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Autocorrelation of finite sequences

The periodic autocorrelation function associated to a finite
sequence A = [a0, . . . , an−1] of length n is defined as

PA(s) =
n−1∑
k=0

akak+s , s = 0, . . . , n − 1,

where k + s is taken modulo n, when k + s ≥ n.

The aperiodic autocorrelation function associated to a
finite sequence A = [a0, . . . , an−1] of length n is defined as

NA(s) =
n−1−s∑
k=0

akak+s , s = 0, . . . , n − 1,

We are mostly concerned with binary {−1,+1}, ternary
{−1, 0,+1} and 4-th roots of unity {±1,±i} sequences.

For sequences with complex number elements, ak+s is
replaced by ak+s .
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Example: n = 7, A = [a1, . . . , a7]

PA(0) = a1
2 + a2

2 + a3
2 + a4

2 + a5
2 + a6

2 + a7
2

PA(1) = a1a2 + a2a3 + a3a4 + a4a5 + a5a6 + a6a7 + a7a1
PA(2) = a1a3 + a2a4 + a3a5 + a4a6 + a5a7 + a6a1 + a7a2
PA(3) = a1a4 + a2a5 + a3a6 + a4a7 + a5a1 + a6a2 + a7a3
PA(4) = a1a4 + a2a5 + a3a6 + a4a7 + a5a1 + a6a2 + a7a3
PA(5) = a1a3 + a2a4 + a3a5 + a4a6 + a5a7 + a6a1 + a7a2
PA(6) = a1a2 + a2a3 + a3a4 + a4a5 + a5a6 + a6a7 + a7a1

NA(0) = a1
2 + a2

2 + a3
2 + a4

2 + a5
2 + a6

2 + a7
2

NA(1) = a1a2 + a2a3 + a3a4 + a4a5 + a5a6 + a6a7
NA(2) = a1a3 + a2a4 + a3a5 + a4a6 + a5a7
NA(3) = a1a4 + a2a5 + a3a6 + a4a7
NA(4) = a1a5 + a2a6 + a3a7
NA(5) = a1a6 + a2a7
NA(6) = a1a7
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Autoccorelation Properties

Circulant Matrices

A n × n matrix C (A) is called circulant if every row (except the
first) is obtained by the previous row by a right cyclic shift by one.

C (A) =


a0 a1 . . . an−2 an−1

an−1 a0 . . . an−3 an−2
...

... . . .
...

...
a2 a3 . . . a0 a1

a1 a2 . . . an−1 a0
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1 Consider a finite sequence A = [a0, . . . , an−1] of length n and
the circulant matrix C (A) whose first row is equal to A. Then
PA(i) is the inner product of the first row of C (A) and the
i + 1 row of C (A).

2 symmetry property
 PA(s) = PA(n − s), s = 1, . . . , n − 1.

3 2nd ESF property
 PA(1) + PA(2) + . . .+ PA(n − 1) = 2e2(a0, . . . , an−1)
where e2(a0, . . . , an−1) is the second ESF

4  NA(s) + NA(n − s) = PA(s), s = 1, . . . , n − 1.
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Complementary Sequences

Definition

Let {Ai}i=1,...,t be t sequences of length v with complex elements.
The sequences {Ai}i=1,...,t are called complementary, if

t∑
i=1

PAFAi
= [α0, α, . . . , α︸ ︷︷ ︸

v−1 terms

]

with the convention:

PAFAi
= [PAFAi

(0),PAFAi
(1), . . . ,PAFAi

(v − 1)].

Algorithms and Metaheuristics for Combinatorial Matrices
Ilias S. Kotsireas
Handbook of Combinatorial Optimization, 2nd ed.
Pardalos, P. M., Du, D.-Z., Graham, R. L. (eds)
pp. 283-309, Springer 2013
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Unified description of combinatorial objects

number/type of sequences defining property name

1 binary aper. autoc. 0,±1 Barker sequences
1 ternary per. autoc. 0 circulant weighing matrices
2 binary aper. autoc. 0 Golay sequences

2 4-th roots aper. autoc. 0 complex Golay sequences
2 binary per. autoc. 0 Hadamard matrices
2 binary per. autoc. 2 D-optimal matrices
2 binary per. autoc. − 2 Hadamard matrices
2 ternary aper. autoc. 0 TCP
2 ternary per. autoc. 0 Weighing matrices
3 binary aper. autoc. const. Normal sequences
4 binary aper. autoc. 0 Base sequences
4 binary aper. autoc. 0 Turyn type sequences
4 ternary aper. autoc. 0 T-sequences
4 binary per. autoc. 0 Williamson Hadamard

2 . . . 12 binary per. autoc. zero PCS
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Power Spectral Density, PSD

Seberry & Gysin first introduced the PSD concept in the search
for complementary sequences of various kinds.

