
Review

• The monomial
n∏
i=1

x
αi
i is written as xα where α = (α1, . . . , αn) ∈ Zn≥0.

• A subset I ⊆ k[x1, . . . , xn] is an ideal if:

• 0 ∈ I

• If f, g ∈ I, then f + g ∈ I

• If f ∈ I and h ∈ k[x1, . . . , xn], then hf ∈ I

• The ideal generated by f1, . . . , fs ∈ k[x1, . . . , xn] is

〈f1, . . . , fs〉 =


s∑

i=1

hifi

∣∣∣∣ h1, . . . , hs ∈ k[x1, . . . , xn]





Problems

• Ideal Description: Does every ideal have a finite generating set?

• Ideal Membership: Given an ideal I = 〈f1, . . . fs〉 and polynomial f ,

can we determine if f ∈ I?

• Previously we saw how to solve these problems for I ⊆ k[x].

• The first problem is solved completely by the Hilbert Basis Theorem.



More Problems

• Solving Polynomial Equations: Can we find all points in V(f1, . . . , fs)?

• Implicitization: Given a parametric representation of some X ⊆ kn,

can we find an implicit representation? That is, given

x1 = g1(t), . . . , xn = gn(t)

where gi are rational functions in tj, find f1, . . . , fs ∈ k[x1, . . . , xn]

such that X ⊆ V(f1, . . . , fs).

• If we restrict ourselves to linear functions, both of these problems

can be solved using linear algebra.



Ordering Relations

• An ordering of terms is used in the partial solutions we have seen

so far (the division algorithm for k[x] and row-reduction for linear

systems).

• An ordering will be a binary relation “>” on {xα | α ∈ Zn≥0 } (or

equivalently, just Zn≥0).

• Division algorithm ordering: · · · > xm1 > xm−1
1 > · · · > x2

1 > x1 > 1.

• Row-reduction ordering: x1 > x2 > · · · > xn.



Definition (§2.1). A monomial ordering on k[x1, . . . , xn] is any relation

> on Zn≥0 satisfying:

(i) > is a total ordering, i.e., for every α, β ∈ Zn≥0,

α > β or α = β or β > α

(ii) If α > β and γ ∈ Zn≥0, then α+ γ > β + γ

(iii) > is a well-ordering, i.e., every nonempty subset of Zn≥0 has a smallest

element

Lemma (§2.2). An order relation > on Zn≥0 is a well-ordering if and only

if every strictly decreasing sequence in Zn≥0

α(1) > α(2) > α(3) > · · ·

eventually terminates.



Lexicographic Order

Definition (§2.3). Let α, β ∈ Zn≥0. We say α >lex β if in the vector

difference α − β ∈ Zn, the leftmost nonzero entry is positive. We will

write xα >lex x
β if α >lex β.

Proposition (§2.4). >lex on Zn≥0 is a monomial ordering.

• This generalizes the partial orderings we’ve used.

• Alternative lex orderings may be defined: rearranging the ordering

of n variables yields n! different lex orderings.



Ordering Polynomial Terms

Definition (§2.7). Let f =
∑
α∈Zn≥0

aαxα be a nonzero polynomial in

k[x1, . . . , xn]. With respect to a monomial ordering:

• The multidegree of f is

multideg(f) = max(α | aα 6= 0)

• The leading coefficient of f is

LC(f) = amultideg(f)

• The leading monomial of f is

LM(f) = xmultideg(f)

• The leading term of f is

LT(f) = LC(f) · LM(f)



Lemma (§2.8). Let f, g ∈ k[x1, . . . , xn] be nonzero polynomials. Then:

• multideg(fg) = multideg(f) + multideg(g)

• If f + g 6= 0, then

multideg(f + g) ≤ max(multideg(f),multideg(g)).

Equality occurs if either

• multideg(f) 6= multideg(g)

• multideg(f) = multideg(g) and LC(f) 6= − LC(g)



Division Algorithm in k[x1, . . . , xn]
Input: f1, . . . , fs, f ∈ k[x1, . . . , xn]

Output: a1, . . . , as, r ∈ k[x1, . . . , xn], where f = a1f1 + · · ·+ asfs + r and r = 0 or r is a
linear combination of monomials, none of which is divisible by any of LT(f1), . . . ,LT(fs)

Initialization: ai := 0 for i ∈ {1, . . . , s}, r := 0, p := f

WHILE p 6= 0 DO

FOR i FROM 1 TO s DO

IF LT(fi) divides LT(p) THEN

ai := ai + LT(p)/LT(fi)

p := p− fi LT(p)/ LT(fi)

BREAK

IF i = s THEN

r := r + LT(p)

p := p− LT(p)



Monomial Ideals

Definition (§4.1). An ideal I ⊆ k[x1, . . . , xn] is called a monomial ideal if

it can be generated by monomials, i.e., I = 〈xα | α ∈ A〉 where A ⊆ Zn≥0.

Lemma (§4.2). Let I = 〈xα | α ∈ A〉. Then a monomial xβ ∈ I if and

only if there is some α ∈ A such that xα divides xβ.



Lemma (§4.3). Let I be a monomial ideal, and let f ∈ k[x1, . . . , xn].

Then the following are equivalent:

(i) f ∈ I

(ii) Every term of f lies in I

(iii) f is a k-linear combination of the monomials in I

Corollary (§4.4). Two monomial ideals are the same if and only if they

contain the same monomials.



Dickson’s Lemma

Theorem (§4.5). Let I = 〈xα | α ∈ A〉 ⊆ k[x1, . . . , xn]. Then there exist

α(1), . . . , α(s) ∈ A such that I = 〈xα(1), . . . , xα(s)〉. In particular, I has a

finite basis.



Corollary (§4.6). Let > be a relation on Zn≥0 satisfying:

• > is a total ordering on Zn≥0

• If α > β and γ ∈ Zn≥0, then α+ γ > β + γ

Then > is a well-ordering if and only if α ≥ 0 for all α ∈ Zn≥0.

• This gives a much easier way of verifying if an ordering is a monomial

ordering.



Ideal of Leading Terms

Definition (§5.1). Let I ⊆ k[x1, . . . , xn] be an ideal other than {0}.

• Define LT(I) to be the set of leading terms of the elements of I:

LT(I) = { cxα | there exist f ∈ I with LT(f) = cxα }

• The ideal of leading terms is 〈LT(I)〉: the ideal generated by the

elements of LT(I)

Proposition (§5.3). Let I ⊆ k[x1, . . . , xn] be an ideal.

• 〈LT(I)〉 is a monomial ideal

• There are g1, . . . , gt ∈ I such that 〈LT(I)〉 = 〈LT(g1), . . . ,LT(gt)〉



Hilbert Basis Theorem

Theorem (§5.4). Every ideal I ⊆ k[x1, . . . , xn] has a finite generating

set. That is, I = 〈g1, . . . , gt〉 for some g1, . . . , gt ∈ I.



Groebner Bases

Definition (§5.5). Fix a monomial order. A finite subset G = {g1, . . . , gt}
of an ideal I is said to be a Groebner basis (or standard basis) if

〈LT(g1), . . . , LT(gt)〉 = 〈LT(I)〉.

Corollary (§5.6). Fix a monomial order. Then every ideal I ⊆ k[x1, . . . , xn]

other than {0} has a Groebner basis. Furthermore, any Groebner basis

for an ideal I is a basis of I.


