Review

- The monomial $\prod_{i=1}^{n} x_{i}^{\alpha_{i}}$ is written as x^{α} where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$.
- A subset $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ is an ideal if:
- $0 \in I$
- If $f, g \in I$, then $f+g \in I$
- If $f \in I$ and $h \in k\left[x_{1}, \ldots, x_{n}\right]$, then $h f \in I$
- The ideal generated by $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$ is

$$
\left\langle f_{1}, \ldots, f_{s}\right\rangle=\left\{\sum_{i=1}^{s} h_{i} f_{i} \mid h_{1}, \ldots, h_{s} \in k\left[x_{1}, \ldots, x_{n}\right]\right\}
$$

Problems

- Ideal Description: Does every ideal have a finite generating set?
- Ideal Membership: Given an ideal $I=\left\langle f_{1}, \ldots f_{s}\right\rangle$ and polynomial f, can we determine if $f \in I$?
- Previously we saw how to solve these problems for $I \subseteq k[x]$.
- The first problem is solved completely by the Hilbert Basis Theorem.

More Problems

- Solving Polynomial Equations: Can we find all points in $\mathbf{V}\left(f_{1}, \ldots, f_{s}\right)$?
- Implicitization: Given a parametric representation of some $X \subseteq k^{n}$, can we find an implicit representation? That is, given

$$
x_{1}=g_{1}(\mathrm{t}), \ldots, x_{n}=g_{n}(\mathrm{t})
$$

where g_{i} are rational functions in t_{j}, find $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$ such that $X \subseteq \mathbf{V}\left(f_{1}, \ldots, f_{s}\right)$.

- If we restrict ourselves to linear functions, both of these problems can be solved using linear algebra.

Ordering Relations

- An ordering of terms is used in the partial solutions we have seen so far (the division algorithm for $k[x]$ and row-reduction for linear systems).
- An ordering will be a binary relation ">" on $\left\{x^{\alpha} \mid \alpha \in \mathbb{Z}_{\geq 0}^{n}\right\}$ (or equivalently, just $\mathbb{Z}_{\geq 0}^{n}$).
- Division algorithm ordering: $\cdots>x_{1}^{m}>x_{1}^{m-1}>\cdots>x_{1}^{2}>x_{1}>1$.
- Row-reduction ordering: $x_{1}>x_{2}>\cdots>x_{n}$.

Definition (§2.1). A monomial ordering on $k\left[x_{1}, \ldots, x_{n}\right]$ is any relation > on $\mathbb{Z}_{\geq 0}^{n}$ satisfying:
(i) $>$ is a total ordering, i.e., for every $\alpha, \beta \in \mathbb{Z}_{\geq 0}^{n}$,

$$
\alpha>\beta \quad \text { or } \alpha=\beta \text { or } \beta>\alpha
$$

(ii) If $\alpha>\beta$ and $\gamma \in \mathbb{Z}_{\geq 0}^{n}$, then $\alpha+\gamma>\beta+\gamma$
(iii) > is a well-ordering, i.e., every nonempty subset of $\mathbb{Z}_{\geq 0}^{n}$ has a smallest element

Lemma (§2.2). An order relation $>$ on $\mathbb{Z}_{\geq 0}^{n}$ is a well-ordering if and only if every strictly decreasing sequence in $\mathbb{Z}_{\geq 0}^{\bar{n}}$

$$
\alpha(1)>\alpha(2)>\alpha(3)>\cdots
$$

eventually terminates.

Lexicographic Order

Definition (§2.3). Let $\alpha, \beta \in \mathbb{Z}_{\geq 0}^{n}$. We say $\alpha>_{\text {lex }} \beta$ if in the vector difference $\alpha-\beta \in \mathbb{Z}^{n}$, the leftmost nonzero entry is positive. We will write $x^{\alpha}>_{\text {lex }} x^{\beta}$ if $\alpha>_{\text {lex }} \beta$.

Proposition (§2.4). > lex on $\mathbb{Z}_{\geq 0}^{n}$ is a monomial ordering.

- This generalizes the partial orderings we've used.
- Alternative lex orderings may be defined: rearranging the ordering of n variables yields n ! different lex orderings.

Ordering Polynomial Terms

Definition (§2.7). Let $f=\sum_{\alpha \in \mathbb{Z}_{\geq 0}^{n}} a_{\alpha} x^{\alpha}$ be a nonzero polynomial in $k\left[x_{1}, \ldots, x_{n}\right]$. With respect to a monomial ordering:

- The multidegree of f is

$$
\operatorname{multideg}(f)=\max \left(\alpha \mid a_{\alpha} \neq 0\right)
$$

- The leading coefficient of f is

$$
\mathrm{LC}(f)=a_{\text {multideg }(f)}
$$

- The leading monomial of f is

$$
\operatorname{LM}(f)=x^{\operatorname{multideg}(f)}
$$

- The leading term of f is

$$
\operatorname{LT}(f)=\operatorname{LC}(f) \cdot \operatorname{LM}(f)
$$

Lemma (§2.8). Let $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$ be nonzero polynomials. Then:

- multideg $(f g)=$ multideg $(f)+\operatorname{multideg}(g)$
- If $f+g \neq 0$, then

$$
\operatorname{multideg}(f+g) \leq \max (\operatorname{multideg}(f), \text { multideg }(g))
$$

