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Abstract. We present for the first time a complete enumeration of
Williamson matrices of even order n < 45. The enumeration method
relies on the recently proposed SAT+CAS paradigm of coupling SAT
solvers with computer algebra systems, thereby taking advantage of the
advances made in both the field of satisfiability checking and the field
of symbolic computation. Our results show that Williamson matrices of
even order tend to be more abundant than those of odd orders; such
matrices exist for every even order in which we performed a search but
they do not exist for some odd orders.

1 Introduction

In 1944, the mathematician John Williamson introduced the type of matrix
which now bear his name in the process of studying the Hadamard conjecture
from combinatorial design theory [20]. This conjecture states that Hadamard
matrices—matrices H ∈ {±1}n×n which satisfy HHT = nIn—exist for all orders
n divisible by 4. Williamson defined a new collection of matrices which have
since been extensively used to construct Hadamard matrices of many different
orders, including some orders for which no other method has been able to work
successfully. Williamson matrices have also been studied for their application to
long-range digital communication systems and this motivated mathematicians
from NASA’s Jet Propulsion Laboratory to construct Williamson matrices of
order 23 in 1961 [5].

Although Williamson defined his matrices for both even and odd orders, the
even case has only been studied quite recently [7], though generalizations of
Williamson matrices (sometimes referred to as Williamson-type matrices) have
formerly been studied in even orders [18]. The algorithms used for enumerating
Williamson matrices prior to 2016 (e.g., [4,13,16]) rely on properties only available
in odd orders making it impossible to use them for enumerating Williamson
matrices of even order. In light of this, it is interesting to develop algorithms for
enumerating Williamson matrices which also work for even orders.

Unfortunately, it would not be possible to resolve the Hadamard conjecture
by only studying Williamson matrices of even order, since Williamson matrices
of even order can only be used to construct Hadamard matrices of orders which
are divisible by 8. However, it is still not even known if Hadamard matrices exist



for all orders divisible by 8, so nevertheless studying Williamson matrices of even
order has the potential to shed light on the Hadamard conjecture as well.

On the other hand, if it was possible to show that Williamson matrices exist
for all odd orders this would resolve the Hadamard conjecture, leading to the
related conjecture that Williamson matrices exist in all odd orders. As Richard
Turyn wrote [17]:

It has been conjectured that an Hadamard matrix of this [Williamson]
type might exist of every order 4t, at least for t odd.

However, this conjecture was shown to be false by the mathematician Dragomir
Ðoković who showed that such matrices do not exist in order t = 35 [16]. Later,
Holzmann, Kharaghani, and Tayfeh-Rezaie [13] showed that Williamson matrices
also do not exist for orders 47, 53, and 59 but exist for all other odd orders
under 60.

In this paper we provide for the first time3 an enumeration of Williamson
matrices in orders which are not odd. In doing so, we uncover an interesting but
so far unexplained phenomenon that there tend to be more Williamson matrices
in even orders than there are in odd orders. In fact, Williamson matrices exist
for every even order in which we performed a search. In light of this, Turyn’s
remark stating that the Williamson conjecture should apply “at least for t odd”
seems unnecessary. This leads us to propose what could be called the updated
Williamson conjecture:

Conjecture 1. Williamson matrices of order t exist for all even t.

By itself, enumerating Williamson matrices of even order will never prove
Conjecture 1. However, our enumeration could potentially uncover structure in
Williamson sequences which might then be exploited to prove Conjecture 1, and
if Williamson matrices of even order turn out to be very plentiful this gives some
evidence for the truth of Conjecture 1.

The method we use to enumerate Williamson matrices of even order is based
on the recently proposed SAT+CAS paradigm which uses tools and techniques
from the fields of satisfiability checking and symbolic computation, as described in
Section 3. As argued by the SC2 project [2], these fields are complementary and
by combining the tools of both fields (i.e., computer algebra systems and SAT
solvers) in the right way we can solve problems more efficiently than we could by
applying the tools of either field in isolation. Our method will be described in
Section 4, followed by our results in Section 5. In particular, our results include
the total number of Williamson matrices which exist in all even orders n < 45.
These counts are given up to an equivalence which is described, along with many
other properties of Williamson matrices, in Section 2.

