
A SAT Solver + Computer Algebra Attack on
the Minimum Kochen–Specker Problem

Zhengyu (Brian) Li1, Curtis Bright2, Vijay Ganesh1

1Georgia Institute of Technology, USA
2University of Windsor, Canada

1

Meet the Team

Zhengyu Li Curtis Bright Vijay Ganesh

PhD Student in Computer Science
Georgia Institute of Technology

Assistant Professor
University of Windsor
School of Computer Science

Professor
Georgia Institute of Technology
School of Computer Science

IntroductionPAGE 2

The (3D) Kochen–Specker Theorem

The KS theorem states that quantum mechanics is in conflict with classical models:
the result of a measurement does not depend on which other compatible
measurements are performed simultaneously.

There is a finite set S ⊂ ℝ3 such that there is no function f : S → {0, 1} satisfying

f(u) + f(v) + f(w) = 1

for all triples (u, v, w) of mutually orthogonal vectors in S.

In order to prove their theorem, Kochen and Specker establish the existence of a KS
vector system.

PAGE 3

The (3D) Kochen–Specker Set

A set of vectors in 3-dimensional space is a KS set if there is no 01-assignment that
satisfies the following two conditions:

1. Two mutually exclusive events (orthogonal vectors) cannot both have the value 1.
2. In a complete context (3 mutually orthogonal vectors) exactly one assignment

(vector) has the value 1.

PAGE 4

The Minimum KS Problem - Can we do better?

It is unknown if there exists a KS vector system with less than 31 vectors.

PAGE 5

Encoding the KS Problem as a Combinatorial Problem

To find a KS set, we want to find graphs G such that
▪ G is non-101-colorable: G has no possible 101-coloring
▪ G is embeddable: G is an orthogonality graph for a 3D vector system

In addition, previous research has proven that G for a minimal KS set satisfies
▪ Squarefree Constraint: G must not contain a square subgraph
▪ Minimum Degree Constraint: every vertex of G must have minimum degree 3
▪ Triangle Constraint: every vertex is part of at least one triangle subgraph

6

Computational Search for the KS sets

We want a computational tool that is:

Scalable to large combinatorial objects

Allow custom constraints as input

Can be formally verified

7

Computer Algebra Systems (CASs)

PAGE 8

Satisfiability (SAT) Solver

A SAT solver is a computer program which solves the Boolean satisfiability problem.
It takes a Boolean formula in conjunctive normal form (CNF) as input, and returns

• SAT if it finds a variable assignment that satisfies the input formula
• UNSAT if it can demonstrate that no such assignments exist

Boolean satisfiability is NP-complete, but SAT solvers are effective for many
applications.

PAGE 9

Motivations of SAT+CAS

• SAT solvers are great at solving search problems specified by simple constraints (clauses).

• Computer algebra systems (CASs) are great at many sophisticated mathematical problems

involving little search.

• Problems involving both sophisticated mathematics and search are good candidates for a

SAT+CAS approach. (developed in 2015 by Zulkoski, Ganesh, and Czarnecki and

independently by Erika Ábrahám)

SAT + CAS = efficient search + mathematical knowledge

10 Zulkoski, E., Ganesh, V., Czarnecki, K.: MathCheck: A Math Assistant via a Combination of Computer Algebra Systems and SAT Solvers. Springer, Cham (2015).
Ábrahám, E.: Building bridges between symbolic computation and satisfiability checking (2015).

An Emerging Paradigm
There has been a lot of research in recent years involving SAT and computer algebra or related methods.

A small and incomplete sample:

• Verification of Ramsey numbers (Duggan, Li, Bright, Ganesh 2024).

• A SAT-based Resolution of Lam’s Problem (Bright et al. 2021).

• A Hybrid SAT and Lattice Reduction Approach for Integer Factorization (Ajani, Bright 2023).

• Proving the correctness of multiplier circuits (Kaufmann, Biere 2020).

• Finding new algorithms for 3 × 3 matrix multiplication (Heule, Kauers, Seidl 2021).