Definition

PSD([a1, . . . , an], k) denotes the k-th element of the power
spectral density sequence, i.e. the square magnitude of the k-th
element of the discrete Fourier transform (DFT) sequence
associated to [a1, . . . , an].

The DFT sequence associated to [a1, . . . , an] is defined as

DFT[a1,...,an] = [µ0, . . . , µn−1 ] , with µk =
n−1∑
i=0

ai+1 ω
ik , k = 0, . . . , n−1

where ω = e
2πi
n = cos

(
2π
n

)
+ i sin

(
2π
n

)
is a primitive n-th root of

unity.
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PSD criterion

Williamson Hadamard matrices: 4 complementary sequences of
length n, (odd)
PAF constant: 0, PSD constant: 4n.

PAF (A, s)+PAF (B, s)+PAF (C , s)+PAF (D, s) = 0, s = 1, . . . ,
n − 1

2

PSD(A, s)+PSD(B, s)+PSD(C , s)+PSD(D, s) = 4n, s = 1, . . . ,
n − 1

2

if for a certain sequence A = [a1, . . . , an] there exists
s ∈ {1, . . . , n − 1} with the property that PSD(A, s) > 4n, then
this sequence cannot be used to construct 4 such complementary
sequences
Important Consequence: we can now decouple the PAF
equations, roughly corresponding to cutting down the complexity
by four.
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Claude Monet
Haystacks, End of Summer, (Meules, fin de l’été), 1891.

Oil on canvas. Musée d’Orsay, Paris, France.
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Compression of complementary sequences

Definition

Let A = [a0, a1, . . . , av−1] be a complex sequence of length

v = dm. Set a
(d)
j = aj + aj+d + . . .+ aj+(m−1)d , for

j = 0, . . . , d − 1. Then we say that the sequence

A(d) = [a
(d)
0 , a

(d)
1 , . . . , a

(d)
d−1] of length d is the m-compression of A.

PhD thesis of Yoseph Strassler, (1997), Bar-Ilan University, Israel.

Example

A = CW (24, 9) =
[0, 0, 0,−1,−1, 0, 0, 0, 0, 0, 1,−1, 0, 0, 0,−1, 1, 0, 0, 1, 0, 0,−1,−1]
m = 2, d = 12,  A(12) = [0, 0, 0,−2, 0, 0, 0, 1, 0, 0, 0,−2]
m = 3, d = 8,  A(8) = [1, 0, 1,−1,−1, 0,−1,−2]
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j = 0, . . . , d − 1. Then we say that the sequence

A(d) = [a
(d)
0 , a

(d)
1 , . . . , a

(d)
d−1] of length d is the m-compression of A.

PhD thesis of Yoseph Strassler, (1997), Bar-Ilan University, Israel.

Example

A = CW (24, 9) =
[0, 0, 0,−1,−1, 0, 0, 0, 0, 0, 1,−1, 0, 0, 0,−1, 1, 0, 0, 1, 0, 0,−1,−1]
m = 2, d = 12,  A(12) = [0, 0, 0,−2, 0, 0, 0, 1, 0, 0, 0,−2]
m = 3, d = 8,  A(8) = [1, 0, 1,−1,−1, 0,−1,−2]
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Theorem: Djokovic-Kotsireas (DCC 2012)

Let {Ai}i=1,...,t be t complementary sequences, of length v
each, with complex elements Ai = [ai0, ai1, . . . , ai ,v−1], for

i = 1, . . . , t and
t∑

i=1

PAFAi
= [α0, α, . . . , α︸ ︷︷ ︸

v−1 terms

].

Assume that v = dm and set a
(d)
ij =

ai ,j + ai ,j+d + · · ·+ ai ,j+(m−1)d , i = 1, . . . , t, j = 0, . . . , d − 1.

