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Motivation



The research areas of SMT [SAT-Modulo-Theories|
solving and symbolic computation are quite disconnected.
On the one hand, SMT solving has its strength in
efficient techniques for exploring Boolean structures,
learning, combining solving techniques, and developing
dedicated heuristics, but its current focus lies on easier
theories and it makes use of symbolic computation
results only in a rather naive way.

— Erica Abraham!

1Building bridges between symbolic computation and satisfiability
checking. Proceedings of the 2015 International Symposium on Symbolic and
Algebraic Computation.



Who You Gonna Call?

v

A mathematician has a conjecture and wants to check it for
non-trivial examples.

Computer algebra systems (CAS) provide large variety of
libraries to check if certain structures have desired
properties.

However, finding these non-trivial examples is often
challenging due to — but not limited to — an exponentially
sized search space.

CASs are lacking search capabilities. Satisfiability (SAT)

solvers, on the other hand, utilize sophisticated methods (e.g.

so-called conflict driven clause learning) to search in an
exponentially sized space.



“Brute-brute force has no hope. But clever, inspired
brute force is the future.”

— Doron Zeilberger?

2From Doron Zeilberger’s talk at the Fields institute in Toronto,
December 2015 (http://www.fields.utoronto.ca/video-archive/static/
2015/12/379-5401/mergedvideo. ogv, minute 44)
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When One Could Use A SAT-+-CAS Combination...

» Absolutely Necessary: Elements that are examined can
be represented using a finite boolean vector.

» The SAT+CAS combination is powerful when one tries to
find examples up to a certain representation size.

» Feasibility Condition: Operations on the respective
elements to check the desired property can be encoded as a
SAT problem that has size polynomial in the representation
of these elements.

This excludes e.g.

» Power series

» Structures that contain real/complex numbers.



Running Example: Hadamard matrices

» square matrix with £1 entries

» any two distinct rows are orthogonal



Running Example: Hadamard matrices

» square matrix with £1 entries

» any two distinct rows are orthogonal

Example
1 1 1 1
1 -1 1 -1
=11 1 0 4
-1 1 1 -1
Conjecture

An n x n Hadamard matrix exists for any n a multiple of 4.
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pokemon.wikia.com III
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MATHCHECK2 — Combining
SATHCAS



The MATHCHECK2 System

» Uses SAT and CAS functionality to finitely verify or
counterexample conjectures in mathematics.

» Used to study conjectures in combinatorial design theory
about the existence of Hadamard and Williamson matrices.
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Experimental Results

MATHCHECK?2 was able to show that. ..

» Williamson matrices of order 35 do not exist.

» Used under 9 hours of computation time on SHARCNETS.
» First shown by Pokovi¢?, who requested an independent
verification.

» Williamson matrices exist for all orders n < 35.

» Even orders were mostly previously unstudied.

» Found over 500 Hadamard matrices, up to order 160, which

had no equivalent entry in the database of the CAS MAGMA.

364-bit AMD Opteron processors running at 2.2 GHz
4Williamson matrices of order 4n for n = 33, 35, 39. Discrete
Mathematics.



Some Techniques that Lead to Success

v

Using special construction method

v

Using CAS to partition the search space.
» Creating a SAT instance for each partition.
» Optimally, the CAS would be able to examine if one can
exclude a whole partition from the search.
Assist the SAT solver with a CAS for every SAT instance,
using a feedback loop.

v

» Use a so-called UNSAT-core for all different SAT instances.



Challenges From a Usability Perspective

In decreasing order by difficulty:
» Find a way to feasibly encode the problem (including, but
not limited to: objects of interests, their operations, and
conditions).

» Find an easy to use interface to include custom CAS scripts.

» Study the problem well enough to be able to assist the SAT
solver with CAS code to prune away branches in the search
space.

» If possible, study the problem well enough to be able to
partition the search space.
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Example: Naive Hadamard Encoding

Each entry of H will be represented using a Boolean variable
encoding with BV (1) = true and BV (—1) = false.

Multiplication becomes XNOR under this encoding, i.e.,

BV(x-y)=—(BV(x) ®BV(y)) for x,y € {+1}.

16 /21



Example: Naive Hadamard Encoding Continued

Arithmetic formula encoding
n—1
D hiuc-hje=0  forall i #j.
k=0

Boolean variable encoding
Using ‘product’ variables piji == BV (hixk - hj) this becomes the
cardinality constraints

n—1 n
> l=5  foralli#].
k=0

Pijk true



Example: Naive Hadamard Encoding Continued

A binary adder consumes Boolean values and produces Boolean
values; when thought of as bits, the outputs contain the binary
representation of how many inputs were true.

) o
)

s=adb

c=a/b

To encode the cardinality constraints we use a network of binary

adders with:

» n inputs (the variables {pijk}Tkl;Dl )

> |logyn| + 1 outputs (counting the number of input variables

which are true)



Subcase: Williamson Matrices

n X n matrices A, B, C, D
entries +1

symmetric, circulant
A2+ B2+ C2+D?%=4nl,

vV v v Yy
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What Did We Learn From Looking at Hadamard
Matrices in the Context of SAT?

» The mathematician needs to be CURRENTLY pretty
desperate to be willing to encode his/her problem as SAT.
= Life needs to be made easier here.

» SAT is a great helper, allowing you to scale. But one cannot
lean back and expect it to scale without help in form of
theories.
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The World Would Be a Nice Place if...

Pick one or more:

» CASs (or a separate system) would provide ways to encode
certain finite structures and operations as SAT instances.

» CASs would use knowledge from the SAT-community to
implement internal search capability.

» SAT-solvers would provide a clear interface with which
domain-specific knowledge can be injected.

Remark: This great synergy leads to a another challenge:
Verification of correctness.



	Motivation
	MathCheck2 – Combining SAT+CAS