Equality occurs if either

- multideg $(f) \neq$ multideg (g)
- multideg $(f)=\operatorname{multideg}(g)$ and $\operatorname{LC}(f) \neq-\mathrm{LC}(g)$

Division Algorithm in $k\left[x_{1}, \ldots, x_{n}\right]$

Input: $f_{1}, \ldots, f_{s}, f \in k\left[x_{1}, \ldots, x_{n}\right]$
Output: $a_{1}, \ldots, a_{s}, r \in k\left[x_{1}, \ldots, x_{n}\right]$, where $f=a_{1} f_{1}+\cdots+a_{s} f_{s}+r$ and $r=0$ or r is a linear combination of monomials, none of which is divisible by any of $\operatorname{LT}\left(f_{1}\right), \ldots, \operatorname{LT}\left(f_{s}\right)$

Initialization: $a_{i}:=0$ for $i \in\{1, \ldots, s\}, r:=0, p:=f$
WHILE $p \neq 0$ DO
FOR i FROM 1 TO s DO
IF LT $\left(f_{i}\right)$ divides LT (p) THEN

$$
\begin{aligned}
& a_{i}:=a_{i}+\operatorname{LT}(p) / \operatorname{LT}\left(f_{i}\right) \\
& p:=p-f_{i} \operatorname{LT}(p) / \operatorname{LT}\left(f_{i}\right)
\end{aligned}
$$

BREAK
IF $i=s$ THEN

$$
\begin{aligned}
& r:=r+\operatorname{LT}(p) \\
& p:=p-\operatorname{LT}(p)
\end{aligned}
$$

Monomial Ideals

Definition (§4.1). An ideal $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ is called a monomial ideal if it can be generated by monomials, i.e., $I=\left\langle x^{\alpha} \mid \alpha \in A\right\rangle$ where $A \subseteq \mathbb{Z}_{\geq 0}^{n}$.

Lemma (§4.2). Let $I=\left\langle x^{\alpha} \mid \alpha \in A\right\rangle$. Then a monomial $x^{\beta} \in I$ if and only if there is some $\alpha \in A$ such that x^{α} divides x^{β}.

Lemma (§4.3). Let I be a monomial ideal, and let $f \in k\left[x_{1}, \ldots, x_{n}\right]$. Then the following are equivalent:
(i) $f \in I$
(ii) Every term of f lies in I
(iii) f is a k-linear combination of the monomials in I

Corollary (§4.4). Two monomial ideals are the same if and only if they contain the same monomials.

Dickson's Lemma

Theorem (§4.5). Let $I=\left\langle x^{\alpha} \mid \alpha \in A\right\rangle \subseteq k\left[x_{1}, \ldots, x_{n}\right]$. Then there exist $\alpha(1), \ldots, \alpha(s) \in A$ such that $I=\left\langle x^{\alpha(1)}, \ldots, x^{\alpha(s)}\right\rangle$. In particular, I has a finite basis.

Corollary (§4.6). Let $>$ be a relation on $\mathbb{Z}_{\geq 0}^{n}$ satisfying:

- > is a total ordering on $\mathbb{Z}_{\geq 0}^{n}$
- If $\alpha>\beta$ and $\gamma \in \mathbb{Z}_{\geq 0}^{n}$, then $\alpha+\gamma>\beta+\gamma$

Then $>$ is a well-ordering if and only if $\alpha \geq 0$ for all $\alpha \in \mathbb{Z}_{\geq 0}^{n}$.

- This gives a much easier way of verifying if an ordering is a monomial ordering.

Ideal of Leading Terms

Definition (§5.1). Let $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal other than $\{0\}$.

- Define LT(I) to be the set of leading terms of the elements of I :

$$
\operatorname{LT}(I)=\left\{c x^{\alpha} \mid \text { there exist } f \in I \text { with } \operatorname{LT}(f)=c x^{\alpha}\right\}
$$

- The ideal of leading terms is $\langle\mathrm{LT}(I)\rangle$: the ideal generated by the elements of LT(I)

Proposition (§5.3). Let $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal.

- $\langle\mathrm{LT}(I)\rangle$ is a monomial ideal
- There are $g_{1}, \ldots, g_{t} \in I$ such that $\langle\operatorname{LT}(I)\rangle=\left\langle\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{t}\right)\right\rangle$

Hilbert Basis Theorem

Theorem (§5.4). Every ideal $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ has a finite generating set. That is, $I=\left\langle g_{1}, \ldots, g_{t}\right\rangle$ for some $g_{1}, \ldots, g_{t} \in I$.

Groebner Bases

Definition (§5.5). Fix a monomial order. A finite subset $G=\left\{g_{1}, \ldots, g_{t}\right\}$ of an ideal I is said to be a Groebner basis (or standard basis) if

$$
\left\langle\operatorname{LT}\left(g_{1}\right), \ldots, \operatorname{LT}\left(g_{t}\right)\right\rangle=\langle\operatorname{LT}(I)\rangle .
$$

Corollary (§5.6). Fix a monomial order. Then every ideal $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ other than $\{0\}$ has a Groebner basis. Furthermore, any Groebner basis for an ideal I is a basis of I.

