
Finding generalized near-repdigit squares

1 Introduction

A repdigit to base b is a natural number which consists of a single repeated digit
when expressed in base b. A k-digit base b repdigit has the general form

aaa . . . aaa︸ ︷︷ ︸
k

b = a
bk − 1
b− 1

with the repeated digit 0 ≤ a < b.
Obláth’s problem is to determine all decimal repdigits which are also perfect

powers. Trivially, the single-digit perfect powers 4, 8 and 9 satisfy this criteria.
Obláth [1] proved that any other such number must be a repunit, that is, having
every digit equal to 1. Bugeaud and Mignotte [2] completed his problem by
showing a repunit in base 10 cannot be a perfect power.

Similarly, a near-repdigit to base b is a number having all digits but one
equal in base b. Generalizing this, we define an n-near-repdigit to be a number
with all equal digits except for an n digit streak of a different digit. A k-digit
n-near-repdigit to base b has the general form

aa . . . aa︸ ︷︷ ︸
k−n−m

cc . . . cc︸ ︷︷ ︸
n

aa . . . aa︸ ︷︷ ︸
m

b = a
bk − 1
b− 1

+ (c− a)bm bn − 1
b− 1

(1)

with k ≥ n + m, a 6= c and 0 ≤ a, c < b.
Gica and Panaitopol [3] determined all square near-repdigits in base 10. Our

objective was to automate the process of finding all n-near-repdigits in any base
b, for given n and b. A Maple program was developed which enumerates the
possible cases and then attempts to find an upper bound on the n-near-repdigit
digit length. If successful, the output consists of every satisfying number written
in base b and an abbreviated justification why each case admits only these
solutions. Any problem cases are also noted.

2 Enumerating possible cases

First, we consider all possibilities for the last d digits (base b) of any square
number. Every natural number can be written in the form bdk + r, for some k
and 0 ≤ r < bd. Since (bdk + r)2 ≡ r2 (mod bd), the final d digits of (bdk + r)2
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and r2 are the same. Thus by checking if the last d digits of r2 (for 0 ≤ r < bd)
are also final digits of some n-near-repdigit, we can determine the possible forms
for any square n-near-repdigit.

Rather than checking r2 for all 0 ≤ r < bd, the search can be simplified if
we know the possible r’s which yield acceptable d− 1 final digits. We “extend”
such an r by one digit by forming bd−1k + r for each 0 ≤ k < b. Since every
natural number can be written as bdk′ + bd−1k + r ≡ bd−1k + r (mod bd), the
possible last d digits for square n-near-repdigits of this form are the last d digits
of (bd−1k + r)2. We simply compute this for 0 ≤ k < b and record for which k
(if any) yield digits of some n-near-repdigit. By starting from a small number
of digits and applying this repeatedly, every possible case for the last d digits
may be found without searching over every 0 ≤ r < bd.

Once the possibilities for the last d digits have been found, it is often pos-
sible to immediately identify the repeating digit (denoted a), the differing digit
(denoted c), and the position at which the streak of different digits begins (de-
noted m). Sometimes it is not possible to distinugish the repeating digit from
the differing digit1, but this problem can be solved by choosing a larger value
for d. A more serious problem occurs when the digits in a possible case are all
the same; if d > n then this digit cannot be c (it must be a), but it is unknown
what c and (more importantly) m are (though m ≥ d).

3 Solving cases

3.1 Trivial cases

The case where the repeated digit is 0 is easily solved, since then an n-near-
repdigit has the form cbm bn−1

b−1 , which is a perfect square when m is even and
c bn−1

b−1 is a perfect square, or when m is odd and cb bn−1
b−1 is a perfect square. Both

cases are checked for each 0 < c < b. When successful, they yield the family of
solutions cb2i bn−1

b−1 or cb2i−1 bn−1
b−1 for i > 0.

3.2 Remaining cases

We start knowing b and n, and from Section 2 we found all possible combinations
of a, c and m. Thus, we now need to find values of k such that (1) is a perfect
square.

