LLL Overview

Lenstra-Lenstra-Lovász lattice basis reduction

Curtis Bright

July 31, 2008

Lattices

• Let $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$ be linearly independent vectors in \mathbb{R}^n .

• The lattice $L \subset \mathbb{R}^n$ generated by $\mathbf{b_1}, \mathbf{b_2}, \dots, \mathbf{b_n}$ is:

$$L = \left\{ \sum_{i=1}^{n} x_i \mathbf{b}_i \mid x_i \in \mathbb{Z} \right\}$$

• $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$ is a basis of L. When n > 1, infinitely many bases exist.

Lattice Volume

 \bullet The basis vectors form an n-dimensional parallelotope:

$$P = \left\{ \sum_{i=1}^{n} x_i \mathbf{b}_i \mid x_i \in [0, 1) \right\}$$

• Define vol(L) to be the volume of P:

$$vol(L) = |det(b_1 b_2 \cdots b_n)|$$

• This is independent of the choice of basis of L.

Theorem (Hadamard's Inequality). Let $\mathbf{b}_1, \dots, \mathbf{b}_n$ be a basis of L. Then

$$\mathsf{vol}(L) \leq \prod_{i=1}^n \|\mathbf{b}_i\|$$

with equality if and only if the basis vectors are orthogonal.

• Intuitively, the amount of nonorthogonality of a basis is measured by $\prod_{i=1}^n \|\mathbf{b}_i\|$.

Hermite's Constant(s)

Theorem (Hermite). There exists a constant γ_n such that all lattices of dimension n have some basis $\mathbf{b}_1, \ldots, \mathbf{b}_n$ which satisfies

$$\prod_{i=1}^{n} \|\mathbf{b}_i\| \leq \sqrt{\gamma_n}^n \operatorname{vol}(L).$$

ullet Langrage had previously given an algorithm to find a basis b_1, b_2 of any lattice $L\subset \mathbb{R}^2$ such that

$$\|\mathbf{b}_1\| \cdot \|\mathbf{b}_2\| \le \sqrt{4/3} \operatorname{vol}(L).$$

Thus,
$$\gamma_2 \leq \sqrt{4/3}$$
.

Langrage's Algorithm

Input: A basis $\mathbf{b}_1, \mathbf{b}_2 \in \mathbb{R}^2$ for lattice L with $\|\mathbf{b}_1\| \leq \|\mathbf{b}_2\|$

Output: A basis of L with $\|\mathbf{b}_1\| \le \|\mathbf{b}_2\|$ and $|\mathbf{b}_1 \cdot \mathbf{b}_2| \le \|\mathbf{b}_1\|^2/2$

REPEAT:

Add multiples of b_1 to b_2 to minimize the projection of b_2 on b_1 IF $\|b_1\| \leq \|b_2\|$ THEN RETURN b_1, b_2

• We have $\|\mathbf{b}_1\| \cdot \|\mathbf{b}_2\| = \sqrt{4/3} \operatorname{vol}(L)$ for the basis we just found, and by inspection we see $\|\mathbf{b}_1\| \cdot \|\mathbf{b}_2\|$ cannot be decreased: therefore

$$\gamma_2 = \sqrt{4/3}.$$

ullet Hermite generalized this algorithm to find bases $\mathbf{b}_1,\dots,\mathbf{b}_n$ of any lattice $L\subset\mathbb{R}^n$ such that

$$\prod_{i=1}^{n} \|\mathbf{b}_i\| \le \sqrt{\gamma_2^{n-1}}^n \operatorname{vol}(L).$$

Thus, $\gamma_n \leq \gamma_2^{n-1}$.

• In fact, $\gamma_n \in \Theta(n)$: for large n, $\frac{n}{2\pi e} < \gamma_n < \frac{n}{\pi e}$.

Basis Reduction

- Bases with short vectors are easier to work with.
- The best possible basis would have $\mathbf{b_1}$ as the shortest nonzero vector in the lattice and in general \mathbf{b}_i as the shortest nonzero vector such that $\mathbf{b_1}, \dots, \mathbf{b}_i$ is linearly independent.
- Unfortunately, in general finding the shortest nonzero vector of a lattice is an NP-hard problem.
- ullet And it is unknown if the running time of Hermite's generalized algorithm is polynomial in n.
- However, relaxing some of the requirements on the basis will enable us to give an algorithm which is polynomial time in n.

Relaxed Basis Conditions

- Reducing the vector lengths $\|\mathbf{b}_i\|$ will also reduce $\prod_{i=1}^n \|\mathbf{b}_i\|$: good bases tend to be approximately orthogonal.
- We will therefore try to minimize shortness and nonorthogonality.
 - Minimize the projection of b_i on $span(b_1, ..., b_{i-1})$.
 - Roughly speaking, enforce a condition $\|\mathbf{b}_i\| \geq \frac{1}{2} \|\mathbf{b}_{i-1}\|$.

The Gram-Schmidt Process

• Given a basis $\mathbf{b}_1, \dots, \mathbf{b}_n$ for \mathbb{R}^n , the Gram-Schmidt process finds a orthogonal basis $\mathbf{b}_1^*, \dots, \mathbf{b}_n^*$ for \mathbb{R}^n [not L].

