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The (3D) Kochen–Specker Theorem

The KS theorem states that quantum mechanics is in conflict with classical models: 
the result of a measurement does not depend on which other compatible 
measurements are performed simultaneously.

There is a finite set S ⊂ ℝ3 such that there is no function f : S → {0, 1} satisfying

f(u) + f(v) + f(w) = 1 

for all triples (u, v, w) of mutually orthogonal vectors in S.

In order to prove their theorem, Kochen and Specker establish the existence of a KS 
vector system.

PAGE  3



The (3D) Kochen–Specker Set

A set of vectors in 3-dimensional space is a KS set if there is no 01-assignment that 
satisfies the following two conditions:

1. Two mutually exclusive events (orthogonal vectors) cannot both have the value 1. 
2. In a complete context (3 mutually orthogonal vectors) exactly one assignment 

(vector) has the value 1. 
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The Minimum KS Problem - Can we do better?

It is unknown if there exists a KS vector system with less than 31 vectors.
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Encoding the KS Problem as a Combinatorial Problem

To find a KS set, we want to find graphs G such that
▪ G is non-101-colorable: G has no possible 101-coloring
▪ G is embeddable: G is an orthogonality graph for a 3D vector system

In addition, previous research has proven that G for a minimal KS set satisfies
▪ Squarefree Constraint: G must not contain a square subgraph
▪ Minimum Degree Constraint: every vertex of G must have minimum degree 3
▪ Triangle Constraint: every vertex is part of at least one triangle subgraph
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Computational Search for the KS sets

We want a computational tool that is:

Scalable to large combinatorial objects

Allow custom constraints as input

Can be formally verified
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Computer Algebra Systems (CASs)
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Satisfiability (SAT) Solver

A SAT solver is a computer program which solves the Boolean satisfiability problem. 
It takes a Boolean formula in conjunctive normal form (CNF) as input, and returns

• SAT if it finds a variable assignment that satisfies the input formula
• UNSAT if it can demonstrate that no such assignments exist

Boolean satisfiability is NP-complete, but SAT solvers are effective for many 
applications.
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Motivations of SAT+CAS

• SAT solvers are great at solving search problems specified by simple constraints (clauses).

• Computer algebra systems (CASs) are great at many sophisticated mathematical problems 

involving little search.

• Problems involving both sophisticated mathematics and search are good candidates for a 

SAT+CAS approach. (developed in 2015 by Zulkoski, Ganesh, and Czarnecki and 

independently by Erika Ábrahám)

SAT + CAS = efficient search + mathematical knowledge

10 Zulkoski, E., Ganesh, V., Czarnecki, K.: MathCheck: A Math Assistant via a Combination of Computer Algebra Systems and SAT Solvers. Springer, Cham (2015). 
Ábrahám, E.: Building bridges between symbolic computation and satisfiability checking (2015).



An Emerging Paradigm
There has been a lot of research in recent years involving SAT and computer algebra or related methods.

A small and incomplete sample: 

• Verification of Ramsey numbers (Duggan, Li, Bright, Ganesh 2024).

• A SAT-based Resolution of Lam’s Problem (Bright et al. 2021).

• A Hybrid SAT and Lattice Reduction Approach for Integer Factorization (Ajani, Bright 2023).

• Proving the correctness of multiplier circuits (Kaufmann, Biere 2020).

• Finding new algorithms for 3 × 3 matrix multiplication (Heule, Kauers, Seidl 2021).

• SAT modulo symmetries for generating combinatorial objects in an isomorph-free way (Kirchweger et al. 2021)

• Making progress on conjectures in geometric group theory (Savela, Oikarinen, Jarvisalo 2020).

• Computing directed Ramsey numbers (Neiman, Mackey, Heule 2020).

• Debugging of digital circuits (Mahzoon, Große, Drechsler 2018).11



Isomorphism
When generating combinatorial objects we really only care about generating them up to 

isomorphism. Unfortunately, objects usually have many isomorphic representations.
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The Importance of Isomorph-free Generation

For example, a graph with n vertices can have up to n! distinct 

isomorphic adjacency matrices. This makes the size of the 

search space for graphs much larger than it needs to be.

To exhaustively generate combinatorial objects it is of utmost 

importance to detect and remove isomorphic copies of objects as 

early as possible.
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Isomorph-free Orderly Generation

When generating combinatorial objects we only care about generating them up to 
isomorphism.

The notion of canonicity is defined so that:
• Every isomorphism class has exactly one canonical representative.
• If an adjacency matrix is canonical then its upper-left submatrix of any size is 

also canonical.

Developed independently by Faradžev and Read in 1978.
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Canonicity Examples
An adjacency matrix is canonical if its “vector representation” is lex-minimal 
among all matrices in the same isomorphism class. 

For example,

are isomorphic adjacency matrices but only the last is canonical.
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Orderly Generation of Graphs
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Implementing Orderly Generation

To perform orderly generation we need a canonicity checking method which is a difficult problem.

However, verifying that a matrix is noncanonical is often easy—it requires finding a single 

permutation of the vertices which gives a lexicographically smaller adjacency matrix.
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Implementing Orderly Generation
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Embeddability Checking
▪ A solution found by the SAT solver can only be a KS vector system if it is 

embeddable (there is a vector system that corresponds to this graph).

▪ We use SMT Solver Z3 to check for embeddability.

▪ We precompute minimal unembeddable graphs up to order 12, and block solutions 
that contain such graphs dynamically during solving.
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Pipeline Overview 
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Parallelization
We use a novel Monte Carlo 
Tree Search (MCTS) based 
Cube-and-Conquer (CnC) 
technique to divide the 
instance into smaller 
subproblems.

Each subproblem is solved 
until the proof size exceed
7 GB; then it will be divided 
into smaller subproblems.
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Verification

SAT: We have enabled DRAT proof logging in the SAT solver so that certificates are 
generated. 

CAS: A CAS-derived permutation provides a witness that any blocked matrix is 
noncanonical.

We have certified all results up to order 23 and the uncompressed proofs are over 40 TB in 
order 23.
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Results

Order SAT+CAS SAT CAS Method

17 0.3 mins 9.0 mins 25.2 mins Sequential

18 1.8 mins 266.4 mins 455.4 mins Sequential

19 9.0 mins 11,705.8 mins 9,506.4 mins Sequential

20 140.5 mins timeout timeout Sequential

21 1,945 mins timeout timeout Sequential

22 932 hours timeout timeout Parallel

23 12,116 hours timeout timeout Parallel
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A Promising Future!
• SAT and CAS deserve to be combined, and there should be more work pursuing this idea.

• Many problems in quantum foundations are combinatorial, and we look forward to applying 

SAT+CAS to more problems in the future.

Future Work
• Improve the lower bound of the extended KS set (which requires vectors not explicitly 

needed to show a 01-valuation, but are needed experimentally.

• Search for KS sets of order 24 and above.
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Conclusions

• SAT + CAS is a state-of-the-art tool to solve large combinatorial problems.

• AlphaMapleSAT is an efficient tool to perform cube-and-conquer and parallelize the problem.

• Verification is of utmost importance and can be performed using SAT + CAS.
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