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Summary and motivation

• Combinatorics abounds with very hard problems featuring 100s/1000s of binary and

ternary variables (ditto for Cryptography)

• Several important classes of such problems: defined via the concept of autocorrelation

• For many of these classes, traditional algorithmic methodologies exhibit saturation

• It is desirable to develop new algorithmic methodologies via cross-fertilization with

other disciplines

• The development of SAT solvers has experienced tremendous growth in recent

decades and continues to be a very active area of research

• The uncanny realization that autocorrelation-defined problems can be encoded as SAT

problems, opens the door for a very fruitful interaction between the two areas
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Hadamard matrices

Hadamard matrices are n× n matrices H with ±1 elements such that H ·Ht = nIn.

trivial cases: n = 1 and n = 2.

well-known necessary condition: n ≡ 0 (mod 4)

the sufficiency of this condition is the celebrated Hadamard conjecture (1893)

“There exists a Hadamard matrix of order n, for every n ≡ 0 (mod 4)”
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smallest unresolved order until 1985: 268

smallest unresolved order until 2004: 428

smallest unresolved order until 2013: 668

3 unresolved cases < 1000: 668, 716, 892

10 unresolved cases < 2000: 1004, 1132, 1244, 1388, 1436, 1676, 1772, 1916, 1948, 1964

List of integers v < 500 for which no Hadamard matrices of order 4v are known

consists of 13 integers:

167, 179, 223, 251, 283, 311, 347, 359, 419, 443, 479, 487, 491

all of them primes congruent to 3 (mod 4).

new result: Construction of a Hadamard matrix of order 4 · 251
Djokovic, Golubitsky, Kotsireas, JCD, 2012.
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Constructions for Hadamard matrices
1. Kronecker product construction: HM(n),HM(m) −→ HM(nm)

2. Gruner’s theorem: if p and p+ 2 are twin primes, then there exist Hadamard

matrices of order p(p+ 2) + 1.

3. Williamson method: uses the Williamson array:


A B C D

−B A −D C

−C D A −B

−D −C B A


where A,B,C,D are circulant matrices whose first rows are complementary

sequences.

4. Quadratic Residues of primes p ≡ 3 (mod 4), {seq(x^ 2 mod p,x=1..p)}

There are literally 100s of HM constructions ...

They all suffer from two kinds of disadvantages:

either they produce a sparse set of orders, or they fail for specific parameter values
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Williamson method: state-of-the-art
• D. Z. Djokovic

Discr. Math. 115 (1993), no. 1-3, pp. 267-271

There is no Williamson matrix of order 4 · 35

• W. H. Holzmann, H. Kharaghani, B. Tayfeh-Rezaie

Des. Codes Cryptogr. 46 (2008), no. 3, pp. 343-352

There are no Williamson matrices of orders 4 · 47, 4 · 53, 4 · 59

• It is not known whether a Williamson matrix of order 4 · 65 exists.

The above non-existence results were obtained computationally.

An independent verification of the above non-existence results is highly desirable.
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Representative Example

Williamson solution for n = 29 Hadamard matrix or order 4 · 29.
a := [1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1];

b := [1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1];

c := [1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1];

d := [1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1];

# of binary variables: 4 ·
(
29− 1

2

)
= 56

Diophantine equation satisfied:(
29∑
i=1

ai

)2

+

(
29∑
i=1

bi

)2

+

(
29∑
i=1

ci

)2

+

(
29∑
i=1

di

)2

= 92+12+52+(−3)2 = 116 = 4 ·29

Note that the Diophantine equation x2 + y2 + z2 + t2 = 116 has 4 solutions in

general (up to sign/permutation of vars)

[0, 0, 4, 10], [0, 4, 6, 8], [1, 3, 5, 9], [3, 3, 7, 7]

PowersRepresentations[116, 4, 2]
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Representative Example cont’d
these 4 sequences also have PSD equal to 116:

1, 8.510326027, 60.18928195, 25.99396451, 21.30642745, 115.9999999

2, 44.95677929, 1.552692648, 29.80302391, 39.68750409, 115.9999999

3, 77.29326395, 21.80423241, 15.44094978, 1.461553876, 116.0000000

4, 1.884068098, 60.92130947, .2803757623, 52.91424662, 116.0000000

5, 52.12681974, .4087514912, 44.29945606, 19.16497262, 115.9999999

6, 42.87772654, 44.68485046, 7.517749906, 20.91967303, 115.9999999

7, 2.768255979, 20.28734866, 1.002095058, 91.94230028, 116.0000000

8, 1.266406791, 75.69082274, 12.47835551, 26.56441492, 116.0000000

9, 13.36443427, 13.27812572, 71.05938529, 18.29805467, 116.0000000

10, 36.62394854, 5.727979124, 27.04815073, 46.59992153, 115.9999999

11, .8255022273, 59.96354138, 17.38780621, 37.82315007, 115.9999999

12, 48.45774811, 6.284747246, 55.89279515, 5.364709424, 115.9999999

13, 14.61672118, 42.54132097, 32.30631413, 26.53564366, 115.9999999

14, 34.42799914, 6.664995510, 67.48957786, 7.417427483, 116.0000000

8



Combination of SAT and CAS
MathCheck: A Math Assistant based on a Combination of Computer

Algebra Systems and SAT Solvers

Ed Zulkoski, Vijay Ganesh, and Krzysztof Czarnecki

International Conference on Automated Deduction (CADE 2015), Berlin,

Germany, August 1-7, 2015

Main idea: SAT solvers have finely-tuned search procedures not available in CAS,

but lack the expressiveness and domain-specific knowledge of a CAS. For this reason

we use CAS code and domain-specific knowledge to considerably cut down the

search space before searching with a SAT solver.

MathCheck embeds the functionality of a computer algebra system (CAS) within

the inner loop of a conflict-driven clause-learning SAT solver. SAT+CAS systems, a

la MathCheck, can be used as an assistant by mathematicians to either

counterexample or finitely verify open universal conjectures on any mathematical

topic (e.g., graph and number theory, algebra, geometry, etc.) supported by the

underlying CAS system.

9



Such a SAT+CAS system combines the efficient search routines of modern SAT

solvers, with the expressive power of CAS, thus complementing both.

The key insight behind the power of the SAT+CAS combination is that the CAS

system can help cut down the search-space of the SAT solver, by providing learned

clauses that encode theory-specific lemmas, as it searches for a counterexample to

the input conjecture (just like the T in DPLL(T)).

In addition, the combination enables a more efficient encoding of problems than a

pure Boolean representation.

The paper leverages the graph-theoretic capabilities of an open-source CAS, called

SAGE, on two case studies, to make progress on two long-standing open

mathematical conjectures from graph theory regarding properties of hypercubes.
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The MapleSAT solver
Experiments performed with the MapleSAT solver:

Understanding VSIDS Branching Heuristics in Conflict-Driven

Clause-Learning SAT Solvers

Liang, Jia Hui and Ganesh, Vijay and Zulkoski, Ed and Zaman, Atulan

and Czarnecki, Krzysztof, Hardware and Software: Verification and

Testing: 11th International Haifa Verification Conference, 2015

• Empirically, MapleSAT is very effective at solving cryptographic and combinatorial

problems from the annual SAT competition.

• The main innovation of the solver is a new branching heuristic based-off of a

well-known algorithm in reinforcement learning literature.

• Details available in the upcoming:

Exponential Recency Weighted Average Branching Heuristic for SAT Solvers

Liang, Jia Hui and Ganesh, Vijay and Poupart, Pascal and Czarnecki, Krzysztof

Proceedings of AAAI-16, 2016
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Encoding Hadamard as SAT
• let n be odd and set m = n−1

2

• use 4 sets of boolean variables a1, . . . , am, b1, . . . , bm, c1, . . . , cm, d1, . . . , dm to encode

the first rows of the symmetric circulant matrices A,B,C,D

• use 2-bit and 3-bit adders to verify the autocorrelation equations

• use ordering conditions and the Espresso logic minimizer, and up to 7-bit adders

(resulted in using fewer variables but more clauses)

Example: 4 · 35 can be written as the sum of 4 odd squares in 3 ways:

12 + 32 + 32 + 112 = 12 + 32 + 72 + 92 = 32 + 52 + 52 + 92 = 4 · 35

we can deduce the number of ±1’s in each of the first rows of A,B,C,D,

e.g. a1 + · · ·+ a35 = 3. implies 19 +1’s and 16 −1’s.

related work:

Handbook of Satisfiability, IOS Press, 2009

Armin Biere, Marijn Heule, Hans van Maaren, Toby Walsh

Chapter 17. Combinatorial Designs by SAT Solvers, by Hantao Zhang
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Autocorrelation of finite sequences
• The periodic autocorrelation function associated to a finite sequence

A = [a0, . . . , an−1] of length n is defined as

PA(s) =

n−1∑
k=0

akak+s, s = 0, . . . , n− 1,

where k + s is taken modulo n, when k + s > n.

