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Brute-brute force has no hope. But clever, inspired brute force is the future. – Dr. Doron Zeilberger, Rutgers University, 
2015.

The research areas of SMT [SAT Modulo Theories] solving and symbolic computation are quite disconnected. [...] 
More common projects would allow us to join forces and commonly develop improvements on both sides. – Dr. Erika 
Abraham, RWTH Aachen University, 2015. (Invited talk, ISSAC 2015)

Independently, in 2014 we started looking into combinations of SAT and CAS aimed at constructing counterexamples 
or finite verification of math conjectures, publishing our first paper on the topic at the Conference on Automated 
Deduction (CADE) 2015.

SAT+CAS
SOME PERSPECTIVES
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PART I
MOTIVATION

WHY SHOULD YOU CARE ABOUT SAT SOLVERS?
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SOFTWARE ENGINEERING & SAT/SMT SOLVERS
AN INDISPENSABLE TACTIC FOR ANY STRATEGY

Formal 
Methods

Program 
Analysis

Automatic 
Testing

Program 
Synthesis

SAT/SMT
Solvers
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SOFTWARE ENGINEERING USING SOLVERS
ENGINEERING, USABILITY, NOVELTY

Program Reasoning 
Tool

Program Specification

Program is correct?
or Generate Counterexamples (test cases)

SAT/SMT 
Solver

Logic Formulas

SAT/UNSAT
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• Solver-based programming languages
• Compiler optimizations using solvers
• Solver-based debuggers
• Solver-based type systems
• Solver-based concurrency bugfinding
• Solver-based synthesis
• Bio & Optimization

• Bounded MC
• Program Analysis
• AI

• Concolic Testing
• Program Analysis
• Equivalence Checking
• Auto Configuration

SAT/SMT SOLVER RESEARCH STORY
A 1000X+ IMPROVEMENT
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SOFTWARE ENGINEERING & SAT/SMT SOLVERS
AN INDISPENSABLE TACTIC FOR ANY STRATEGY

Formal 
Methods

Program 
Analysis

Automatic 
Testing

Program 
Synthesis

STP
Hampi

Z3 String Solver
MapleSAT

MathCheck
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PART II
SAT SOLVER BASICS

POWER OF CONFLICT-DRIVEN CLAUSE-LEARNING
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• A literal p is a Boolean variable x or its negation ¬x. A clause C is a disjunction of literals:  x2∨ ¬x41∨ x15. A 

3-CNF formula is a conjunction of m clauses over n variables

• An assignment is a mapping from variables to Boolean values (True, False). A unit clause C is a clause 

with a single unbound literal

• The Boolean SAT problem:

• Decide whether Boolean formulas in CNF are satisfiable, i.e., find an assignment such that each input clause has a true literal (aka 

input formula is SAT) OR establish that input formula has no solution (aka input formula is UNSAT)

• A SAT Solver is a program that solves the SAT problem.  All known SAT solvers have worst-case 

exponential time complexity in the number of variables of input formula

• SAT solvers typically output a solution if input is SAT (and produce proofs if input is UNSAT)

The Boolean SATisfiability Problem
Standard Definitions
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DPLL SAT Solver Architecture
The Basic Backtracking SAT Solver

DPLL(Θcnf, assign) {

Propagate unit clauses;

if ”conflict”: return FALSE;

if ”complete assign”: return TRUE;

”pick decision variable x”;

return
DPLL(Θcnf⎮x=0, assign[x=0])

|| DPLL(Θcnf⎮x=1, assign[x=1]);

}

x
F T

y
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Modern CDCL SAT Solver Architecture
Key Steps: Confl ict Driven Clause Learning and Smart Branching

Return
SAT

Return
UNSAT

Conflict
Analysis()

Top-level
Conflict?

Backjump()

Input SAT Instance

Propagate()
(BCP)

Conflict?

All Vars
Assigned?

Decide()

x
F T

y

Learnt clause (x) Learnt clause (neg(x) OR y)
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AN ABSTRACTION OF A CDCL SAT SOLVER

Decisions

Propagations

Clause Learning

Partial Assignment

Learnt Clause

1. This abstraction captures the most essential aspects of CDCL. Combines synthesis
(induction) with verification (deduction)

2. There is similar class of algorithms in reinforcement learning

3. Enabled us to design a new class of branching heuristics

Student (induction) Teacher (deduction)
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PART III 
CAN WE DO BETTER?