2 Background

In this section we give the background on Williamson matrices and their properties
which is necessary to understand the remainder of the paper.
3 This content originally appeared in the PhD thesis of the first author [6].



2.1 Williamson matrices

The definition of Williamson matrices is motivated by the following theorem that
Williamson used for constructing Hadamard matrices [20]:

Theorem 1. Let n ∈ N and let A, B, C, D ∈ {±1}n×n. Further, suppose that

1. A, B, C, and D are symmetric;
2. A, B, C, and D commute pairwise (i.e., AB = BA, AC = CA, etc.);
3. A2 +B2 + C2 +D2 = 4nIn, where In is the identity matrix of order n.

Then 
A B C D
−B A −D C
−C D A −B
−D −C B A


is a Hadamard matrix of order 4n.

To make the search for such matrices more tractable, and in particular to
make condition 2 trivial, Williamson also required the matrices A, B, C, D to
be circulant matrices, as defined below.

Definition 1. An n×n matrix A = (aij) is circulant if aij = a0,(j−i) mod n for
all i and j ∈ {0, . . . , n− 1}.
Circulant matrices A, B, C, D which satisfy the conditions of Theorem 1 are
known as Williamson matrices in honor of Williamson. Since Williamson matrices
are circulant they are defined in terms of their first row [x0, . . . , xn−1] and since
they are symmetric this row must be a symmetric sequence, i.e., satisfy xi = xn−i
for 1 ≤ i < n. Given these facts, it is often convenient to work in terms of
sequences rather than matrices. When working with sequences in this context
the following function becomes very useful.

Definition 2. The periodic autocorrelation function of A = [a0, . . . , an−1] is
the function given by

PAFA(s) :=

n−1∑
k=0

aka(k+s) mod n.

We also use PAFA to refer to a sequence containing the values of the above
function (which has period n), i.e.,

PAFA :=
[
PAFA(0), . . . ,PAFA(n− 1)

]
.

This function allows us to easily give a definition of Williamson matrices in terms
of sequences.

Definition 3. Four symmetric sequences A, B, C, D ∈ {±1}n are called
Williamson sequences if they satisfy the equations

PAFA(s) + PAFB(s) + PAFC(s) + PAFD(s) = 0 (1)

for s = 1, . . . , bn/2c.



It is straightforward to see that there is an equivalence between such sequences
and Williamson matrices (e.g., see [6, §3.1]) so for the remainder of this paper we
will work with these sequences instead of Williamson matrices. Note that by PAF
symmetry and periodicity one has that Williamson sequences satisfy (1) for all
s 6≡ 0 (mod n). In the remaining case when s ≡ 0 (mod n) one trivially has that

PAFA(s) + PAFB(s) + PAFC(s) + PAFD(s) = 4n.

2.2 Williamson equivalences

Given a Williamson sequence A, B, C, D of even order n, there are four types
of invertible operations which can be applied to produce another Williamson
sequence. These operations allow us to define equivalence classes of Williamson
sequences. If a single Williamson sequence is known it is easy to generate all
Williamson sequences in the same equivalence class, so it suffices to search for
Williamson sequences up to these equivalence operations.

1. (Reorder) Reorder the sequences A, B, C, D in any way.
2. (Negate) Negate all the entries of any of A, B, C, or D.
3. (Shift) Cyclically shift all the entries in any of A, B, C, or D by an offset

of n/2.
4. (Permute entries) Apply an automorphism of the cyclic group Cn to all the

entries of each of A, B, C, and D simultaneously.

These equivalence operations are well-known [13] except for the shift operation
which has not traditionally been used because it only applies when n is even. In
fact, it was overlooked until our enumeration method produced many sequences
which were cyclic shifts of each other.

