LLL Overview
 Lenstra-Lenstra-Lovász lattice basis reduction

Curtis Bright

July 31, 2008

Lattices

- Let $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ be linearly independent vectors in \mathbb{R}^{n}.
- The lattice $L \subset \mathbb{R}^{n}$ generated by $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ is:

$$
L=\left\{\sum_{i=1}^{n} x_{i} \mathbf{b}_{i} \mid x_{i} \in \mathbb{Z}\right\}
$$

- $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ is a basis of L. When $n>1$, infinitely many bases exist.

Lattice Volume

- The basis vectors form an n-dimensional parallelotope:

$$
P=\left\{\sum_{i=1}^{n} x_{i} \mathbf{b}_{i} \mid x_{i} \in[0,1)\right\}
$$

- Define vol (L) to be the volume of P :

$$
\operatorname{vol}(L)=\left|\operatorname{det}\left(\mathbf{b}_{1} \mathbf{b}_{2} \cdots \mathbf{b}_{n}\right)\right|
$$

- This is independent of the choice of basis of L.

Theorem (Hadamard's Inequality). Let $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ be a basis of L. Then

$$
\operatorname{vol}(L) \leq \prod_{i=1}^{n}\left\|\mathbf{b}_{i}\right\|
$$

with equality if and only if the basis vectors are orthogonal.

- Intuitively, the amount of nonorthogonality of a basis is measured by $\prod_{i=1}^{n}\left\|\mathbf{b}_{i}\right\|$.

Hermite's Constant(s)

Theorem (Hermite). There exists a constant γ_{n} such that all lattices of dimension n have some basis $\mathrm{b}_{1}, \ldots, \mathrm{~b}_{n}$ which satisfies

$$
\prod_{i=1}^{n}\left\|\mathbf{b}_{i}\right\| \leq{\sqrt{\gamma_{n}}}^{n} \operatorname{vol}(L)
$$

- Langrage had previously given an algorithm to find a basis $\mathrm{b}_{1}, \mathrm{~b}_{2}$ of any lattice $L \subset \mathbb{R}^{2}$ such that

$$
\left\|\mathbf{b}_{1}\right\| \cdot\left\|\mathbf{b}_{2}\right\| \leq \sqrt{4 / 3} \operatorname{vol}(L)
$$

Thus, $\gamma_{2} \leq \sqrt{4 / 3}$.

Langrage's Algorithm

Input: \mathbf{A} basis $\mathbf{b}_{1}, \mathbf{b}_{2} \in \mathbb{R}^{2}$ for lattice L with $\left\|\mathbf{b}_{1}\right\| \leq\left\|\mathbf{b}_{2}\right\|$
Output: A basis of L with $\left\|\mathbf{b}_{1}\right\| \leq\left\|\mathbf{b}_{2}\right\|$ and $\left|\mathbf{b}_{1} \cdot \mathbf{b}_{2}\right| \leq\left\|\mathbf{b}_{1}\right\|^{2} / 2$

REPEAT:
Add multiples of b_{1} to b_{2} to minimize the projection of b_{2} on b_{1} IF $\left\|\mathbf{b}_{1}\right\| \leq\left\|\mathbf{b}_{2}\right\|$ THEN RETURN $\mathbf{b}_{1}, \mathrm{~b}_{2}$

- We have $\left\|\mathbf{b}_{1}\right\| \cdot\left\|\mathbf{b}_{2}\right\|=\sqrt{4 / 3} \operatorname{vol}(L)$ for the basis we just found, and by inspection we see $\left\|\mathbf{b}_{1}\right\| \cdot\left\|\mathbf{b}_{2}\right\|$ cannot be decreased: therefore

$$
\gamma_{2}=\sqrt{4 / 3}
$$

- Hermite generalized this algorithm to find bases $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ of any lattice $L \subset \mathbb{R}^{n}$ such that

$$
\prod_{i=1}^{n}\left\|\mathbf{b}_{i}\right\| \leq{\sqrt{\gamma_{2}^{n-1}}}^{n} \operatorname{vol}(L)
$$

Thus, $\gamma_{n} \leq \gamma_{2}^{n-1}$.