3.2.1 Simple test

Let Ak represent the k-digit n-near-repdigit of the case we are testing. Writ-
ing Ak in terms of Ak−1 we find the recurrence relation Ak = bAk−1 + a −
(c − a)bm(bn − 1). Thus for any h the sequence {Ak mod h}∞k=n+m must be
periodic with period at most h. By computing this sequence for various primes

1For example, if the last 4 digits of a 3-near-repdigit are 1222, it could be of the form
11 · · · 11222 or 22 · · · 22111222.
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(or prime powers) h, it is sometimes possible to find a sequence whose period is
entirely composed of quadratic nonresidues (mod h).

3.2.2 Main test setup

Multiplying (1) by b−1, we find that we want to solve the Diophantine equation

(b− 1)x2 = abk − a + (c− a)bm(bn − 1)

for x and k. We split this into two cases, for even and odd k (say k = 2M
and k = 2M + 1). To ensure that the coefficient on x2 is a perfect square we
multiply by b−1 again (this step can be skipped if

√
b− 1 ∈ Z), and then make

the following substitutions:

y = (b− 1)x

z = bM

N = (b− 1)
(
(c− a)bm(bn − 1)− a

)
Then we want to find the solutions (y, z) for the pair of equations

y2 − a(b− 1)z2 = N and y2 − a(b− 1)bz2 = N,

thus reducing the problem to solving equations of the form

x2 −Dy2 = N. (2)

3.2.3 Solving x2 −Dy2 = N

When D is a perfect square then (2) is a difference of squares and factorizes(
x +

√
Dy

)(
x −

√
Dy

)
= N , thus all solutions can be found by examining the

divisors of N . If N = d1d2 then we have x = (d1 + d2)/2 and y = (d1 − d2)/2,
although this will only be an integer solution when d1 ≡ d2 (mod 2).

When D is not a perfect square then (2) is a generalized form of Pell’s
equation

x2 −Dy2 = 1, (3)

which plays an important role when solving (2). Note that if (x, y) is a solution
of (2) and (u, v) is a solution of (3), then (ux+vyD, uy+vx) is also a solution of
(2). Using this fact, solutions of (2) can be partitioned into equivalence classes:
we say that (x1, y1) ≡ (x2, y2) if there exists some solution (u, v) of (3) such
that (ux1 + vy1D,uy1 + vx1) = (x2, y2).

We define the primitive solution to be the smallest positive solution of (3); it
may be computed by examining convergents to

√
D as described in [4] and [5].

Also, for each class of solutions of (2) we define the fundamental solution to be
the solution (x, y) with the smallest y ≥ 0 in the class. The following theorem
demonstrates how all solutions to (2) may be determined once all fundamental
solutions are known.
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Theorem 1 Let (px, py) be the primitive solution of x2−Dy2 = 1, and (fx, fy)
be a fundamental solution of x2−Dy2 = N . Define the pair of linear recurrence
relations:

Xi = 2px Xi−1 −Xi−2

Yi = 2px Yi−1 − Yi−2
(4)

with initial conditions

X0 = fx X1 = pxfx + pyfyD
Y0 = fy Y1 = pxfy + pyfx.

Then all solutions to x2−Dy2 = N in the class of (fx, fy) are given by ±(Xi, Yi)
for i ∈ Z.

(Xi, Yi) is well-defined for i < 0 since rearranging (1) yields

Xi = 2px Xi+1 −Xi+2

Yi = 2px Yi+1 − Yi+2.

The theorem follows from Remark 6.2.1 in Mollin [4] after demonstrating that

Xi + Yi

√
D =

(
px + py

√
D

)i (
fx + fy

√
D

)
, (5)

which can be established from the closed-form expressions for Xi and Yi.
In the standard fashion, we find that for both recurrences the characteristic

polynomial is t2 − 2pxt + 1 = 0 and it has roots px ±
√

p2
x − 1 = px ± py

√
D.

(The latter expression following from the definition p2
x−Dp2

y = 1.) After solving
for the proper coefficients we find the closed-form expressions:

Xi =
fx + fy

√
D

2

(
px + py

√
D

)i

+
fx − fy

√
D

2

(
px − py

√
D

)i

,

Yi =
fx + fy

√
D

2
√

D

(
px + py

√
D

)i

− fx − fy

√
D

2
√

D

(
px − py

√
D

)i

.

And (5) immediately follows.
Then it is necessary to find all fundamental solutions to (2). The following

bounds are given by Robertson [5], very similar to those in Mollin [4].