2.3 Fourier analysis

In this section we give an alternative characterization of Williamson sequences
using concepts from Fourier analysis. First, we recall the definition of the discrete
Fourier transform and use it to state the definition of the power spectral density.

Definition 4. The discrete Fourier transform of the sequence A = [a0, . . . , an−1]
is the function

DFTA(s) :=

n−1∑
k=0

ake
2πiks/n

for s = 0, . . . , n − 1. Equivalently, we may also consider the discrete Fourier
transform to be a sequence containing the values of the above function, i.e.,

DFT(A) :=
[
DFTA(0), . . . ,DFTA(n− 1)

]
.



Definition 5. The power spectral density of the sequence A = [a0, . . . , an−1] is
the function

PSDA(s) :=
∣∣DFTA(s)

∣∣2.
Equivalently, we may also consider the power spectral density to be a sequence
containing the values of the above function, i.e.,

PSDA :=
[
PSDA(0), . . . ,PSDA(n− 1)

]
.

Note that DFTA(s) is equal to the complex conjugate of DFTA(n− s) and
so we have that PSDA(s) = PSD(n− s).

The following theorem first shown by Wiener [19] and Khinchin [14] is of
central importance to us because it provides a relationship between the PAF and
PSD values.

Theorem 2 (Wiener–Khinchin). For every sequence A ∈ Cn we have that

PSDA = DFT
(
PAFA

)
.

The Wiener–Khinchin theorem allows us to give the following alternative
characterization of Williamson sequences which can be viewed as a definition of
Williamson sequences which does not make reference to PAF values.

Corollary 1. Four symmetric sequences A, B, C, D ∈ {±1}n are Williamson
sequences if and only if

PSDA(s) + PSDB(s) + PSDC(s) + PSDD(s) = 4n (2)

for s = 1, . . . , bn/2c.
Proof. If A, B, C, D are Williamson sequences then by definition and symmetry
of the PAF we have that

PAFA+PAFB +PAFC +PAFD = [4n, 0, . . . , 0].

Applying the discrete Fourier transform to both sides of this and using the
Wiener–Khinchin theorem along with the linearity of the DFT we have that

PSDA+PSDB +PSDC +PSDD = [4n, 4n, . . . , 4n].

The reverse direction is proven in a similar manner except that one applies the
inverse of the discrete Fourier transform.

Corollary 2. If PSDA(s) > 4n for any value s then A cannot be part of a
Williamson sequence.

Proof. Since PSD values are nonnegative, if PSDA(s) > 4n then the relation-
ship (2) cannot hold and thus A cannot be part of a Williamson sequence.

Similarly, one can easily extend Corollary 2 to apply to more than one sequence
at a time, as in the following corollary.
Corollary 3. If PSDA(s) + PSDB(s) > 4n for any value of s then A and B
do not occur together in a Williamson sequence and if PSDA(s) + PSDB(s) +
PSDC(s) > 4n for any value of s then A, B, and C do not occur together in a
Williamson sequence.



2.4 Compression

As in the work [10] we now introduce the notion of compression.

Definition 6. Let A = [a0, a1, . . . , an−1] be a sequence of length n = dm and
set

a
(d)
j = aj + aj+d + · · ·+ aj+(m−1)d, j = 0, . . . , d− 1.

Then we say that the sequence A(d) = [a
(d)
0 , a

(d)
1 , . . . , a

(d)
d−1] is the m-compression

of A.

The following theorem tells us that the PSD values of a compression of A will
be a subset of the PSD values of A.

Theorem 3. Let A = [a0, a1, . . . , an−1] be a sequence of length n = dm. Then

PSDA(d)(s) = PSDA(ms).

Proof. By the Wiener–Khinchin theorem and the fact that m/n = 1/d we have

PSDA(ms) =

n−1∑
k=0

PAFA(k)e
2πiks/d.

Since {e2πiks/d}k has period d, this is equal to

d−1∑
k=0

m−1∑
l=0

PAFA(k + ld)e2πiks/d.