• Define $\operatorname{proj}_u v = \frac{v \cdot u}{u \cdot u} u$.

ullet The orthogonal basis of \mathbb{R}^n is computed as follows:

$$\begin{aligned} \mathbf{b}_{1}^{*} &= \mathbf{b}_{1} \\ \mathbf{b}_{2}^{*} &= \mathbf{b}_{2} - \mathsf{proj}_{\mathbf{b}_{1}^{*}} \, \mathbf{b}_{2} \\ \mathbf{b}_{3}^{*} &= \mathbf{b}_{3} - \mathsf{proj}_{\mathbf{b}_{1}^{*}} \, \mathbf{b}_{3} - \mathsf{proj}_{\mathbf{b}_{2}^{*}} \, \mathbf{b}_{3} \\ \mathbf{b}_{4}^{*} &= \mathbf{b}_{4} - \mathsf{proj}_{\mathbf{b}_{1}^{*}} \, \mathbf{b}_{4} - \mathsf{proj}_{\mathbf{b}_{2}^{*}} \, \mathbf{b}_{4} - \mathsf{proj}_{\mathbf{b}_{3}^{*}} \, \mathbf{b}_{4} \\ &\vdots \\ \mathbf{b}_{i}^{*} &= \mathbf{b}_{i} - \sum_{j=1}^{i-1} \mathsf{proj}_{\mathbf{b}_{j}^{*}} \, \mathbf{b}_{i} \end{aligned}$$

- Intuitively, $\mathbf{b}_i^* = \operatorname{proj}_{\operatorname{span}(\mathbf{b}_1, \dots, \mathbf{b}_{i-1})^{\perp}} \mathbf{b}_i$.
- Let $\mu_{i,j}$ be the coefficient used in $\operatorname{proj}_{\mathbf{b}_j^*} \mathbf{b}_i$, i.e., $\mu_{i,j} = \frac{\mathbf{b}_i \cdot \mathbf{b}_j^*}{\mathbf{b}_j^* \cdot \mathbf{b}_j^*}$.
- It is likely $\mu_{i,j} \notin \mathbb{Z}$, so likely $\mathbf{b}_i^* \notin L$ for i > 1.

Vector Size Reduction

• We can't use $\mathbf{b}_1^*, \dots, \mathbf{b}_n^*$ as a basis for L, but we can modify the Gram-Schmidt process so that all coefficients used will be integers:

$$\begin{aligned} \mathbf{b}_{1} &:= \mathbf{b}_{1} \\ \mathbf{b}_{2} &:= \mathbf{b}_{2} - \left[\mu_{2,1}\right] \mathbf{b}_{1} \\ \mathbf{b}_{3} &:= \mathbf{b}_{3} - \left[\mu_{3,1}\right] \mathbf{b}_{1} - \left[\mu_{3,2}\right] \mathbf{b}_{2} \\ \mathbf{b}_{4} &:= \mathbf{b}_{4} - \left[\mu_{4,1}\right] \mathbf{b}_{1} - \left[\mu_{4,2}\right] \mathbf{b}_{2} - \left[\mu_{4,3}\right] \mathbf{b}_{3} \\ &\vdots \\ \mathbf{b}_{i} &:= \mathbf{b}_{i} - \sum_{j=i-1}^{1} \left[\mu_{i,j}\right] \mathbf{b}_{j} \end{aligned}$$

• Then the new values of $\mathbf{b}_1, \dots, \mathbf{b}_n$ will be a basis for L with $\left| \mu_{i,j} \right| \leq \frac{1}{2}$ for all i > j. Such a basis is called *size-reduced*.

Lovász Condition

- It is preferable to have $\|\mathbf{b}_n^*\| \ge \|\mathbf{b}_{n-1}^*\| \ge \cdots \ge \|\mathbf{b}_1^*\|$.
- Hermite showed every lattice has a size-reduced basis such that $\|\mathbf{b}_i^*\| \geq \frac{1}{\gamma_2} \|\mathbf{b}_{i-1}^*\|$ for $2 \leq i \leq n$. (But without an efficient way to find such a basis...)
- Instead, LLL uses a relaxed version known as the Lovász Condition:

$$\left\|\mathbf{b}_{i}^{*} + \mathsf{proj}_{\mathbf{b}_{i-1}^{*}} \mathbf{b}_{i} \right\| \geq \frac{1}{\gamma_{2}} \left\|\mathbf{b}_{i-1}^{*} \right\|$$

LLL Algorithm

Input: A basis $\mathbf{b}_1, \dots, \mathbf{b}_n \in \mathbb{R}^n$ for lattice L

Output: A basis of L which is size-reduced and satisfies the Lovász Condition

Initialization: k := 2; Compute GSO (\mathbf{b}_i^* and $\mu_{i,j}$)

WHILE
$$k \leq n$$
 DO

FOR i FROM k-1 TO 1 DO

$$\mathbf{b}_i := \mathbf{b}_i - \left[\mu_{k,i} \right] \mathbf{b}_i$$

$$\mu_{k,j} := \mu_{k,j} - \left[\mu_{k,i} \middle| \mu_{i,j} \text{ for } j \leq i \right]$$

IF Lovász Condition is satisfied (or k = 1) THEN

$$k := k + 1$$

ELSE

Swap \mathbf{b}_k and \mathbf{b}_{k-1} and update GSO

$$k := k - 1$$

RETURN b_1, \ldots, b_n

LLL-reduced Basis Properties

$$\prod_{i=1}^n \|\mathbf{b}_i\| \le \sqrt{\sqrt{2}^{n-1}}^n \operatorname{vol}(L)$$

- Thus $\gamma_n \leq 1.41^{n-1}$ (Hermite's Algorithm gave $\gamma_n \leq 1.15^{n-1}$).
- ullet Also, some \mathbf{b}_i will satisfy

$$\|\mathbf{b}_i\| \le \sqrt{2}^{n-2} \lambda_1(L)$$

where $\lambda_1(L)$ is the shortest nonzero vector of L.