Theorem 2 Let (px, py) be the primitive solution of x2−Dy2 = 1, and (fx, fy)
be a fundamental solution of x2 −Dy2 = N . Then

0 ≤ fy ≤
√

N(px−1)
2D if N > 0,√

|N |
D ≤ fy ≤

√
|N |(px+1)

2D if N < 0.

Then for all integers y within these bounds we check if
(√

Dy2 + N, y
)

is an
integer solution, in which case

(
±

√
Dy2 + N, y

)
are both fundamental solu-

tions (unless they belong to the same class—in which case the class is called
ambiguous and we choose the fundamental solution to have x > 0).
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3.2.4 Comparing y2 −Dz2 = N solutions with z = bM

After solving (2) we want to be able to check which solutions actually correspond
with n-near-repdigits. Because of our choosen substitution, z must be some
power of b. We will attempt to show that z cannot be a power of b when z is
larger than some explicitly computed bound.

Let z1(h) be the sequence {bi mod h}∞i=0, this sequence remains the same
while solving each n-near-repdigit case. Also, let z2(h) be the sequence {Zi mod
h}∞i=0, where Zi represents the recurrence relation in Theorem 1 applied to
y2 − Dz2 = N , the relevant equation for whichever case is currently trying to
be solved. It is obvious that both z1(h) and z2(h) must be periodic for all h;
the following propositions are more exact.

Proposition 1 Let {pi} be the prime factors of b; write h = h′
∏

pei
i , where

gcd(h, h′) = 1. Then the pre-period of z1(h) is given by max{ei} and the period
of z1(h) is given by ordh′(b).

Proposition 2 There is no pre-period of z2(h) for any h, and the period of
z2(h) is no larger than 2h.

Proof. Let s and t be the pre-period and period, respectively, of z1(h). Then
s ≥ 0 and t > 0 are the smallest integers such that bs+t ≡ bs (mod h). This is
equivalent to the system of simultaneous congruences2:

bs+t ≡ bs (mod h′)
bs+t ≡ bs (mod pei

i )

Dividing by coprime factors, this reduces to:

bt ≡ 1 (mod h′)
ps+t

i ≡ ps
i (mod pei

i )

Since t > 1 the last congruence implies ps
i ≡ 0 (mod pei

i ). The smallest s such
that this is true for all {pi} will be max{ei}. And the smallest t such that bt ≡ 1
(mod h′) is ordh′(b) by definition.

For the pre-period of z2(h), as already pointed out, the recurrence Zi is
bi-directional so that you can determine a term in z2(h) based on terms that
succeed it in the sequence. Thus, the periodicity that occurs must also extend
backwards.

Let k(h) be the period of z2(h). If we write h =
∏

qfi

i where {qi} are the
prime factors of h, then k(h) = lcm

{
k
(
qfi

i

)}
. The proof is similar to some found

in [6].
Once we have found the pre-period and period length for both z1(h) and

z2(h), all that remains is to compare the approapriate terms in the two sequences
and find some h such that the terms found in the repeating portion of z1(h)

2For conciseness, only the congruence for the general case pi is shown, but it should be
understood that there will be a single congruence for each prime factor.
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and those in the repeating portion of z2(h) have no elements in common. The
entire pre-period of z1(h) also must be checked for solutions. Although finding
a suitable h is not difficult for most equations, unfortunately no h was found in
some cases, for example in (3x)2 − 3(4M )2 = 33.

4 Example Results

All solutions to the near-repdigit square problem:

BASE 2:
only the trivial family 102i for i > 0
BASE 6:
13, 24, 41, 121, 144, 244, 441, 4424
and the trivial families 102i, 4 · 102i for i > 0
BASE 10:
16, 25, 36, 49, 64, 81, 121, 144, 225, 441, 484, 676, 1444, 44944
and the trivial families 102i, 4 · 102i, 9 · 102i for i > 0

All solutions to the 2-near-repdigit square problem:

BASE 2:
100, 1001, 11001, 1111001
BASE 6:
100, 144, 244, 400, 441, 3344, 11441
BASE 10:
100, 144, 225, 400, 441, 900, 7744, 11881, 55225

All solutions to the 3-near-repdigit square problem:

BASE 2:
110001
BASE 6:
none
BASE 10:
1444
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