• The aperiodic autocorrelation function associated to a finite sequence

A = [a0, . . . , an−1] of length n is defined as

NA(s) =

n−1−s∑
k=0

akak+s, s = 0, . . . , n− 1,

We are mostly concerned with binary {−1,+1}, ternary {−1, 0,+1} and 4th roots of

unity {±1,±i} sequences.

Note that for sequences with complex number elements, ak+s is replaced by ak+s.
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Example: n = 7, A = [a1, . . . , a7]

PA(0) = a1
2 + a2

2 + a3
2 + a4

2 + a5
2 + a6

2 + a7
2

PA(1) = a1a2 + a2a3 + a3a4 + a4a5 + a5a6 + a6a7 + a7a1

PA(2) = a1a3 + a2a4 + a3a5 + a4a6 + a5a7 + a6a1 + a7a2

PA(3) = a1a4 + a2a5 + a3a6 + a4a7 + a5a1 + a6a2 + a7a3

PA(4) = a1a4 + a2a5 + a3a6 + a4a7 + a5a1 + a6a2 + a7a3

PA(5) = a1a3 + a2a4 + a3a5 + a4a6 + a5a7 + a6a1 + a7a2

PA(6) = a1a2 + a2a3 + a3a4 + a4a5 + a5a6 + a6a7 + a7a1

NA(0) = a1
2 + a2

2 + a3
2 + a4

2 + a5
2 + a6

2 + a7
2

NA(1) = a1a2 + a2a3 + a3a4 + a4a5 + a5a6 + a6a7

NA(2) = a1a3 + a2a4 + a3a5 + a4a6 + a5a7

NA(3) = a1a4 + a2a5 + a3a6 + a4a7

NA(4) = a1a5 + a2a6 + a3a7

NA(5) = a1a6 + a2a7

NA(6) = a1a7

PA(s) = NA(s) +NA(n− s), s = 1, ..., n− 1
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Circulant matrices
A n× n matrix C(A) is called circulant if every row (except the first) is obtained

by the previous row by a right cyclic shift by one.

C(A) =



a0 a1 . . . an−2 an−1

an−1 a0 . . . an−3 an−2

...
... . . .

...
...

a2 a3 . . . a0 a1

a1 a2 . . . an−1 a0


• Consider a finite sequence A = [a0, . . . , an−1] of length n and the circulant matrix C(A)

whose first row is equal to A. Then PA(i) is the inner product of the first row of C(A)

and the i+ 1 row of C(A).

• symmetry property  PA(s) = PA(n− s), s = 1, . . . , n− 1.

• 2nd ESF property  PA(1) + PA(2) + . . .+ PA(n− 1) = 2e2(a0, . . . , an−1)

•  NA(s) +NA(n− s) = PA(s), s = 1, . . . , n− 1.
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Complementary Sequences
Definition:

Let {Ai}i=1,...,t be t sequences of length v with complex elements. The sequences

{Ai}i=1,...,t are called complementary, if

t∑
i=1

PAFAi = [α0, α, . . . , α︸ ︷︷ ︸
v−1 terms

]

with the convention:

PAFAi = [PAFAi(0), PAFAi(1), . . . , PAFAi(v − 1)].