- In fact, $\gamma_{n} \in \Theta(n)$: for large $n, \frac{n}{2 \pi e}<\gamma_{n}<\frac{n}{\pi e}$.

Basis Reduction

- Bases with short vectors are easier to work with.
- The best possible basis would have b_{1} as the shortest nonzero vector in the lattice and in general b_{i} as the shortest nonzero vector such that $\mathbf{b}_{1}, \ldots, \mathbf{b}_{i}$ is linearly independent.
- Unfortunately, in general finding the shortest nonzero vector of a lattice is an NP-hard problem.
- And it is unknown if the running time of Hermite's generalized algorithm is polynomial in n.
- However, relaxing some of the requirements on the basis will enable us to give an algorithm which is polynomial time in n.

Relaxed Basis Conditions

- Reducing the vector lengths $\left\|\mathbf{b}_{i}\right\|$ will also reduce $\prod_{i=1}^{n}\left\|\mathbf{b}_{i}\right\|$: good bases tend to be approximately orthogonal.
- We will therefore try to minimize shortness and nonorthogonality.
- Minimize the projection of \mathbf{b}_{i} on $\operatorname{span}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{i-1}\right)$.
- Roughly speaking, enforce a condition $\left\|\mathbf{b}_{i}\right\| \geq \frac{1}{2}\left\|\mathbf{b}_{i-1}\right\|$.

The Gram-Schmidt Process

- Given a basis $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ for \mathbb{R}^{n}, the Gram-Schmidt process finds a orthogonal basis $\mathbf{b}_{1}^{*}, \ldots, \mathbf{b}_{n}^{*}$ for $\mathbb{R}^{n}[\operatorname{not} L]$.
- Define $\operatorname{proj}_{\mathbf{u}} \mathbf{v}=\frac{\mathrm{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$.
- The orthogonal basis of \mathbb{R}^{n} is computed as follows:

$$
\begin{aligned}
& \mathbf{b}_{1}^{*}=\mathbf{b}_{1} \\
& \mathbf{b}_{2}^{*}=\mathbf{b}_{2}-\operatorname{proj}_{\mathbf{b}_{1}^{*}} \mathbf{b}_{2} \\
& \mathbf{b}_{3}^{*}=\mathbf{b}_{3}-\operatorname{proj}_{\mathbf{b}_{1}^{*}} \mathbf{b}_{3}-\operatorname{proj}_{\mathbf{b}_{2}^{*}} \mathbf{b}_{3} \\
& \mathbf{b}_{4}^{*}=\mathbf{b}_{4}-\operatorname{proj}_{\mathbf{b}_{1}^{*}} \mathbf{b}_{4}-\operatorname{proj}_{\mathbf{b}_{2}^{*}} \mathbf{b}_{4}-\operatorname{proj}_{\mathbf{b}_{3}^{*}} \mathbf{b}_{4} \\
& \quad: \\
& \mathbf{b}_{i}^{*}=\mathbf{b}_{i}-\sum_{j=1}^{i-1} \operatorname{proj}_{\mathbf{b}_{j}^{*}} \mathbf{b}_{i}
\end{aligned}
$$

- Let $\mu_{i, j}$ be the coefficient used in $\operatorname{proj}_{\mathbf{b}_{j}^{*}} \mathbf{b}_{i}$, i.e., $\mu_{i, j}=\frac{\mathbf{b}_{i} \cdot \mathbf{b}_{j}^{*}}{\mathbf{b}_{j}^{*} \cdot \mathbf{b}_{j}^{*}}$.
- It is likely $\mu_{i, j} \notin \mathbb{Z}$, so likely $\mathbf{b}_{i}^{*} \notin L$ for $i>1$.