Also note that PAFA(d)(k) =
∑m−1
l=0 PAFA(k + ld), so this becomes

d−1∑
k=0

PAFA(d)(k)e2πiks/d

which is PSDA(d)(s) by the Wiener–Khinchin theorem.

For example, the PSD values of a 2-compression of a sequence A will be the
entries of PSDA which have even index. Thus, the compression of a sequence will
have fewer PSD values than the original sequence has, however, the values which
it does have will be PSD values from the original sequence. It follows that the
PSD properties of Williamson sequences are invariant under compression and we
have the following corollary.

Corollary 4. If A, B, C, D is a Williamson sequence of order n then

PSDA′ +PSDB′ +PSDC′ +PSDD′ = [4n, . . . , 4n]

for any compression A′, B′, C ′, D′ of that Williamson sequence.

Finally, the following property from [7] will be useful.



Lemma 1. If A is a sequence of length n = dm with ±1 entries, then the entries
of the m-compression of A are congruent to m (mod 2) and have absolute value
at most m.

If one uses Corollary 4 and Lemma 1 with maximal (i.e., n-) compression
then obtains the following result.

Corollary 5. If A, B, C, D is a Williamson sequence of order n then

R2
A +R2

B +R2
C +R2

D = 4n and RA ≡ RB ≡ RC ≡ RD ≡ n (mod 2), (3)

where RX denotes the rowsum of X.

Proof. Let X ′ be the n-compression of X ∈ {±1}n, i.e., X ′ is a sequence with
one entry whose value is RX . Note that PSDX′ = [R2

X ], so by Corollary 4 one
derives the first equation in (3). The second equation is derived by noting that
Lemma 1 on X with m = n implies that RX ≡ n (mod 2).

3 The SAT+CAS paradigm

The SAT+CAS paradigm is a novel methodology for solving problems which
originated independently in two works published in 2015:

1. A paper at the Conference on Automated Deduction (CADE) by Edward
Zulkoski, Vijay Ganesh, and Krzysztof Czarnecki [21] entitled “MathCheck:
A Math Assistant via a Combination of Computer Algebra Systems and SAT
Solvers”.

2. An invited talk at the International Symposium on Symbolic and Algebraic
Computation (ISSAC) by Erika Ábrahám [1] entitled “Building Bridges be-
tween Symbolic Computation and Satisfiability Checking”.

The CADE paper describes the tool MathCheck as combining the search
capability of SAT solvers with the domain knowledge of CAS systems. The paper
made the case that MathCheck

. . . combines the efficient search routines of modern SAT solvers, with
the expressive power of CAS, thus complementing both.

Indeed, SAT solvers contain some of the best general-purpose search procedures
ever developed. While they do not perform well for all applications, the CADE
paper showed that they can be made more efficient if they are supplied with
appropriate domain-specific knowledge, such as the knowledge available in a
CAS.

Independently from the work done on MathCheck the computer scientist
Erika Ábrahám made the observation in her ISSAC 2015 invited talk that the
symbolic computation and satisfiability checking communities have similar goals
but the way in which they approach and solve problems is rather different. She
remarked that



. . . collaboration between symbolic computation and SMT solving is still
(surprisingly) quite restricted. . .

and made the case that the communities would benefit from increased mutual
discussion. Furthermore, she argued that developing algorithms and tools which
combine the strengths and insights from both these fields is a promising line of
research which could be beneficial to both communities.

3.1 Programmatic SAT

The idea of a programmatic SAT solver was introduced in the paper [12]. A
programmatic SAT solver can generate conflict clauses programmatically, i.e.,
by a piece of code which runs as the SAT solver carries out its search. Such a
SAT solver can learn clauses which are more useful than the conflict clauses
which it learns by default. Not only can this make the SAT solver’s search more
efficient, it allows for increased expressiveness as many types of constraints which
are awkward to express in a conjunctive normal form format can naturally be
expressed using code. Additionally, it allows one to compile instance-specific SAT
solvers which are tailored to solving one specific type of instance. In this framework
instances no longer have to solely consist of a set of clauses in conjunctive normal
form. Instead, instances can consist of both a set of CNF clauses and a piece of
code which encodes constraints which are too cumbersome to be written in CNF
format.

