Review

n

e The monomial ] ;" is written as z* where a = (ay,...,an) € Z

=1

e A subset I C k[zq,...,xn] iS an ideal if:

e Ol

o If f,gel, then f4+g€l

o If feI and h € kl[x1,...,zn], then hf €1

e The ideal generated by f1,...,fs € k[z1,...,zn] is

.

1=

(fi,.--, fs) = {thfz
1

hl,...,hsEk[xl,...,xn]}



Problems

e Ideal Description: Does every ideal have a finite generating set?

e Ideal Membership: Given an ideal I = (f1,...fs) and polynomial f,
can we determine if f € I7?

e Previously we saw how to solve these problems for I C k[x].

e [ he first problem is solved completely by the Hilbert Basis Theorem.



More Problems

e Solving Polynomial Equations: Can we find all pointsin V(f1,..., fs)?

e Implicitization: Given a parametric representation of some X C k",
can we find an implicit representation? That is, given

z1 = g1(t), ..., Zn = gn(t)

where g; are rational functions in t;, find f1,...,fs € k[z1,...,zn]
such that X C V(f1,..., fs).

e If we restrict ourselves to linear functions, both of these problems
can be solved using linear algebra.



Ordering Relations

e An ordering of terms is used in the partial solutions we have seen
so far (the division algorithm for k[x] and row-reduction for linear
systems).

e An ordering will be a binary relation “>" on {z% | o € Z%4} (or
equivalently, just ZZ,).
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e Division algorithm ordering: --- > 7" > 2" > .-+ > 2% > z7 > 1.

e Row-reduction ordering: x1 > x5 > --- > xp,.



Definition (§2.1). A monomial ordering on klx1,...,xzyn] is any relation
> on 4% satisfying:

(i) > is a total ordering, i.e., for every o, 8 € ZY,

a>0p o a=p or [B>«
(i) If « > B and v € Z5,, then a+~v > B+~

(iii) > is a well-ordering, i.e., every nonempty subset onQO has a smallest
element

Lemma (§2.2). An order relation > on ZZ is a well-ordering if and only

if every strictly decreasing sequence in 7%,

a(l) > a(2) > a(3) > ---

eventually terminates.



Lexicographic Order
Definition (§2.3). Let o,8 € Z%,. We say a > B Iif in the vector
difference o« — B8 € Z", the leftmost nonzero entry is positive. We will

write x% > oy P if o > 1ex B-

Proposition (§2.4). > on Z% 4 is a monomial ordering.
e [ his generalizes the partial orderings we’'ve used.

e Alternative lex orderings may be defined: rearranging the ordering
of n variables yields n! different lex orderings.



Ordering Polynomial Terms

Definition (§2.7). Let f = Zaezgo aqx® be a nonzero polynomial in
klz1,...,zn]. With respect to a monomial ordering:

e [ he multidegree of f is

multideg(f) = max(«a | aq 7 0)

e [ he leading coefficient of f is

LC(f) = amultideg(#)

e [ he leading monomial of f is

LM(f) = xmultideg(f)

e [ he leading term of f is

LT(f) = LC(f) - LM(f)



Lemma (§2.8). Let f,g € k[x1,...,x2n] be nonzero polynomials. Then:

e multideg(fg) = multideg(f) 4+ multideg(g)

o If f+ g0, then

multideg(f + g) < max(multideg(f), multideg(g)).

Equality occurs if either

e multideg(f) # multideg(g)

e multideg(f) = multideg(g) and Lc(f) = —LC(g)



Division Algorithm in k[zq,...,xn]
Input: fl,...,fs,fEk'[xl,...,xn]

Output: ai,...,as,7 € k[x1,...,2s], Where f =a1f1+ -+ asfs+rand r=0or ris a
linear combination of monomials, none of which is divisible by any of LT(f1),...,LT(fs)

Initialization: a; ;=0 forie {1,...,s}, r:=0, p:=f
WHILE p # 0 DO
FOR ¢+ FROM 1 TO s DO
IF LT(f;) divides LT(p) THEN
a; ;= a; + LT(p)/LT(f;)
p:=p— fiLT(p)/LT(fi)
BREAK
IF :=s THEN
r:=r—+LT(p)

p:=p—LT(p)



Monomial Ideals

Definition (§4.1). An ideal I C k[xq,...,xn] is called a monomial ideal if
it can be generated by monomials, i.e., I = (z% | a € A) where A C ZY%,,.

Lemma (§4.2). Let I = (z® | « € A). Then a monomial z° € I if and
only if there is some a € A such that =% divides z°.



Lemma (§4.3). Let I be a monomial ideal, and let f € k[xq1,...,xn].
Then the following are equivalent:

(i) fel

(ii) Every term of f lies in I

(iii) f is a k-linear combination of the monomials in I

Corollary (§4.4). Two monomial ideals are the same if and only if they
contain the same monomials.



Dickson’'s Lemma

Theorem (84.5). Let I = (z® | a € A) C k[x1,...,zn]. Then there exist
a(1),...,a(s) € A such that I = (z®(1) ... z2()\. In particular, I has a
finite basis.



Corollary (§4.6). Let > be a relation on 1% satisfying:

e > |S a total ordering on Zgo

e If > p and v € Z5,, then a+~v> B+~

Then > is a well-ordering if and only if a > 0 for all o € Z%.

e T his gives a much easier way of verifying if an ordering is a monomial
ordering.



Ideal of Leading Terms

Definition (§5.1). Let I C k[z1,...,xn] be an ideal other than {0}.

e Define LT(I) to be the set of leading terms of the elements of I:

LT(I) = {cz | there exist f € I with LT(f) = cz®}

e The ideal of leading terms is (LT(I)): the ideal generated by the
elements of LT(I)

Proposition (§5.3). Let I C k[x1,...,xzn] be an ideal.
e (LT(I)) is a monomial ideal

e There are g1,...,9¢t € I such that (LT(1)) = (LT(g1),.--,LT(g¢))



Hilbert Basis T heorem

Theorem (§5.4). Every ideal I C k[x1,...,zn] has a finite generating
set. Thatis, I = {(g1,...,9¢) for some g1,...,g9+ € I.



Groebner Bases

Definition (§5.5). Fix a monomial order. A finite subset G = {g1,...,9¢}
of an ideal I is said to be a Groebner basis (or standard basis) if

(LT(g1)s---,LT(gt)) = (LT()).
Corollary (§5.6). Fix a monomial order. Then every ideal I C k[z1,...,xn]

other than {0} has a Groebner basis. Furthermore, any Groebner basis
for an ideal I is a basis of I.