Vector Size Reduction

- We can't use $\mathbf{b}_{1}^{*}, \ldots, \mathbf{b}_{n}^{*}$ as a basis for L, but we can modify the Gram-Schmidt process so that all coefficients used will be integers:

$$
\begin{aligned}
\mathbf{b}_{1} & :=\mathbf{b}_{1} \\
\mathbf{b}_{2} & :=\mathbf{b}_{2}-\left\lceil\mu_{2,1}\right\rfloor \mathbf{b}_{1} \\
\mathbf{b}_{3} & :=\mathbf{b}_{3}-\left\lceil\mu_{3,1}\right\rfloor \mathbf{b}_{1}-\left\lceil\mu_{3,2}\right\rfloor \mathbf{b}_{2} \\
\mathbf{b}_{4} & :=\mathbf{b}_{4}-\left\lceil\mu_{4,1}\right\rfloor \mathbf{b}_{1}-\left\lceil\mu_{4,2}\right\rfloor \mathbf{b}_{2}-\left\lceil\mu_{4,3}\right\rfloor \mathbf{b}_{3} \\
& : \\
\mathbf{b}_{i} & :=\mathbf{b}_{i}-\sum_{j=i-1}^{1}\left\lceil\mu_{i, j}\right\rfloor \mathbf{b}_{j}
\end{aligned}
$$

- Then the new values of $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ will be a basis for L with $\left|\mu_{i, j}\right| \leq \frac{1}{2}$ for all $i>j$. Such a basis is called size-reduced.

Lovász Condition

- It is preferable to have $\left\|\mathbf{b}_{n}^{*}\right\| \geq\left\|\mathbf{b}_{n-1}^{*}\right\| \geq \cdots \geq\left\|\mathbf{b}_{1}^{*}\right\|$.
- Hermite showed every lattice has a size-reduced basis such that $\left\|\mathbf{b}_{i}^{*}\right\| \geq \frac{1}{\gamma_{2}}\left\|\mathbf{b}_{i-1}^{*}\right\|$ for $2 \leq i \leq n$. (But without an efficient way to find such a basis...)
- Instead, LLL uses a relaxed version known as the Lovász Condition:

$$
\left\|\mathbf{b}_{i}^{*}+\operatorname{proj}_{\mathbf{b}_{i-1}^{*}} \mathbf{b}_{i}\right\| \geq \frac{1}{\gamma_{2}}\left\|\mathbf{b}_{i-1}^{*}\right\|
$$

LLL Algorithm

Input: A basis $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n} \in \mathbb{R}^{n}$ for lattice L
Output: A basis of L which is size-reduced and satisfies the Lovász Condition
Initialization: $k:=2$; Compute GSO (\mathbf{b}_{i}^{*} and $\mu_{i, j}$)

WHILE $k \leq n$ DO
FOR i FROM $k-1$ TO 1 DO

$$
\begin{aligned}
& \mathbf{b}_{i}:=\mathbf{b}_{i}-\left\lceil\mu_{k, i}\right] \mathbf{b}_{i} \\
& \mu_{k, j}:=\mu_{k, j}-\left\lceil\mu_{k, i}\right] \mu_{i, j} \text { for } j \leq i
\end{aligned}
$$

IF Lovász Condition is satisfied (or $k=1$) THEN
$k:=k+1$

ELSE

Swap \mathbf{b}_{k} and \mathbf{b}_{k-1} and update GSO
$k:=k-1$
RETURN $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$

LLL-reduced Basis Properties

$$
\prod_{i=1}^{n}\left\|\mathbf{b}_{i}\right\| \leq{\sqrt{\sqrt{2}^{n-1}}}^{n} \operatorname{vol}(L)
$$

- Thus $\gamma_{n} \leq 1.41^{n-1}$ (Hermite's Algorithm gave $\gamma_{n} \leq 1.15^{n-1}$).
- Also, some \mathbf{b}_{i} will satisfy

$$
\left\|\mathbf{b}_{i}\right\| \leq \sqrt{2}^{n-2} \lambda_{1}(L)
$$

where $\lambda_{1}(L)$ is the shortest nonzero vector of L.