As an example of this, consider the case of searching for Williamson sequences
using a SAT solver. One could encode Definition 3 in CNF format by using
Boolean variables to represent the entries in the Williamson sequences and by
using binary adders to encode the summations; this was the method used in [7].
However, one could also use the equivalent definition given in Corollary 1. This
alternate definition has the advantage that it becomes easy to apply Corollaries 2
and 3, which allows one to filter many sequences from consideration and greatly
speed up the search. Because of this, our method will use the constraints (2)
from Corollary 1 to encode the definition of Williamson sequences in our SAT
instances.

However, encoding the equations in (2) would be extremely cumbersome to
do using CNF clauses, because of the involved nature of efficiently computing the
PSD values. However, the equations (2) are easy to express programmatically,
as long as one has a method of computing the PSD values. Furthermore, the
PSD values can be computed efficiently using the fast Fourier transform which is
available in many computer algebra systems and mathematical libraries.

Thus, our SAT instances will not use CNF clauses to encode the defining
property of Williamson sequences but instead encode those clauses programmati-
cally. This is done by writing a callback function which is compiled with the SAT
solver and programmatically expresses the constraints in Corollary 1, as well as
the filtering criteria in Corollaries 2 and 3.



3.2 Programmatic Williamson encoding

We now describe in detail our programmatic encoding of Williamson sequences.
The encoding takes the form of a piece of code which examines a partial assignment
to the variables defining the sequences A, B, C, and D. In the case when the
partial assignment can be ruled out using Corollaries 2 or 3, a conflict clause is
returned which encodes a reason why the partial assignment no longer needs to
be considered. If the sequences actually form a Williamson sequence then they
are recorded in an auxiliary file; at this point the solver can return SAT and
stop, though our implementation continues the search because we are not just
searching for a single solution and want to do a complete enumeration of the
space.

The programmatic callback function does the following:

1. Initialize S := ∅. This variable will be a set which contains the sequences
whose entries are all currently assigned.

2. Check if all the variables which define the entries in sequence A have been
assigned; if so, add A to S and compute PSDA, otherwise skip to the next
step. If PSDA(s) > 4n for some value of s then learn a clause prohibiting the
entries of A from being assigned the way they currently are, i.e., learn the
clause

¬(acur
0 ∧ acur

1 ∧ · · · ∧ acur
n−1) ≡ ¬acur

0 ∨ ¬acur
1 ∨ · · · ∨ ¬acur

n−1

where acur
i is the literal ai when ai is currently assigned to true and is the

literal ¬ai when ai is currently assigned to false.
3. Check if all the variables which define the entries in sequence B have been

assigned; if so, add B to S and compute PSDB. If there is some s such
that

∑
X∈S PSDX(s) > 4n then learn a clause prohibiting the values of the

sequences in S from being assigned the way they currently are.
4. Repeat the last step again twice, once with B replaced with C and then

again with B replaced with D.
5. If all the variables in sequences A, B, C, and D are assigned then examine

the values
PSDA(s) + PSDB(s) + PSDC(s) + PSDD(s)

for s = 1, . . . , bn/2c. If this value is always 4n then record the sequences in
an auxiliary file, otherwise they are not Williamson sequences and can be
discarded. In either case, learn a clause prohibiting the values of the sequences
from being assigned the way they currently are so that this assignment is
not examined again.

After the SAT solver has completed its search the auxiliary file will contain a
list of the Williamson sequences which were found during the search. Note that
the clauses learned by this function allow the SAT solver to execute the search
significantly faster than would be possible using a brute-force technique. As a
rough estimate of the benefit, note that there are approximately 2n/2 possibilities
for each member A, B, C, D in a Williamson sequence. If no clauses are learned



in steps 2–4 then the SAT solver will examine all 24(n/2) total possibilities.
Conversely, if a clause is always learned in step 2 then the SAT solver will only
need to examine the 2n/2 possibilities for A. Of course, one will not always learn
a clause in step 2, but in practice such a clause is learned quite frequently and
this more than makes up for the small overhead of computing the PSD values.

