Review

- The monomial $\prod_{i=1}^{n} x_i^{\alpha_i}$ is written as x^{α} where $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}_{\geq 0}^n$.
- A subset $I \subseteq k[x_1, \ldots, x_n]$ is an ideal if:
 - $0 \in I$
 - If $f,g \in I$, then $f + g \in I$
 - If $f \in I$ and $h \in k[x_1, \ldots, x_n]$, then $hf \in I$
- The ideal generated by $f_1,\ldots,f_s\in k[x_1,\ldots,x_n]$ is

$$\langle f_1, \ldots, f_s \rangle = \left\{ \sum_{i=1}^s h_i f_i \mid h_1, \ldots, h_s \in k[x_1, \ldots, x_n] \right\}$$

Problems

- Ideal Description: Does every ideal have a finite generating set?
- Ideal Membership: Given an ideal $I = \langle f_1, \dots f_s \rangle$ and polynomial f, can we determine if $f \in I$?
- Previously we saw how to solve these problems for $I \subseteq k[x]$.
- The first problem is solved completely by the Hilbert Basis Theorem.

More Problems

- Solving Polynomial Equations: Can we find all points in $V(f_1, \ldots, f_s)$?
- Implicitization: Given a parametric representation of some $X \subseteq k^n$, can we find an implicit representation? That is, given

$$x_1 = g_1(\mathbf{t}), \dots, x_n = g_n(\mathbf{t})$$

where g_i are rational functions in t_j , find $f_1, \ldots, f_s \in k[x_1, \ldots, x_n]$ such that $X \subseteq V(f_1, \ldots, f_s)$.

• If we restrict ourselves to linear functions, both of these problems can be solved using linear algebra.

Ordering Relations

- An ordering of terms is used in the partial solutions we have seen so far (the division algorithm for k[x] and row-reduction for linear systems).
- An ordering will be a binary relation ">" on $\{x^{\alpha} \mid \alpha \in \mathbb{Z}_{\geq 0}^n\}$ (or equivalently, just $\mathbb{Z}_{\geq 0}^n$).
- Division algorithm ordering: $\cdots > x_1^m > x_1^{m-1} > \cdots > x_1^2 > x_1 > 1$.
- Row-reduction ordering: $x_1 > x_2 > \cdots > x_n$.

Definition (§2.1). A monomial ordering on $k[x_1, ..., x_n]$ is any relation > on $\mathbb{Z}_{\geq 0}^n$ satisfying:

(i) > is a total ordering, i.e., for every $\alpha, \beta \in \mathbb{Z}_{\geq 0}^n$, $\alpha > \beta$ or $\alpha = \beta$ or $\beta > \alpha$

(ii) If
$$\alpha > \beta$$
 and $\gamma \in \mathbb{Z}_{>0}^n$, then $\alpha + \gamma > \beta + \gamma$

(iii) > is a well-ordering, i.e., every nonempty subset of $\mathbb{Z}_{\geq 0}^n$ has a smallest element

Lemma (§2.2). An order relation > on $\mathbb{Z}_{\geq 0}^n$ is a well-ordering if and only if every strictly decreasing sequence in $\mathbb{Z}_{\geq 0}^n$

$$\alpha(1) > \alpha(2) > \alpha(3) > \cdots$$

eventually terminates.

Lexicographic Order

Definition (§2.3). Let $\alpha, \beta \in \mathbb{Z}_{\geq 0}^n$. We say $\alpha >_{lex} \beta$ if in the vector difference $\alpha - \beta \in \mathbb{Z}^n$, the leftmost nonzero entry is positive. We will write $x^{\alpha} >_{lex} x^{\beta}$ if $\alpha >_{lex} \beta$.

Proposition (§2.4). $>_{lex}$ on $\mathbb{Z}_{>0}^n$ is a monomial ordering.

- This generalizes the partial orderings we've used.
- Alternative lex orderings may be defined: rearranging the ordering of *n* variables yields *n*! different lex orderings.

Ordering Polynomial Terms

Definition (§2.7). Let $f = \sum_{\alpha \in \mathbb{Z}_{\geq 0}} a_{\alpha} x^{\alpha}$ be a nonzero polynomial in $k[x_1, \ldots, x_n]$. With respect to a monomial ordering:

• The multidegree of f is

$$\mathsf{multideg}(f) = \mathsf{max}(\alpha \mid a_{\alpha} \neq 0)$$

• The leading coefficient of f is

$$LC(f) = a_{multideg(f)}$$

• The leading monomial of f is

$$\mathsf{LM}(f) = x^{\mathsf{multideg}(f)}$$

• The leading term of f is

$$\Box \mathsf{T}(f) = \mathsf{LC}(f) \cdot \mathsf{LM}(f)$$

Lemma (§2.8). Let $f, g \in k[x_1, ..., x_n]$ be nonzero polynomials. Then:

- multideg(fg) = multideg(f) + multideg(g)
- If $f + g \neq 0$, then

multideg $(f + g) \le \max(\operatorname{multideg}(f), \operatorname{multideg}(g))$. Equality occurs if either

- $multideg(f) \neq multideg(g)$
- multideg(f) = multideg(g) and $LC(f) \neq -LC(g)$

Division Algorithm in $k[x_1, \ldots, x_n]$

Input: $f_1, \ldots, f_s, f \in k[x_1, \ldots, x_n]$

Output: $a_1, \ldots, a_s, r \in k[x_1, \ldots, x_n]$, where $f = a_1f_1 + \cdots + a_sf_s + r$ and r = 0 or r is a linear combination of monomials, none of which is divisible by any of $LT(f_1), \ldots, LT(f_s)$

Initialization: $a_i := 0$ for $i \in \{1, \ldots, s\}$, r := 0, p := f

WHILE $p \neq 0$ DO

FOR *i* FROM 1 TO *s* DO

IF $LT(f_i)$ divides LT(p) THEN

 $a_i := a_i + \operatorname{LT}(p) / \operatorname{LT}(f_i)$

 $p := p - f_i \operatorname{LT}(p) / \operatorname{LT}(f_i)$

BREAK

 $\mathsf{IF}\ i = s\ \mathsf{THEN}$

 $r := r + \mathsf{LT}(p)$

 $p := p - \mathsf{LT}(p)$

Monomial Ideals

Definition (§4.1). An ideal $I \subseteq k[x_1, ..., x_n]$ is called a monomial ideal if it can be generated by monomials, i.e., $I = \langle x^{\alpha} \mid \alpha \in A \rangle$ where $A \subseteq \mathbb{Z}_{>0}^n$.

Lemma (§4.2). Let $I = \langle x^{\alpha} | \alpha \in A \rangle$. Then a monomial $x^{\beta} \in I$ if and only if there is some $\alpha \in A$ such that x^{α} divides x^{β} .

Lemma (§4.3). Let I be a monomial ideal, and let $f \in k[x_1, ..., x_n]$. Then the following are equivalent:

(i) $f \in I$

(ii) Every term of f lies in I

(iii) f is a k-linear combination of the monomials in I

Corollary ($\S4.4$). Two monomial ideals are the same if and only if they contain the same monomials.

Dickson's Lemma

Theorem (§4.5). Let $I = \langle x^{\alpha} | \alpha \in A \rangle \subseteq k[x_1, \dots, x_n]$. Then there exist $\alpha(1), \dots, \alpha(s) \in A$ such that $I = \langle x^{\alpha(1)}, \dots, x^{\alpha(s)} \rangle$. In particular, I has a finite basis.

Corollary (§4.6). Let > be a relation on $\mathbb{Z}_{>0}^n$ satisfying:

- > is a total ordering on $\mathbb{Z}_{>0}^n$
- If $\alpha > \beta$ and $\gamma \in \mathbb{Z}_{>0}^n$, then $\alpha + \gamma > \beta + \gamma$

Then > is a well-ordering if and only if $\alpha \ge 0$ for all $\alpha \in \mathbb{Z}_{>0}^n$.

 This gives a much easier way of verifying if an ordering is a monomial ordering.

Ideal of Leading Terms

Definition (§5.1). Let $I \subseteq k[x_1, \ldots, x_n]$ be an ideal other than $\{0\}$.

• Define LT(I) to be the set of leading terms of the elements of I:

 $LT(I) = \{ cx^{\alpha} \mid there exist f \in I with LT(f) = cx^{\alpha} \}$

• The ideal of leading terms is $\langle LT(I) \rangle$: the ideal generated by the elements of LT(I)

Proposition (§5.3). Let $I \subseteq k[x_1, \ldots, x_n]$ be an ideal.

- $\langle LT(I) \rangle$ is a monomial ideal
- There are $g_1, \ldots, g_t \in I$ such that $\langle LT(I) \rangle = \langle LT(g_1), \ldots, LT(g_t) \rangle$

Hilbert Basis Theorem

Theorem (§5.4). Every ideal $I \subseteq k[x_1, \ldots, x_n]$ has a finite generating set. That is, $I = \langle g_1, \ldots, g_t \rangle$ for some $g_1, \ldots, g_t \in I$.

Groebner Bases

Definition (§5.5). Fix a monomial order. A finite subset $G = \{g_1, \ldots, g_t\}$ of an ideal I is said to be a Groebner basis (or standard basis) if

 $\langle \mathsf{LT}(g_1), \ldots, \mathsf{LT}(g_t) \rangle = \langle \mathsf{LT}(I) \rangle.$

Corollary (§5.6). Fix a monomial order. Then every ideal $I \subseteq k[x_1, ..., x_n]$ other than {0} has a Groebner basis. Furthermore, any Groebner basis for an ideal I is a basis of I.