Goal 2: design an easily extensible language/API for such a system
• Current focus is on graph theory
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DPLL(CAS) Architecture

Extensibility preferred to a “one-algorithm-fits-all” approach.
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Graph Variable Representation

graph x(6)

• One Boolean per each potential vertex

• One Boolean per each potential edge

• Mapping between graph components and Booleans 
to facilitate defining SAT-based graph constraints
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Case Study: Ruskey-Savage Conjecture

Conjecture: For every 𝑑 ≥ 2, any matching of the hypercube 𝑄𝑑

extends to a Hamiltonian cycle.

• Matching – independent set of edges that share no vertices
• Maximal – cannot add edges without violating the matching property

• Perfect – it covers all vertices

• Hamiltonian cycle – cycle that touches every vertex

• Previously shown true for 𝑑 ≤ 4

𝑄3
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Case Study Specification ( )

graph x(32)

sage.CubeGraph G(5)

//∀𝑥. 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑥, 𝐺 ⇒ 𝑒𝑥𝑡𝑒𝑛𝑑𝑠_𝑡𝑜_ℎ𝑎𝑚𝑖𝑙𝑡𝑜𝑛𝑖𝑎𝑛(𝑥, 𝐺)

assert( matching(x,G) ∧ 

imperfect_matching(x,G) ∧ 

maximal_matching(x,G) ),

query( extends_to_Hamiltonian_cycle(x,G))

Unsat

Blasted to SAT

Checked with SAGE

~10 LOC

~5 LOC

~5 LOC

~25 LOC
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matching(x,G)

imperfect_matching(x,G)

maximal_matching(x,G)

extends_to_Hamiltonian_cycle(x,G)
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Case Study Approach
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• Unsat after ~8 hours on laptop 
(Conjecture holds for 𝒅 = 𝟓)

• For a pure SAT encoding, we need 
encode non-trivial Hamiltonicity
constraints



A Sage-only approach…

• Without SAT, we need a problem-specific search routine

• A Sage-only approach is:
• Potentially less efficient
• Potentially more error-prone 
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#Checks of 
extends_to_Hamiltonian_cycle

Matchings 13,803,794,944

Imperfect Matchings 4,619,529,024

Maximal Imperfect Matchings 6,911,604

SAT Approach 384,000



Case Study 2: Edge-antipodal colourings 

• Conjecture: For every dimension 𝑑 ≥ 2, in every edge-antipodal 2-
edge-coloring of 𝑄𝑑 , there exists a monochromatic path between two 
antipodal vertices.

• For 𝑑 = 6, search space of all colorings is: 22#𝑒𝑑𝑔𝑒𝑠/2
= 2296

.
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Case Study 2 Approach
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• For a pure SAT encoding, we need to 
ensure none of the antipodal vertices 
are connected by a path
• 32 connectivity constraints

• UNSAT after 1.5 hours (𝑑 = 6 holds)



What’s the bottleneck?
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Implementation Correctness

• SAT solver resolution proofs
• Use Drup-trim

• SAGE computations

• Interactions between them
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Future Work and Conclusions

• Moving to the SMT domain
• Improved generation of proof objects / correctness checking

• Exploiting symmetry breaking capabilities

• Encoding complex predicates is facilitated by using off-the-shelf CAS algorithms
• Promotes rapid extensibility/prototyping

• Demonstrated two case studies on hypercubes
• “Fun case studies”
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