4 Our enumeration algorithm

In this section we give a complete description of our method which enumerates
all Williamson sequences of a given order n when n is assumed to be even.

4.1 Step 1: Generate possible sum-of-squares decompositions

First, note that by Corollary 5 every Williamson sequence gives rise to a decom-
position of 4n into a sum of four squares. We query a computer algebra system
such as Maple or Mathematica to get all possible solutions of the Diophantine
system (3). Because we only care about Williamson sequences up to equivalence,
we also add the inequalities

0 ≤ RA ≤ RB ≤ RC ≤ RD

to the Diophantine system; it is clear that any Williamson sequence can be
transformed into another Williamson sequence which satisfies these inequalities
by applying the reorder and/or negate equivalence operations.

Example 1. When n = 44 there are exactly two solutions to the sum-of-squares
Diophantine system, namely

RA = 0, RB = 4, RC = 4, RD = 12 and RA = 2, RB = 6, RC = 6, RD = 10.

4.2 Step 2: Generate possible Williamson sequence members

Next, we form a list of the sequences which could possibly appear as a member
of a Williamson sequence of order n. To do this, we examine every symmetric
sequence X ∈ {±1}n. For all such X we compute PSDX and ignore those which
satisfy PSDX(s) > 4n for some s. We also ignore those X for which RX does
not appear in any possible solution (RA, RB , RC , RD) of the sum-of-squares
Diophantine system (3). The sequences X which remain after this process form
a list of the sequences which could possibly appear as a member of a Williamson
sequence. At this stage we could generate all Williamson sequences of order n
by trying all ways of grouping the possible sequences X into quadruples and
filtering those which are not Williamson. However, because of the large number
of ways in which this grouping into quadruples can be done this is not feasible to
do except in the case when n is very small.



4.3 Step 3: Perform compression

In order to reduce the size of the problem so that the possible sequences generated
in Step 2 can be grouped into quadruples we first compress the sequences using
the process described in Section 2.4. For each solution (a, b, c, d) of the sum-of-
squares Diophantine system we form four lists LA, LB , LC , and LD. The list LA
will contain the 2-compressions of the sequences X generated in Step 2 which
have rowsum a (and the lists LB, LC , LD will be defined in a similar manner).
Note that the sequences in these lists will be {±2, 0}-sequences since they are
2-compressions of the sequences X which are {±1}-sequences.

4.4 Step 4: Match the compressions

By Corollary 4 a necessary condition for A, B, C, D to be a Williamson sequence
is that

PSDA′ +PSDB′ +PSDC′ +PSDD′ = [4n, . . . , 4n]

where A′, B′, C ′, D′ are the 2-compressions of A, B, C, D. By construction, the
lists LA, LB , LC , and LD contain all possible 2-compressions of the members of
Williamson sequences whose sum-of-squares decomposition is a2 + b2 + c2 + d2.
Thus, by trying all ways of matching together the sequences from the lists LA,
LB, LC , LD we can find all 2-compressions of Williamson sequences whose
sum-of-squares decomposition is a2 + b2 + c2 + d2. In fact, some matchings can
be eliminated without being explicitly considered, if for example two or three
sequences in the matching have PSD values which sum to a number larger
than 4n.

In detail, our matching procedure performs the following steps:
1: for A′ ∈ LA do
2: for B′ ∈ LB do
3: if max(PSDA′ +PSDB′) > 4n then
4: continue for loop with new B′

5: for C ′ ∈ LC do
6: if max(PSDA′ +PSDB′ +PSDC′) > 4n then
7: continue for loop with new C ′

8: for D′ ∈ LD do
9: if PSDA′ +PSDB′ +PSDC′ +PSDD′ = [4n, . . . , 4n] then
10: record (A′, B′, C ′, D′) in an auxiliary file

Note that the sequences in the lists have PSD values at most 4n by construction,
so it is not necessary to make a check if max(PSDA′) > 4n. At the conclusion of
this matching procedure we will have a list of all the possible 2-compressions of
Williamson sequences whose sum-of-squares decomposition is a2 + b2 + c2 + d2.