THE SAT+CAS PARADIGM
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SAT+CAS PARADIGM
MOTIVATION AND RESEARCH QUESTION

STRENGTHS WEAKNESSES

SAT Solvers Excellent at combinatorial search

Flexible architecture, easily extensible

Input language (Boolean logic) is weak, i.e., 
predicates from rich fragments of mathematics 
are difficult/impossible to express

Computer
Algebra 
Systems (CAS)

Deep repositories of mathematical knowledge

Rich collection of mathematical algorithms for 
solving polynomials, linear algebra, transforms of 
many kinds, …

Lack good algorithms for general-purpose
combinatorial search

Research question: Can we somehow combine SAT and CAS to get the best of both worlds, aimed at constructing 
counterexamples or finitely verifying math conjectures? 14



SAT+CAS PARADIGM
CRUCIAL INSIGHTS

Return
SAT

Return
UNSAT

Conflict
Analysis()

Top-level
Conflict?

Backjump()

Input SAT Instance

Propagate()
(BCP + CAS)

Conflict?

All Vars
Assigned?

Decide()

• Enhance/augment conflict analysis and BCP in SAT solvers 
with CAS (Inspired by DPLL(T))

• Student-Teacher model – SAT is the combinatorial student, 
and CAS is the domain-expert teacher

• Under what conditions do such combinations make sense?

• Problem can be ‘Booleanized’ easily, to a certain extent

• However, the problem also has rich mathematical 
structure which may be difficult or impossible to 
encode in Boolean logic

• SAT solver explores the search space. The CAS system 
provides feedback lazily (in an on-demand fashion) in 
the form of conflict clauses

CAS
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SAT+CAS PARADIGM
SOME DETAILS

Return
SAT

Return
UNSAT

Conflict
Analysis()

Top-level
Conflict?

Backjump()

Input SAT Instance

Propagate()
(BCP + CAS)

Conflict?

All Vars
Assigned?

Decide()

• SAT solver reaches an inconclusive state, i.e., a partial 
assignment that is neither a conflict nor a complete satisfying 
assignment

• The CAS system using domain knowledge (in the form of 
lemmas and theorems) checks if the partial assignment can 
be extended in manner consistent with its domain 
knowledge

• If the partial assignment A is inconsistent with its domain 
knowledge, return a conflict clause to the SAT solver to 
block all extensions of A thus dramatically pruning the search

• Implementation details: The CAS is called by the solver via a 
Callback mechanism in the inner loop of Programmatic 
MapleSAT

CAS
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SAT+CAS PARADIGM
MATHCHECK RESULTS

Return
SAT

Return
UNSAT

Conflict
Analysis()

Top-level
Conflict?

Backjump()

Input SAT Instance

Propagate()
(BCP + CAS)

Conflict?

All Vars
Assigned?

Decide()

• Williamson conjecture: For the first time, showed that
Williamson matrices exist for all even orders up to 70.
Verified that order 35 is the smallest counterexample to this
conjecture.

• Ruskey-Savage Conjecture: Every matching of a hypercube of
dimension d can be extended to a Hamiltonian cycle. We
verified this conjecture up to dimension 5 for the first time.

• Complex Golay Conjecture: Enumerated all complex Golay
sequences for lengths up to 25, except 23. Verified the
Craigen–Holzmann–Kharaghani conjecture that such
sequences do not exist in length 23

CAS
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PART IV 
A CASE STUDY

THE WILLIAMSON CONJECTURE
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THE WILLIAMSON AND HADAMARD CONJECTURES
STATEMENT AND BACKGROUND

Hadamard conjecture (open since 1893):

A Hadamard matrix is an order n matrix H with entries in {+1,-1} such that any pair of rows (or columns) have inner product 0.  The conjecture 
states that there exist a Hadamard matrix for order n = 4k for every positive integer k.

Given the difficulty of resolving this question, many special cases have been proposed. One of them is the class of  Williamson 
matrices.