Then the t m-compressed sequences {A(d)
i }i=1,...,t , of length

d each, are also complementary

t∑
i=1

PAF
A

(d)
i

= [α0 + (m − 1)α,mα, . . . ,mα︸ ︷︷ ︸
d−1 terms

]

t∑
i=1

PSD
A

(d)
i

= [β0, β, . . . , β︸ ︷︷ ︸
d−1 terms

]
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Periodic Golay pairs of length 68

Consider the following two sequences of length 34 each, with
{−2, 0,+2} elements:

A(34) = [0, 0, 0, 2, 0, 0,−2, 0, 0, 0, 2,−2, 0, 0,−2, 0, 0, 2, 0, 0, 0, 2, 2,−2, 0, 0,−2, 0, 0, 2, 0, 2, 0, 2]

B(34) = [0, 0,−2, 2, 0, 2, 0,−2,−2, 0, 2, 2, 0, 2,−2, 0, 2, 0,−2, 2, 0, 2, 2, 0, 2, 0, 2, 2, 0,−2, 2, 0,−2,−2]

These two sequences satisfy the following properties:

1 PAF(A(34), s) + PAF(B(34), s) = 0, s = 1, . . . , 33;

2 PSD(A(34), s) + PSD(B(34), s) = 2 · 68 = 136, s = 1, . . . , 33;

3 PSD(A(34), 17) = 100 and PSD(B(34), 17) = 36;

4

34∑
i=1

A
(34)
i = 6 and

34∑
i=1

B
(34)
i = 10; 62 + 102 = 2 · 68

5 The total number of 0 elements in A(34) and B(34) is 34;

6 The total number of ±2 elements in A(34) and B(34) is 34;

7 A(34) contains 21 zeros and B(34) contains 13 zeros.
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Periodic Golay pairs of length 68

A(34) and B(34) are the 2-compressed sequences of two {−1,+1}
sequences of length 68 each, that form a particular periodic Golay
pair of length 68:

A =
− − + + − + − + − + + − − + − − + + − − − + + − − − − − − + − + ++
+ + − + + − − − + − + − + − − + − + + + + + + − + + − + + + + + −+

B =
− − − + + + − − − + + + + + − − + + − + − + + + + + + + − − + − −−
+ + − + − + + − − − + + − + − + + − − + + + + − + − + + + − + + −−

 Hadamard matrices of order 2 · 68

Reference

Djokovic, Dragomir; Kotsireas, Ilias; Recoskie, Daniel; Sawada, Joe
Charm bracelets and their application to the construction of
periodic Golay pairs. Discrete Appl. Math. 188 (2015), 32-40.
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The new petaflop Canadian HPC landscape

June 2018 top500.org list is out!

No 53, University of Toronto, Niagara, 60K cores

No 147, Simon Fraser University, Cedar, 59,776 cores

No 166, University of Waterloo, Graham, 51,200 cores

https://docs.computecanada.ca/wiki/Graham

Ilias S. Kotsireas Hard Combinatorial Problems: A Challenge for Satisfiability

top500.org
https://docs.computecanada.ca/wiki/Graham


The new petaflop Canadian HPC landscape

June 2018 top500.org list is out!

No 53, University of Toronto, Niagara, 60K cores

No 147, Simon Fraser University, Cedar, 59,776 cores

No 166, University of Waterloo, Graham, 51,200 cores

https://docs.computecanada.ca/wiki/Graham

Ilias S. Kotsireas Hard Combinatorial Problems: A Challenge for Satisfiability

top500.org
https://docs.computecanada.ca/wiki/Graham


The new petaflop Canadian HPC landscape

June 2018 top500.org list is out!

No 53, University of Toronto, Niagara, 60K cores

No 147, Simon Fraser University, Cedar, 59,776 cores

No 166, University of Waterloo, Graham, 51,200 cores

https://docs.computecanada.ca/wiki/Graham

Ilias S. Kotsireas Hard Combinatorial Problems: A Challenge for Satisfiability

top500.org
https://docs.computecanada.ca/wiki/Graham


The new petaflop Canadian HPC landscape

June 2018 top500.org list is out!

No 53, University of Toronto, Niagara, 60K cores

No 147, Simon Fraser University, Cedar, 59,776 cores

No 166, University of Waterloo, Graham, 51,200 cores

https://docs.computecanada.ca/wiki/Graham

Ilias S. Kotsireas Hard Combinatorial Problems: A Challenge for Satisfiability

top500.org
https://docs.computecanada.ca/wiki/Graham


The new petaflop Canadian HPC landscape

June 2018 top500.org list is out!

No 53, University of Toronto, Niagara, 60K cores

No 147, Simon Fraser University, Cedar, 59,776 cores

No 166, University of Waterloo, Graham, 51,200 cores

https://docs.computecanada.ca/wiki/Graham

Ilias S. Kotsireas Hard Combinatorial Problems: A Challenge for Satisfiability

top500.org
https://docs.computecanada.ca/wiki/Graham


2015 http://top500.org/

TIANHE-2 (MILKYWAY-2)
Site: National Super Computer Center, Guangzhou
Cores: 3,120,000
Linpack Perf (Rmax) 33,862.7 TFlop/s
Theoretical Peak (Rpeak) 54,902.4 TFlop/s
Memory: 1,024,000 GB
Processor: Intel Xeon E5-2692v2 12C 2.2GHz
Compiler: icc

2007: open problem, 250 ops  2015: ex. search in 10 minutes
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SAT encodings of Autocorrelation

D-optimal designs

S. Arunachalam, I. Kotsireas
Hard satisfiable 3-SAT instances via autocorrelation.
J. Satisf. Boolean Model. Comput. 10 (2016), pp. 11–22.