• SAT modulo symmetries for generating combinatorial objects in an isomorph-free way (Kirchweger et al. 2021)

• Making progress on conjectures in geometric group theory (Savela, Oikarinen, Jarvisalo 2020).

• Computing directed Ramsey numbers (Neiman, Mackey, Heule 2020).

• Debugging of digital circuits (Mahzoon, Große, Drechsler 2018).11

Isomorphism
When generating combinatorial objects we really only care about generating them up to

isomorphism. Unfortunately, objects usually have many isomorphic representations.

12

The Importance of Isomorph-free Generation

For example, a graph with n vertices can have up to n! distinct

isomorphic adjacency matrices. This makes the size of the

search space for graphs much larger than it needs to be.

To exhaustively generate combinatorial objects it is of utmost

importance to detect and remove isomorphic copies of objects as

early as possible.

13

Isomorph-free Orderly Generation

When generating combinatorial objects we only care about generating them up to
isomorphism.

The notion of canonicity is defined so that:
• Every isomorphism class has exactly one canonical representative.
• If an adjacency matrix is canonical then its upper-left submatrix of any size is

also canonical.

Developed independently by Faradžev and Read in 1978.

PAGE 14

Canonicity Examples
An adjacency matrix is canonical if its “vector representation” is lex-minimal
among all matrices in the same isomorphism class.

For example,

are isomorphic adjacency matrices but only the last is canonical.

PAGE 15

Orderly Generation of Graphs

PAGE 16

Implementing Orderly Generation

To perform orderly generation we need a canonicity checking method which is a difficult problem.

However, verifying that a matrix is noncanonical is often easy—it requires finding a single

permutation of the vertices which gives a lexicographically smaller adjacency matrix.

PAGE 17

Implementing Orderly Generation

PAGE 18

Embeddability Checking
▪ A solution found by the SAT solver can only be a KS vector system if it is

embeddable (there is a vector system that corresponds to this graph).

▪ We use SMT Solver Z3 to check for embeddability.

▪ We precompute minimal unembeddable graphs up to order 12, and block solutions
that contain such graphs dynamically during solving.

PAGE 19

Pipeline Overview

PAGE 20

Parallelization
We use a novel Monte Carlo
Tree Search (MCTS) based
Cube-and-Conquer (CnC)
technique to divide the
instance into smaller
subproblems.

Each subproblem is solved
until the proof size exceed
7 GB; then it will be divided
into smaller subproblems.

PAGE 21
Jha, Piyush, et al. "AlphaMapleSAT: An MCTS-based Cube-and-Conquer
SAT Solver for Hard Combinatorial Problems."

Verification

SAT: We have enabled DRAT proof logging in the SAT solver so that certificates are
generated.

CAS: A CAS-derived permutation provides a witness that any blocked matrix is
noncanonical.

We have certified all results up to order 23 and the uncompressed proofs are over 40 TB in
order 23.

PAGE 22

Results

Order SAT+CAS SAT CAS Method

17 0.3 mins 9.0 mins 25.2 mins Sequential

18 1.8 mins 266.4 mins 455.4 mins Sequential

19 9.0 mins 11,705.8 mins 9,506.4 mins Sequential

20 140.5 mins timeout timeout Sequential

21 1,945 mins timeout timeout Sequential

22 932 hours timeout timeout Parallel

23 12,116 hours timeout timeout Parallel

PAGE 23

A Promising Future!
• SAT and CAS deserve to be combined, and there should be more work pursuing this idea.

• Many problems in quantum foundations are combinatorial, and we look forward to applying

SAT+CAS to more problems in the future.

Future Work
• Improve the lower bound of the extended KS set (which requires vectors not explicitly

needed to show a 01-valuation, but are needed experimentally.

• Search for KS sets of order 24 and above.

PAGE 24
https://uwaterloo.ca/mathcheck/

Conclusions

• SAT + CAS is a state-of-the-art tool to solve large combinatorial problems.

• AlphaMapleSAT is an efficient tool to perform cube-and-conquer and parallelize the problem.

• Verification is of utmost importance and can be performed using SAT + CAS.

PAGE 25

