A New Form of Williamson's Product Theorem

Curtis Bright
University of Waterloo

Abstract

A form of Williamson's product theorem which applies to Williamson matrices of even order is presented.

Four symmetric and circulant $n \times n$ matrices with ± 1 entries are known as Williamson matrices if they satisfy

$$
A^{2}+B^{2}+C^{2}+D^{2}=4 n I_{n}
$$

where I_{n} is the $n \times n$ identity matrix. Such matrices were first introduced by Williamson, who showed that they can be used to constuct a Hadamard matrix of order $4 n$ and derived properties which such matrices must satisfy (Williamson 1944). Since Williamson matrices are circulant they are defined in terms of their first row, e.g., $A=\operatorname{circ}\left(a_{0}, \ldots, a_{n-1}\right)$. Because of this it is convenient to instead think of A, B, C, D as four sequences of length n and refer to them as Williamson sequences (Bright 2017).

Using this terminology, Williamson proved the following result about the entries of Williamson sequences which we call Williamson's product theorem.
Theorem 1. If A, B, C, D is a Williamson sequence of odd order n then $a_{i} b_{i} c_{i} d_{i}=-a_{0} b_{0} c_{0} d_{0}$ for $1 \leq i<n / 2$.

We now prove a version of this theorem for even n :
Theorem 2. If A, B, C, D is a Williamson sequence of even order $n=2 m$ then $a_{i} b_{i} c_{i} d_{i}=a_{i+m} b_{i+m} c_{i+m} d_{i+m}$ for $0 \leq i<m$.

Proof. We can equivalently consider members of Williamson sequences to be elements of the group ring $\mathbb{Z}\left[C_{n}\right]$ where C_{n} is a cyclic group of order n with generator u. In such a formulation we have $X=x_{0}+x_{1} u+\cdots+x_{n-1} u^{n-1}$ and Williamson sequences are quadruples (A, B, C, D) whose members have ± 1 coefficients, whose coefficients form symmetric sequences of length n, and which satisfy

$$
A^{2}+B^{2}+C^{2}+D^{2}=4 n
$$

Let $P_{X}=\sum_{x_{i}=1} u^{i}$ (with the sum over $0 \leq i<n$) and let p_{X} denote the number of positive coefficients in X. As shown in (Hall 1998, 14.2.20) we have that $P_{A}^{2}+P_{B}^{2}+P_{C}^{2}+P_{D}^{2}$ is equal to

$$
\begin{equation*}
\left(p_{A}+p_{B}+p_{C}+p_{D}-n\right) \sum_{i=0}^{n-1} u^{i}+n \tag{1}
\end{equation*}
$$

Furthermore, by the fact that $P_{X}^{2} \equiv \sum_{x_{i}=1} u^{2 i}(\bmod 2)$, $P_{A}^{2}+P_{B}^{2}+P_{C}^{2}+P_{D}^{2}$ is congruent to

$$
\begin{equation*}
\sum_{a_{i}=1} u^{2 i}+\sum_{b_{i}=1} u^{2 i}+\sum_{c_{i}=1} u^{2 i}+\sum_{d_{i}=1} u^{2 i}(\bmod 2) \tag{2}
\end{equation*}
$$

Now, if n is even then (1) reduces to

$$
\left(p_{A}+p_{B}+p_{C}+p_{D}\right) \sum_{i=0}^{n-1} u^{i}
$$

so all coefficients are the same mod 2 . Since by (2) the coefficients with odd index are $0 \bmod 2$, all coefficients in (1) and (2) must be $0 \bmod 2$.

Note that $u^{k}=u^{2 i}$ has exactly 2 solutions for given even k with $0 \leq k<n$, namely, $i=k / 2$ and $i=(k+n) / 2$. Then (2) can be rewritten as

$$
\sum_{a_{k / 2}=1} u^{k}+\sum_{a_{(k+n) / 2}=1} u^{k}+\cdots+\sum_{d_{(k+n) / 2}=1} u^{k} \quad(\bmod 2)
$$

where the sums are over the even k with $0 \leq k<n$. Since each coefficient must be $0 \bmod 2$, there must be an even number of 1 s among the entries $a_{k / 2}, a_{(k+n) / 2}, \ldots, d_{(k+n) / 2}$ for each even k with $0 \leq k<n$, i.e.,

$$
a_{k / 2} a_{(k+n) / 2} b_{k / 2} b_{(k+n) / 2} c_{k / 2} c_{(k+n) / 2} d_{k / 2} d_{(k+n) / 2}=1 .
$$

The required result is a rearrangement of this and rewriting with the definition $i=k / 2$.

Following (Đoković and Kotsireas 2015, Def. 3), the 2 -compression of the sequence $A=\left[a_{0}, \ldots, a_{n-1}\right]$ of even length $n=2 m$ is the sequence A^{\prime} of length m whose i th entry is $a_{i}^{\prime}:=a_{i}+a_{i+m}$ for $0 \leq i<m$. This definition allows us to state Theorem 2 in an alternative useful form.
Corollary 1. If $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ is a 2-compression of a Williamson sequence of even order $n=2 m$ then $A^{\prime}+B^{\prime}+$ $C^{\prime}+D^{\prime} \equiv[0, \ldots, 0](\bmod 4)$.

Proof. Let N_{+}and N_{-}denote the number of 1 s and -1 s in the eight Williamson sequence entries $a_{i}, b_{i}, c_{i}, d_{i}, a_{i+m}$, b_{i+m}, c_{i+m}, and d_{i+m}, where $0 \leq i<m$. We have that $N_{+}+N_{-}=8$ and that $N_{+}-N_{-}=a_{i}^{\prime}+b_{i}^{\prime}+c_{i}^{\prime}+d_{i}^{\prime}$ (the sum of the above eight Williamson sequence entries). Thus the i th entry of $A^{\prime}+B^{\prime}+C^{\prime}+D^{\prime}$ is $N_{+}-N_{-}=$ $N_{+}-\left(8-N_{+}\right)=2 N_{+}-8 \equiv 0(\bmod 4)$ since Theorem 2 implies that N_{+}must be even.

References

Bright, C. 2017. Computational Methods for Combinatorial and Number Theoretic Problems. Ph.D. Dissertation, University of Waterloo.
Đoković, D. Ž., and Kotsireas, I. S. 2015. Compression of periodic complementary sequences and applications. Designs, Codes and Cryptography 74(2):365-377.
Hall, M. 1998. Combinatorial theory, volume 71. John Wiley \& Sons.
Williamson, J. 1944. Hadamard's determinant theorem and the sum of four squares. Duke Math. J 11(1):65-81.