1 Two {±1} sequences of odd length n, with PAF constant 2
and PSD constant 2n − 2, Diophantine Equation
a2 + b2 = 4n − 2.

2 Tools: CSP, Tseitin transformation, comparators, half-adders,
full-adders, Matlab generator of 3-SAT instances

SC 2014 Vienna

Proceedings of SAT COMPETITION 2014
Solver and Benchmark Descriptions
Anton Belov, Daniel Diepold, Marijn J.H. Heule, and Matti
Järvisalo (editors)

Ilias S. Kotsireas Hard Combinatorial Problems: A Challenge for Satisfiability



SAT encodings of Autocorrelation

D-optimal designs

S. Arunachalam, I. Kotsireas
Hard satisfiable 3-SAT instances via autocorrelation.
J. Satisf. Boolean Model. Comput. 10 (2016), pp. 11–22.

1 Two {±1} sequences of odd length n, with PAF constant 2
and PSD constant 2n − 2, Diophantine Equation
a2 + b2 = 4n − 2.

2 Tools: CSP, Tseitin transformation, comparators, half-adders,
full-adders, Matlab generator of 3-SAT instances

SC 2014 Vienna

Proceedings of SAT COMPETITION 2014
Solver and Benchmark Descriptions
Anton Belov, Daniel Diepold, Marijn J.H. Heule, and Matti
Järvisalo (editors)

Ilias S. Kotsireas Hard Combinatorial Problems: A Challenge for Satisfiability



SAT encodings of Autocorrelation

D-optimal designs

S. Arunachalam, I. Kotsireas
Hard satisfiable 3-SAT instances via autocorrelation.
J. Satisf. Boolean Model. Comput. 10 (2016), pp. 11–22.

1 Two {±1} sequences of odd length n, with PAF constant 2
and PSD constant 2n − 2, Diophantine Equation
a2 + b2 = 4n − 2.

2 Tools: CSP, Tseitin transformation, comparators, half-adders,
full-adders, Matlab generator of 3-SAT instances

SC 2014 Vienna

Proceedings of SAT COMPETITION 2014
Solver and Benchmark Descriptions
Anton Belov, Daniel Diepold, Marijn J.H. Heule, and Matti
Järvisalo (editors)

Ilias S. Kotsireas Hard Combinatorial Problems: A Challenge for Satisfiability



SAT encodings of Autocorrelation

D-optimal designs

S. Arunachalam, I. Kotsireas
Hard satisfiable 3-SAT instances via autocorrelation.
J. Satisf. Boolean Model. Comput. 10 (2016), pp. 11–22.

1 Two {±1} sequences of odd length n, with PAF constant 2
and PSD constant 2n − 2, Diophantine Equation
a2 + b2 = 4n − 2.

2 Tools: CSP, Tseitin transformation, comparators, half-adders,
full-adders, Matlab generator of 3-SAT instances

SC 2014 Vienna

Proceedings of SAT COMPETITION 2014
Solver and Benchmark Descriptions
Anton Belov, Daniel Diepold, Marijn J.H. Heule, and Matti
Järvisalo (editors)

Ilias S. Kotsireas Hard Combinatorial Problems: A Challenge for Satisfiability



SAT encodings of Autocorrelation

D-optimal designs

S. Arunachalam, I. Kotsireas
Hard satisfiable 3-SAT instances via autocorrelation.
J. Satisf. Boolean Model. Comput. 10 (2016), pp. 11–22.

1 Two {±1} sequences of odd length n, with PAF constant 2
and PSD constant 2n − 2, Diophantine Equation
a2 + b2 = 4n − 2.