Williamson conjecture (first stated in 1972 by Turyn. Disproved in 1993 by Djokovic):

Let A, B, C, D be symmetric, circulant order n matrices with entries in {+1,-1} such that A2 + B2 + C2 + D2 = 4nIn, where In is the identity matrix 
of order n.  The conjecture states that such matrices exist for every n.

Such objects are called Williamson matrices of order n, and can be used to construct Hadamard matrices of order 4n.

Djokovic established, via some special-purpose computations, that there are no Williamson matrices of order 35. 
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WILLIAMSON SEQUENCES
STATEMENT AND BACKGROUND

Williamson sequences:

Fortunately, Williamson matrices can equivalently be defined using sequences of length n:

• Sequences A, B, C, D of {+1,-1} of length n each, denoted as {x0, x1,…,xn-1}

• Sequences must symmetric, i.e., xi=xn-i for i=1,…,n-1

• PSDA(s) + PSDB(s) + PSDC(s) + PSDD(s) = 4n for all 𝑠 ∈ ℤ, where PSD (Power Spectral Density) of a sequence X is the squared 
absolute values of the discrete Fourier transform of X.

• More precisely,

𝑃𝑆𝐷( 𝑠 = 𝐷𝐹𝑇( 𝑠 ,

where	𝐷𝐹𝑇( 𝑠 = ∑ 𝑎4𝑒
6789:
; 	<=>

4?@

Now	the	question	is	how	do	we	take	advantage	of	both	SAT	solvers	and	properties	like	the	PSDs	to	efficiently	find	Williamson	
matrices?
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CONSTRUCTING WILLIAMSON SEQUENCES
SAT+CAS ENCODING

Encoding Williamson sequences as a SAT+CAS problem:

First, the SAT part:

• Encode the domain values {+1,-1} for Williamson sequences as {true, false} in the corresponding SAT encoding

• Sequences A, B, C, D of {+1,-1} are now encoded as sets of Boolean variables {𝑥@(, 𝑥>(, … , 𝑥<=>( } for each sequence

• Since the sequences must symmetric, we can cut down the number of Boolean variables in the encoding by half

• For arithmetic (e.g., A2 + B2 + C2 + D2 = 4nIn) and cardinality operations we use efficient Boolean circuits encodings, represented in 
conjunctive normal form

Now, the CAS part:

• There is no easy way to directly encode PSDs in SAT, other than to use an external CAS to perform these computations
21



CONSTRUCTING WILLIAMSON SEQUENCES
SAT+CAS ENCODING

Return
SAT

Return
UNSAT

Conflict
Analysis()

Top-level
Conflict?

Backjump()

Input SAT Instance

Propagate()
(BCP + CAS)

Conflict?

All Vars
Assigned?

Decide()

• SAT solver solves Williamson constraints and assigns values 
to the Boolean variables corresponding to the A,B,C, and D 
sequences

• When the solver reaches an inconclusive state (partial 
assignment that is neither satisfying nor a conflict), the CAS 
is invoked

• The CAS computes the PSD over the partial assignments:

• Observe that since PSD values are non-negative and 
PSDA(s) + PSDB(s) + PSDC(s) + PSDD(s) = 4n,

if PSDX(s) > 4n for any X, then X is not part of Williamson 
sequence. The CAS can reject such partial assignments (and 
thus all its extensions) by giving the SAT an appropriate 
conflict clause

CAS
(PSD)
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ADDITIONAL PREDICATES FOR CAS
COMPRESSIONS AND DIOPHANTINE EQUATIONS

• The PSD Criteria for s=0 essentially boils down to a Diophantine equation as follows:

rowsum(A)2 + rowsum(B)2 + rowsum(C)2 + rowsum(D)2 = 4n

• In other words, every Williamson sequence provides a decomposition of 4n into a sum of four squares

• There are usually only a few such decompositions. CAS (e.g., Maple) have functions to compute these

• The CAS system analyzes partial assignments from the SAT solver. If they don’t satisfy the above criteria, then 
these partial assignments are converted into conflict clauses, and fed back to the SAT solver





PART V 
SAT+CAS

TAKEAWAYS

26



SAT+CAS METHOD
TAKEAWAYS

Return
SAT

Return
UNSAT

Conflict
Analysis()

Top-level
Conflict?