4.5 Step 5: Uncompress the 2-compressions

It is now necessary to find the Williamson sequences, if any, which when com-
pressed by a factor of 2 produce one of the sequences generated in Step 4. In



other words, we want to find a way to perform uncompression on the sequences
which we generated. To do this, we formulate the uncompression problem as
a Boolean SAT instance and use a SAT solver’s sophisticated search ability to
search for solutions to the uncompression problem.

We will use Boolean variables to represent the entries of the uncompressed
Williamson sequences, with true representing the value of 1 and false representing
the value of −1. Since Williamson sequences consist of four sequences of length n
they contain a total of 4n entries, namely,

a0, . . . , an−1, b0, . . . , bn−1, c0, . . . , cn−1, d0, . . . , dn−1.

However, because Williamson sequences are symmetric we actually only need to
define the 2n+ 4 distinct variables

a0, . . . , an/2, b0, . . . , bn/2, c0, . . . , cn/2, d0, . . . , dn/2.

Any variable xi with i > n/2 can simply be replaced with the equivalent variable
xn−i; in what follows we implicitly use this substitution when necessary. Thus,
the SAT instances which we generate will contain 2n+ 4 variables.

Say that (A′, B′, C ′, D′) is one of the possible 2-compressions generated in
Step 4. By the definition of 2-compression, we have that a′i = ai + ai+n/2 and
similarly for the entries of B′, C ′, and D′. Since a′i ∈ {±2, 0} there are three
possibilities we must consider for each a′i.

Case 1. If a′i = 2 then we must have ai = 1 and ai+n/2 = 1. Thinking of the
entries as Boolean variables, we add the clause

ai ∧ ai+n/2

to our SAT instance.
Case 2. If a′i = −2 then we must have ai = −1 and ai+n/2 = −1. Thinking of

the entries as Boolean variables, we add the clause

¬ai ∧ ¬ai+n/2

to our SAT instance.
Case 3. If a′i = 0 then we must have ai = 1 and ai+n/2 = −1 or vice versa.

Thinking of the entries as Boolean variables, we add the clause

(ai ∨ ai+n/2) ∧ (¬ai ∨ ¬ai+n/2)

to our SAT instance. Note that this clause specifies in conjunctive normal form
that exactly one of the variables ai and ai+n/2 is true.

For each entry a′i in A′ we add the clauses from the appropriate case to
the SAT instance, as well as add clauses from a similar case analysis for the
entries from B′, C ′, and D′. A satisfying assignment to the generated SAT
instance provides an uncompression (A,B,C,D) of (A′, B′, C ′, D′). However, the
uncompression need not be a Williamson sequence. To ensure that the solutions
produced by the SAT solver are in fact Williamson sequences we additionally
use the programmatic SAT Williamson encoding as described in Section 3.2.



For each (A′, B′, C ′, D′) generated in Step 4 we generate a SAT instance which
contains the set of clauses specified above as well as the programmatic clause
generator which specifies that any satisfying assignment of the SAT instance
encodes a Williamson sequence. We then solve the SAT instances using a SAT
solver which performs an exhaustive search to find all the solutions in all the
SAT instances.

As an optimization, one can ignore any SAT instance whose 2-compression
(A′, B′, C ′, D′) can be transformed into the 2-compression of another SAT instance
using the equivalence operations from Section 2.2. In this case the solutions
from the ignored SAT instance will have equivalent solutions in the equivalent
SAT instance (generated by applying the same equivalence operations from
Section 2.2).

4.6 Step 6: Remove equivalent Williamson sequences

After Step 5 we have produced a list of all the Williamson sequences of order
n which have a certain sum-of-squares decompositions. We chose the decom-
positions in such a way that every Williamson sequence will be equivalent to
one decomposition but this does not cover all possible equivalences, so some
Williamson sequences which we generate may be equivalent to each other.