Algorithms and Metaheuristics for Combinatorial Matrices,

Ilias S. Kotsireas, in Handbook of Combinatorial Optimization, 2nd edition,

Pardalos, P. M., Du, D.-Z., Graham, R. L. (eds)

pp. 283-309, Springer 2013
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Unified description of combinatorial objects
number/type of sequences defining property name

1 binary aper. autoc. 0,±1 Barker sequences

1 ternary per. autoc. 0 circulant weighing matrices

2 binary aper. autoc. 0 Golay sequences

2 binary per. autoc. 0 Hadamard matrices

2 binary per. autoc. 2 D-optimal matrices

2 binary per. autoc. − 2 Hadamard matrices

2 ternary aper. autoc. 0 TCP

2 ternary per. autoc. 0 Weighing matrices

3 binary aper. autoc. const. Normal sequences

4 binary aper. autoc. 0 Base sequences

4 binary aper. autoc. 0 Turyn type sequences

4 ternary aper. autoc. 0 T-sequences

4 binary per. autoc. 0 Williamson Hadamard

2 . . . 12 binary per. autoc. zero PCS
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Power Spectral Density, PSD
Seberry & Gysin first introduced the PSD concept in the search for

complementary sequences of various kinds.

Definition:

PSD([a1, . . . , an], k) denotes the k-th element of the power spectral density

sequence, i.e. the square magnitude of the k-th element of the discrete Fourier

transform (DFT) sequence associated to [a1, . . . , an].

The DFT sequence associated to [a1, . . . , an] is defined as

DFT[a1,...,an] = [µ0, . . . , µn−1 ] , with µk =
n−1∑
i=0

ai+1 ω
ik, k = 0, . . . , n− 1

where ω = e
2πi
n = cos

(
2π
n

)
+ i sin

(
2π
n

)
is a primitive n-th root of unity.
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PSD criterion
Williamson Hadamard matrices: 4 complementary sequences of length n, (odd)

PAF constant: 0, PSD constant: 4n.

PAF (A, s) + PAF (B, s) + PAF (C, s) + PAF (D, s) = 0, s = 1, . . . ,
n− 1

2

PSD(A, s) + PSD(B, s) + PSD(C, s) + PSD(D, s) = 4n, s = 1, . . . ,
n− 1

2

if for a certain sequence A = [a1, . . . , an] there exists s ∈ {1, . . . , n− 1} with the

property that PSD(A, s) > 4n, then this sequence cannot be used to construct 4

such complementary sequences

Important Consequence: we can now decouple the PAF equations, roughly

corresponding to cutting down the complexity by four.
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2015 http://top500.org/

TIANHE-2 (MILKYWAY-2)

Site: National Super Computer Center in Guangzhou

Cores: 3,120,000

Linpack Performance (Rmax) 33,862.7 TFlop/s

Theoretical Peak (Rpeak) 54,902.4 TFlop/s

Memory: 1,024,000 GB

Processor: Intel Xeon E5-2692v2 12C 2.2GHz

Compiler: icc

2007: open problem, 250 ops  2015: ex. search in 10 minutes
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Compression of complementary sequences
Definition:

Let A = [a0, a1, . . . , av−1] be a complex sequence of length v = dm. Set

a
(d)
j = aj + aj+d + . . .+ aj+(m−1)d, for j = 0, . . . , d− 1. Then we say that the

sequence A(d) = [a
(d)
0 , a

(d)
1 , . . . , a

(d)
d−1] of length d is the m-compression of A.

PhD thesis of Yoseph Strassler, (1997), Bar Ilan University, Israel.

Example:

A = CW (24, 9) = [0, 0, 0,−1,−1, 0, 0, 0, 0, 0, 1,−1, 0, 0, 0,−1, 1, 0, 0, 1, 0, 0,−1,−1]

m = 2, d = 12,  A(12) = [0, 0, 0,−2, 0, 0, 0, 1, 0, 0, 0,−2]

m = 3, d = 8,  A(8) = [1, 0, 1,−1,−1, 0,−1,−2]
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Theorem: Djokovic-Kotsireas (2012)

Let {Ai}i=1,...,t be t complementary sequences, of length v each, with complex

elements Ai = [ai0, ai1, . . . , ai,v−1], for i = 1, . . . , t and
t∑

i=1

PAFAi = [α0, α, . . . , α︸ ︷︷ ︸
v−1 terms

].

Assume that v = dm and set a
(d)
ij = ai,j + ai,j+d + · · ·+ ai,j+(m−1)d for i = 1, . . . , t

and j = 0, . . . , d− 1.

Let A
(d)
i be the t sequences A

(d)
i = [a

(d)
i0 , . . . , a

(d)
i,d−1], for i = 1, . . . , t.