2 Tools: CSP, Tseitin transformation, comparators, half-adders,
full-adders, Matlab generator of 3-SAT instances

SC 2014 Vienna

Proceedings of SAT COMPETITION 2014
Solver and Benchmark Descriptions
Anton Belov, Daniel Diepold, Marijn J.H. Heule, and Matti
Järvisalo (editors)

Ilias S. Kotsireas Hard Combinatorial Problems: A Challenge for Satisfiability



SAT encodings of Autocorrelation

Motivational Quote

“From 100 variables, 200 clauses (early 90s) to 1,000,000 variables
and 5,000,000 clauses in 15 years”. In: Marijn J.H. Heule, Warren
A. Hunt Jr. Practical SAT Solving Course Notes, The University of
Texas at Austin, 2013

Williamson Hadamard matrices

Curtis Bright
Computational Methods for Combinatorial and Number Theoretic
Problems
PhD Thesis, 2017, University of Waterloo
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Example: Williamson Sequences of Order 3

Objective:

Find ±1 values for vars a0, a1, b0, b1, c0, c1, d0, d1 which
satisfy the constraint a0a1 + b0b1 + c0c1 + d0d1 + 2 = 0

Linearization:

Let p0 := a0a1, p1 := b0b1, p2 := c0c1, p3 := d0d1

The constraint now becomes p0 + p1 + p2 + p3 + 2 = 0

Rewrite as a Cardinality Constraint:

Since p0 + p1 + p2 + p3 + 2 = 0 and each pi ∈ {±1}, we
determine that #{ i : pi = 1 } = 1 and #{ i : pi = −1 } = 3

Determining a Conflict Clause:

Say the SAT solver finds a partial assignment with
{p0 = 1, p1 = −1, p2 = 1}
Since #{ i : pi = 1 } > 1, we know that this assignment can
never result in an actual solution to the problem.
We tell the SAT solver to learn the constraint

¬({p0 = 1} ∧ {p2 = 1})
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The constraint now becomes p0 + p1 + p2 + p3 + 2 = 0

Rewrite as a Cardinality Constraint:

Since p0 + p1 + p2 + p3 + 2 = 0 and each pi ∈ {±1}, we
determine that #{ i : pi = 1 } = 1 and #{ i : pi = −1 } = 3

Determining a Conflict Clause:

Say the SAT solver finds a partial assignment with
{p0 = 1, p1 = −1, p2 = 1}
Since #{ i : pi = 1 } > 1, we know that this assignment can
never result in an actual solution to the problem.
We tell the SAT solver to learn the constraint

¬({p0 = 1} ∧ {p2 = 1})
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SAT encoding of PSD criterion
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MathCheck
https://sites.google.com/site/uwmathcheck

MathCheck main reference

Zulkoski, Edward; Bright, Curtis; Heinle, Albert; Kotsireas, Ilias;
Czarnecki, Krzysztof; Ganesh, Vijay
Combining SAT solvers with computer algebra systems to verify
combinatorial conjectures
J. Automat. Reason. 58 (2017), no. 3, pp. 313–339
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Conjectures studied by MathCheck

1 Ruskey-Savage conjecture (1993): Any matching of a
hypercube can be extended to a Hamiltonian cycle.
MathCheck: Conjecture holds for hypercubes of dimension
d ≤ 5.

2 Norine conjecture (2008): There always exists a
monochromatic path between two antipodal vertices in an
edge-antipodal coloring of a hypercube.
MathCheck: Conjecture holds for hypercubes of dimension
d ≤ 6.

3 Hadamard conjecture (1893): Hadamard matrices exist for all
orders divisible by 4.
MathCheck: Williamson-generated Hadamard matrices exist
for all orders 4n with n < 35 but not for n = 35. They exist
for n = 63 (open problem)

4 Complex Golay conjecture (2002): Complex Golay sequences
do not exist for order 23.
MathCheck: Confirmation of the conjecture
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Other significant Hard Combinatorial Problems

Marijn J. H. Heule (2018). Schur Number Five. Proceedings
of AAAI-18, pp. 6598–6606.

Marijn J. H. Heule (2018). Computing Small Unit-Distance
Graphs with Chromatic Number 5. To appear in
Geombinatorics XXVIII(1)

Marijn J. H. Heule, Oliver Kullmann, and Armin Biere (2018).
Cube and Conquer for Satisfiability. Handbook of Parallel
Constraint Reasoning, Chapter 2, pp. 31-59.

Marijn J. H. Heule (2017). Avoiding Triples in Arithmetic
Progression. Journal of Combinatorics 8(3): 391–422
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On-going and future work

expand the reach of MathCheck to other
autocorrelation-based combinatorial problems

improve the quality of the encodings

incorporate more effectively the consequences of PSD filtering
and compression

apply the Cube and Conquer methodology to
autocorrelation-based combinatorial problems

improve our understanding of the application of Programmatic
SAT to autocorrelation-based combinatorial problems

Is this now the limit of what we can do? It may very well be, but
certainly advances will not be made by people who think they
cannot succeed.

Carl Pomerance
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