Backjump()

Input SAT Instance

Propagate()
(BCP + CAS)

Conflict?

All Vars
Assigned?

Decide()

• A powerful combination of SAT’s general-purpose search 
ability and domain-specific capabilities of CAS for solving 
combinatorial problems

• Constructed counterexamples or finitely verified several 
open conjectures

• We are at a very beginning stages of a new way of solving 
combinatorial problems

• Next steps involve understanding better encodings, improved 
ways of CAS to provide feedback, and integrating SAT+CAS 
in novel ways

CAS
(PSD)
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PART VI 
Understanding SAT and SMT

A PROOF COMPLEXITY-THEORETIC VIEW
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THE CONTEXT
PROOF SYSTEMS AND THEIR COMPLEXITY

General resolution The rule is form of modus ponens. Proof is a directed acyclic graph (DAG).

𝑥> ∨ ⋯	∨ 𝑥< 			 ¬𝑥< ∨ 𝑦> …∨ 𝑦e 	
𝑥> ∨ ⋯∨ 𝑥<=> ∨ 𝑦> …	∨ 𝑦e

Merge resolution Derived clauses have to share literals to apply rule. Proof is a DAG.

𝑥> ∨ ⋯	∨ 𝑥< 			 ¬𝑥< ∨ ⋯𝑥<=> 	
𝑥> ∨ ⋯	∨ 𝑥<=>

Unit resolution One clause must be unit. Proof is a DAG.

𝑥< 			 ¬𝑥< ∨ 𝑦> …𝑦e 	
𝑦> ∨ ⋯	∨ 𝑦e

Tree resolution Same rules as general resolution. Proof is a tree. Tree proofs are not allowed to reuse lemmas unlike 
DAG proofs. 
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THE CONTEXT
PROOF-COMPLEXITY FOR SAT/SMT SOLVERS

• SAT solvers are sound and complete 
proof systems for Boolean logic

• Proof systems = axioms + proof rules

• Parameterized proof complexity is an 
ideal lens to study SAT solvers

• The proof complexity-theoretic 
research program can be extended to 
all of formal methods

• What is needed is the discovery of 
appropriate parameters

• Conversely, building practical proof 
system can lend insights into hard 
proof complexity-theoretic questions

More 
powerful?

More powerful?

CDCL SAT? 
(local branch + no restarts) 

DPLL SAT
(perfect branching + 

restarts)
Tree Resolution

polynomially-equivalent

CDCL SAT 
(localized branching + 

restarts)

Bounded-width 
Resolution

CDCL SAT 
(perfect branching + 

restarts)

General Resolutionpolynomially-equivalent

Merge Resolution

?
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MERGE RESOLUTION
MERGEABILITY AND CDCL SAT SOLVERS

𝛼	 ∨ 𝑥< 			 ¬𝑥< ∨ 𝛽 	
𝛼 ∨ 𝛽

𝛾 ∨ 𝑦< 			 ¬𝑦< ∨ 𝛿 	
𝛾 ∨ 𝛿

…

𝑥j ∨ 𝑥k 			(¬𝑥k ∨ 𝑥j)	
(𝑥j)

¬𝑥j ∨ 𝑥4 			(¬𝑥4 ∨ ¬𝑥j)	
(¬𝑥j)

𝑥j 			(¬𝑥j)	
⊥
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MERGEABILITY
NUMBER OF MERGES VS. LEARNT CLAUSE SIZE RESULT
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MERGEABILITY
NUMBER OF MERGES VS. SOLVER RUNTIME RESULT
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MERGEABILITY
EXPERIMENTAL AND THEORETICAL RESULTS

• Number of merges: for every pair of resolvable clauses, count number of overlapping literals 
(normalized by size of resolvable clauses)

• Three results

• Number of merges in the input formula correlate well with solver runtime for industrial 
instances

• Scaling study: As we increase the number of merges for random k-SAT instances, solver 
runtime falls (esp. for UNSAT instances) and learnt clause length decreases (for all 
instances)

• Also, we prove that CDCL SAT solvers are polynomially equivalent to merge resolution
34



PROOF COMPLEXITY OF SMT SOLVERS
UNDERSTANDING THE POWER OF CDCL(T)

Result 1: We show that CDCL(T) solvers (aka SMT solvers) can be modeled as Res(T) proof 
systems, i.e., general resolution enhanced with theory reasoning. 

