
Research Statement of Curtis Bright
I work on developing efficient search algorithms to solve mathematical problems
through satisfiability checking and computer algebra—blurring the lines between the
solvable and really hard problems. To this end, my research combines the fields of
artificial intelligence, high performance computing, and symbolic computation, and
has lead to the development of MathCheck, an award-winning system that has resolved
a variety of previously open problems in mathematics. The success of MathCheck
has been achieved by combining two independently successful paradigms that have
traditionally been separate—satisfiability solving (SAT) and symbolic computation
using a computer algebra system (CAS).

This approach is effective because it combines the best of both the SAT and CAS
worlds. SAT solvers are powerful search engines that can solve many important and
difficult problems such as verifying the correctness of a microprocessor’s design. De-
spite this power, SAT solvers do not perform well on problems that require advanced
mathematics. On the other hand, computer algebra systems perform well on mathe-
matical problems but are not optimized for searching. Many combinatorial problems
that require both powerful search and mathematics have been out of reach of present
methods—but the SAT+CAS paradigm has the potential to make such problems feasi-
ble. Because of the huge number of mathematical problems that stand to benefit from
efficient search routines, the SAT+CAS paradigm has received a significant amount of
attention from academia and industry [2, 20, 22]. Given my expertise in both SAT and
CAS, I have been at the forefront of this movement, using the SAT+CAS paradigm to
solve problems too large to solve just a few years ago [14].

SAT+CAS The SAT+CAS method is still in its infancy, having only been first pro-
posed in 2015 [1, 24]. Despite this, it has already had some great successes, including
finding the smallest counterexample of the Williamson conjecture—a problem that was
open since 1944 [10]. I used MathCheck to construct over 100,000 new Williamson
matrices [12, 13, 15] in all even orders up to 70—prior to my work exhaustive searches
had only been completed up to order 18. MathCheck has also been used to solve new
cases of the Ruskey–Savage and Norine conjectures from 1993 and 2008 [23], verified
conjectures of Craigen, Holzmann, and Kharaghani from 2002 [17, 18], found three
new counterexamples to a conjecture on good matrices (first studied in 1971) [8], and
constructed the largest currently known best matrices (first studied in 2001) [9].

These results have appeared in some of the most prestigious artificial intelligence,
automated reasoning, and symbolic computation journals and conferences. For ex-
ample, my work appeared in the 2018 and 2019 Association for the Advancement of
Artificial Intelligence (AAAI) conferences [8, 12] (having an acceptance rate of around
16%). Two of my publications were also honoured by being invited papers—first



at Computer Algebra and Scientific Computing [10] and second in the Journal of
Automated Reasoning [23].

Recently, I have been applying MathCheck to verify the solution of Lam’s Problem
(studied since the 1800s and solved in 1989) of showing that projective planes of order
ten do not exist. So far, this result has only been achieved using special-purpose search
code that is difficult to write and even more difficult to verify. In 2011, a verification of
a subcase of Lam’s problem required 16,000 hours of computing. MathCheck is able to
complete the verification of this subcase in just 30 hours [4], and additionally produces
a certificate that allows the result to be verified by an independent third party [5, 6].
The varied conjectures and problems in which the SAT+CAS method has already found
application speaks to its versatility and its great potential to push the state-of-the-art in
many more applications for years to come.

Algorithmic Number Theory In 2016, I solved the problem (open since 2000) of
computing the set of minimal primes in many different bases [7] including all bases up
to 16. In particular, I solved the problem in base 23, showing that the largest minimal
prime in base 23 has over a million digits when written in base 10. This number was
the tenth largest known probable prime ever discovered at the time.

Furthermore, my first ISSAC paper developed a new algorithm for solving a vector
version of the rational reconstruction problem from computational number theory [19].
I also developed a new method of solving Ramanujan’s square equation that Noam
Elkies called “even more elementary” than the previously known solution [3].

Information Theory My work has resulted in new theoretical advances in informa-
tion theory. In particular, I constructed the first infinite family of odd-perfect quaternion
sequences, the second infinite family of perfect quaternion sequences, and the first
proof that Williamson matrices exist in all orders that are powers of two [16].

Future and Current Research
My current and upcoming plans focus on improving the SAT+CAS method and extend-
ing its application to new problem domains. Currently, I am working on improving the
ability of MathCheck to produce nonexistence certificates, using as a case study the
domain of finite geometry. Certificates are particularly important in this field, as many
prominent results (such as the solution of Lam’s problem) rely on computer searches
that have never been verified. Additionally, many problems in finite geometry are beg-
ging to be solved: the projective planes in order eleven have never been characterized,
and it is unknown if any projective planes of order twelve exist. Other conjectures
from the literature where the SAT+CAS method stands a good chance of producing
new results involve weighing matrices, G-matrices, D-optimal designs, propus arrays,



Hadamard matrices with 2 circulant cores, and Turyn sequences—there is no shortage
of combinatorial problems that mathematicians and engineers care about where more
powerful solvers can make a big impact.

I believe we have just scratched the surface of the kinds of problems that can be
solved by coupling powerful search, computer algebra, and high performance comput-
ing. Given the power of the SAT+CAS paradigm to make combinatorial search efficient
for many applications (especially where sophisticated mathematical calculations are
essential), I plan to apply my methods to problems such as analyzing cryptosystems,
circuit optimization, and graph theory problems like characterizing the strongly regular
graphs. Given the enormous number of digital electronic circuits produced every year,
a search tool that could find more efficient ways of designing Boolean circuits would
be worth hundreds of millions of dollars to the world’s economy [21]. As our search
techniques become more powerful it excites me to think that one day when designing a
electronic circuit a computer engineer may well use a SAT+CAS solver to find a more
efficient implementation of that circuit.

Finally, I plan to continue exploring industrial applications of combining computer
algebra and SAT solvers. As an example, I have worked with Maplesoft (the developers
of the computer algebra system Maple) who supported research dedicated to improving
the performance of discrete optimization routines in Maple. My research has already
been greatly beneficial in this collaboration, resulting in dramatically improved ver-
sions of Maple’s chromatic number and maximum clique commands. A number of
benchmarks that could not be solved using the previous version of Maple in hours can
now be solved in seconds [11].
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