Then the t sequences {A(d)
i }i=1,...,t, of length d each, are also complementary and we

have:

t∑
i=1

PAF
A

(d)
i

= [α0 + (m− 1)α,mα, . . . ,mα︸ ︷︷ ︸
d−1 terms

] (1)

t∑
i=1

PSD
A

(d)
i

= [β0, β, . . . , β︸ ︷︷ ︸
d−1 terms

] (2)
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Periodic Golay pairs of length 68
Consider the following two sequences of length 34 each, with {−2, 0,+2} elements:

A(34) = [0, 0, 0, 2, 0, 0,−2, 0, 0, 0, 2,−2, 0, 0,−2, 0, 0, 2, 0, 0, 0, 2, 2,−2, 0, 0,−2, 0, 0, 2, 0, 2, 0, 2]

B(34) = [0, 0,−2, 2, 0, 2, 0,−2,−2, 0, 2, 2, 0, 2,−2, 0, 2, 0,−2, 2, 0, 2, 2, 0, 2, 0, 2, 2, 0,−2, 2, 0,−2,−2]

These two sequences satisfy the following properties:

1. PAF(A(34), s) + PAF(B(34), s) = 0, s = 0, 1, . . . , 33;

2. PSD(A(34), s) + PSD(B(34), s) = 2 · 68 = 136, s = 0, 1, . . . , 33;

3. PSD(A(34), 17) = 100 and PSD(B(34), 17) = 36;

4.

34∑
i=1

A
(34)
i = 6 and

34∑
i=1

B
(34)
i = 10;

5. The total number of 0 elements in A(34) and B(34) is equal to 34;

6. The total number of ±2 elements in A(34) and B(34) is equal to 34;

7. A(34) contains 21 zeros and B(34) contains 13 zeros.

24



A(34) and B(34) are the 2-compressed sequences of two {−1,+1} sequences of length

68 each, that form a particular periodic Golay pair of length 68:

A =
−−++−+−+−++−−+−−++−−−++−−−−−−+−+++

++−++−−−+−+−+−−+−++++++−++−+++++−+

B =
−−−+++−−−+++++−−++−+−+++++++−−+−−−
++−+−++−−−++−+−++−−++++−+−+++−++−−

 Hadamard matrices of order 2 · 68

Djokovic, Dragomir; Kotsireas, Ilias; Recoskie, Daniel; Sawada, Joe

Charm bracelets and their application to the

construction of periodic Golay pairs.

Discrete Appl. Math. 188 (2015), 32-40.
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Periodic Golay pairs of length 72
Using the same machinery, we also found periodic Golay pairs of length 72

Dragomir Djokovic and Ilias Kotsireas, Periodic Golay pairs of length 72

in:

Springer Proceedings in Mathematics & Statistics, Vol. 133

Algebraic Design Theory and Hadamard Matrices

ADTHM, Lethbridge, Alberta, Canada, July 2014

Colbourn, Charles J. (Ed.) 2015

Only known example of a length of a periodic Golay pair that is divisible by 3

SDS(72; 36, 30; 30)

10 million lines of C code, generated with Maple meta-programming

next open case: order 90
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Interactions with Coding Theory

• Gröbner Bases, Coding, and Cryptography

M. Sala, T. Mora, L. Perret, S. Sakata, C. Traverso (Editors)

Open problem: Does there exists a binary linear [72, 36, 16] code?

The answer lies in being able to construct an ample supply of skew-Hadamard matrices

of order 72.

• Information security, coding theory and related combinatorics. Information

coding and combinatorics

Dean Crnkovic and Vladimir Tonchev (Editors)

NATO Science for Peace and Security Series D:

Information and Communication Security, 29.

IOS Press, Amsterdam, 2011.
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Interactions with Quantum Computing
Weighing matrices are generalizations of Hadamard matrices.

W ·W t = kIn

• “Weighing matrices and optical quantum computing” S. Flammia and S. Severini, J.

Phys. A: Math. Theor. 42 (2009) 065302

• “Quantum Algorithms for Weighing Matrices and Quadratic Residues” W. van Dam,

Algorithmica 34, (2002) pp. 413428.
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Future work roadmap

• integrate symmetries/compression, to our SAT encoding of autocorrelation problems

• improve the SAT encoding of autocorrelation problems

• improve and further optimize algorithmic implementations

• explore the applicability of new HPC paradigms: Intel MIC architecture

• develop a custom-tailored SAT solver for autocorrelation problems
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