Result II: If the theory solver is allowed to introduce new variables, then CDCL(T) solvers are far 
more powerful, and are equivalent to Res*(T) proof systems.

Result III: Even for very weak theories such as EUF, we further show that Res*(EUF) is as 
powerful as Frege, which in turn is far more powerful than general resolution.

Message: We can use proof complexity to establish the relative strength of SAT solvers and 
CDCL(T) solvers. Can we extend this to suitable SAT+CAS approaches to better understand 
when to apply the power of CAS? 35



PART VII 
OTHER RESEARCH

SAT, SMT, AND APPLICATIONS
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CURRENT RESEARCH PROGRAM

Proof complexity 
and 

formal methods

Machine learning 
and 

deduction

Physics software 
verification

Attack-resistance

STP
Hampi

Z3 String
MapleSAT

MathCheck
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CURRENT PROJECTS AND CONTRIBUTIONS

Name Key Concept Impact Publication venues

Maple Series of SAT Solvers, and 
understanding SAT

Machine learning for solver heuristics, 
and community structure

Won gold and silver medals at SAT 
Competition 2016 and 2017

AAAI 2016, SAT 2016/17 
HVC 2015, SAT 20143

Z3str3 String and Integer Solver1 Novel techniques for string + integer 
combination

Analysis of Web Apps (Part of Z3 
codebase)

FSE 2013, CAV 20153

FMSD 2017

MathCheck Conjecture Verifier CAS+SAT combination a la DPLL(CAS) Williamson, complex Golay, 
Ruskey-Savage conjectures,..

IJCAI 2016, CASC 2016, 
JAR 2017, CADE 20153

Undecidability results for theories 
over strings

Boundary between decidability and 
undecidability

Solved problems open since early 
2000’s

HVC 2012

Attack-resistance A new approach to formally establishing 
the efficacy of security defenses

Mathematical guarantee of software 
trustworthiness even in the 
presence of bugs

Euro S&P 2017
PLAS 2015

1. 100+ research projects use STP, HAMPI, and Z3str2.
2. STP won the SMTCOMP 2006/2010 and second in 2011/2014 competitions for bit-vector solvers
3. Best paper awards/honors at various conferences including SAT, DATE, SPLC, CAV, and CADE
4. Retargetable Compiler (DATE 1999, 2008). Ten Year Most-influential paper award at DATE 2008.  ACM Test of Time Award 2016.
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PAST CONTRIBUTIONS

Name Key Concept Impact Publication venues

STP Bit-vector & Array Solver1,2 Abstraction-refinement for solving Concolic Testing
CAV 2007
CCS 2006
TISSEC 2008

HAMPI String Solver1 App-driven bounding for solving Analysis of Web Apps
ISSTA 20093

TOSEM 2012
CAV 2011

Taint-based Fuzzing Data flow is cheaper than concolic Scales better than concolic ICSE 2009

Automatic Input Rectification Automatic security envelope New security approach ICSE 2012

1. 100+ research projects use STP, HAMPI, and Z3str2.
2. STP won the SMTCOMP 2006/2010 and second in 2011/2014 competitions for bit-vector solvers
3. Best paper awards/honors at various conferences including SAT, DATE, SPLC, CAV, and CADE
4. Retargetable Compiler (DATE 1999, 2008). Ten Year Most-influential paper award at DATE 2008.
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TAKEAWAYS

Message1: SAT+CAS is a powerful approach for many problems in combinatorial 
mathematics. We have addressed several problems (e.g., Williamson conjecture) and are 
working on many more

Message 2: CDCL(T) or SMT solvers can be viewed as Res*(T) proof systems, and 
CDCL SAT solvers as merge resolution proof systems

Message 3:As we develop SAT+CAS, we will need methods from proof complexity to 
understand the strengths and weaknesses of each version (SAT+CAS’ vs. SAT+CAS’’) of 
this approach
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