For the purpose of counting the total number of inequivalent Williamson
sequences which exist in order n it is necessary to examine each Williamson
sequence in the list and determine if it is equivalent to another Williamson
sequence in the list. This can be done by repeatedly applying the equivalence
operations from Section 2.2 on the Williamson sequences in the list and discarding
those which are equivalent to a previously found Williamson sequence.

5 Results

We implemented the algorithm described in Section 4 and ran it on all even orders
n < 45. Step 1 was completed using the computer algebra system Maple [9].
Steps 2–4 were completed using custom C++ code which used the library
FFTW [11] for computing PSD values. Step 5 was completed using the SAT
solver MapleSAT [15] modified to support a programmatic interface and also
used the library FFTW for computing PSD values on-the-fly. Step 6 was completed
using custom C++ code.

Our results were run on the “Shared Hierarchical Academic Research Comput-
ing Network”, a high-performance computing cluster known as SHARCNET [3]
run by a consortium of 18 academic partners located in Ontario, Canada. Specifi-
cally, the cluster we used ran CentOS 6.7 and used 64-bit AMD Opteron processors
running at 2.2 GHz. The timings for running our algorithm on each even order
up to 44 are given in Table 1. We only give timings for Steps 4 and 5, as they
were the only steps which required significant time to complete; the other steps
ran in at most a few seconds, even on the largest orders. Table 1 also includes the
number of SAT instances which we generated in each order, as well as the total



number of Williamson sequences which were found up to equivalence4 (denoted
by #Wn). An explicit enumeration of these Williamson sequences is available
online [8].

n Step 4 time Step 5 time # instances #Wn

2 0s 0.08s 1 1
4 0s 0.02s 1 1
6 0s 0.02s 1 1
8 0s 0.02s 1 1
10 0s 0.04s 2 2
12 0s 0.08s 3 3
14 0s 0.07s 3 7
16 0s 0.14s 5 6
18 0s 0.49s 22 40
20 0.01s 0.49s 21 27
22 0.01s 0.48s 22 27
24 0.03s 3.48s 176 80
26 0.42s 0.69s 24 38
28 0.59s 2.07s 78 99
30 8.15s 6.33s 281 268
32 3.58s 22.60s 1064 200
34 250.31s 5.48s 214 160
36 372.7s 66.26s 1705 691
38 4053.24s 10.97s 360 87
40 9121.86s 1727.02s 40924 1898
42 85017.28s 148.06s 2945 561
44 65492.84s 134.97s 1523 378

Table 1: A table summarizing the amount of time used to enumerate all Williamson
sequences of order n, as well as the number of SAT instances generated and the
total number of inequivalent Williamson sequences found (denoted by #Wn).

6 Conclusion

In this paper we have shown the power of the SAT+CAS paradigm (i.e., the
technique applying the tools from the fields of symbolic computation and satis-
fiability checking [2]) as well as the power and flexibility of the programmatic
SAT approach [12]. We have done this by developing a programmatic SAT+CAS
method to solve the long-standing problem of generating Williamson matrices
of even order. This problem has been well-studied since 1944 in the odd order
case and counts for the number of Williamson matrices up to equivalence have

4 These results originally appeared in [6] but the notion of equivalence in that work
did not include the shift equivalence operation.



been published for all odd orders up to 59 [13] but this is the first time counts
for even orders have ever been published.

Our work reveals that there are typically many more Williamson matrices
in even orders than there are in odd orders. In fact, every odd order n in which
a search has been carried out has #Wn ≤ 10, while we have shown that every
even order n between 18 and 44 has #Wn > 10 and there are many orders which
contain hundreds of inequivalent Williamson matrices. A theoretical reason which
could explain this dichotomy would be interesting, though we currently know of
no such reason. We hope that our work brings attention to this problem which
could lead to a better understanding of the behaviour of Williamson matrices of
even order.
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