A SAT Certification for the Nonexistence of
Weight 16 Codewords in a Projective Plane of Order Ten

Content Areas: Constraint Satisfaction and Optimization (Search, Satisfiability, Solvers and Tools)

Abstract

In the 1970s and 1980s, searches performed by L. Carter,
C. Lam, L. Thiel, and S. Swiercz showed that projective
planes of order ten with weight 16 codewords do not ex-
ist. These searches required highly specialized and optimized
computer programs and required about 2,000 hours of com-
puting time on mainframe and supermini computers. In 2010,
these searches were verified by D. Roy using an optimized C
program and 16,000 hours on a desktop machine. In this pa-
per, we reduce the search problem to the Boolean satisfiabil-
ity problem (SAT) and construct a collection of SAT instances
that we use to verify their searches in 130 hours on a desk-
top machine. This was accomplished using the state-of-the-
art cube-and-conquer SAT solving paradigm in combination
with a computer algebra system. Our searches uncovered four
partial projective planes missed by previous searches and pro-
duced a nonexistence proof of almost 300 gigabytes in size.

1 Introduction

Geometry is one of the oldest branches of mathematics, be-
ing first axiomatically studied by Euclid in the 3rd century
BC. Given a line and a point not on it, Euclid’s “parallel pos-
tulate” implies that there exists exactly one line through the
point and parallel to the given line. For 2000 years mathe-
maticians tried to prove this axiom but eventually geome-
tries that did not satisfy the parallel postulate were discov-
ered. For example, in the early seventeenth century G. De-
sargues studied projective geometry where parallel lines do
not exist. Projective geometry became widely studied in the
nineteenth century, leading to the discovery of projective ge-
ometries containing a finite number of points.

Despite a huge amount of study for over 200 years, some
basic questions about finite projective geometries remain
open—for example, how many points can a finite projec-
tive plane contain? It is well-known (Kahrstrom 2002) that
this number must be of the form n? + n + 1 for some natu-
ral number n (known as the order of the plane) and certain
orders such as n = 6 have been ruled out by theoretical ar-
guments. For every other n up to ten a finite projective plane
of order n can be shown to exist through an explicit con-
struction. No theoretical explanation is known that answers
the question if ten can be the order of a projective plane, but
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in the 1970s and 1980s an enormous amount of computing
was used to show that no such plane exists (Lam 1991).

The computations were based on the existence of code-
words in the error-correcting code generated by a projec-
tive plane of order ten. It was shown (Hall 1980) that such a
code must contain codewords of weights 15, 16, or 19. Ex-
haustive searches using the most powerful computers of the
day showed that such codewords do not exist (MacWilliams,
Sloane, and Thompson 1973; Carter 1974; Lam, Thiel, and
Swiercz 1986; 1989). Thus, a projective plane of order ten
does not exist.

Each search required more advanced search techniques
and orders of magnitude more computational power than the
previous search—the weight 15 search being the easiest and
the weight 19 search being the most challenging. In this pa-
per we focus on the weight 16 search that originally required
about 2,000 hours on supercomputers and a VAX-11 super-
mini machine. Additionally, in 2010, using an optimized C
implementation the weight 16 search was verified in 16,000
hours on a desktop machine (Roy 2010).

We provide for the first time a reduction of the weight 16
codeword existence problem to the Boolean satisfiabil-
ity problem (SAT) and a SAT certification that a pro-
jective plane of order ten generates no weight 16 code-
words. This is done using the cube-and-conquer SAT solving
paradigm (Heule et al. 2011) in addition to using function-
ality from a computer algebra system (i.e., the SAT+CAS
paradigm). See Section 2 for background on the cube-and-
conquer and SAT+CAS paradigms, and Section 3 for a de-
scription of our SAT encoding. Our search completed in
about 130 hours on a desktop machine, significantly faster
than any previous search.

Furthermore, no previous search was able to provide a
certificate on successful completion. Thus, an independent
party had to take on faith that the searches did in fact
complete. The lack of a certificate can have serious con-
sequences: our search found four partial projective planes
that had been claimed to not exist following the 1986 search.
Thus, the original search was incomplete but because of the
lack of a verifiable certificate this went unnoticed for over
thirty years. In contrast, our search produces an unsatisfia-
bility certificate that an independent party can use to verify
that our searches were successfully run to completion. The
proof of nonexistence generated by the SAT solver amounts



to almost 300 gigabytes in the binary DRAT format. See
Section 4 for details on our implementation and results.

2 Background

We now describe the background necessary to understand
the nonexistence results of this paper. First, we describe the
cube-and-conquer paradigm that we used to solve the SAT
instances. Second, we describe the SAT+CAS paradigm
that was necessary to improve the performance of the SAT
solver. Lastly, we give the mathematical background on pro-
jective planes and their symmetry groups that is necessary
to understand our SAT reduction and the symmetry break-
ing techniques that we used to make the search efficient.

2.1 The cube-and-conquer paradigm

The cube-and-conquer paradigm was first developed by
Heule, Kullmann, Wieringa, and Biere (Heule et al. 2011)
for computing van der Waerden numbers, a notoriously dif-
ficult computational problem from combinatorics. They re-
ported that the cube-and-conquer method performed up to
twenty times faster than any other known method. More-
over, in recent years the cube-and-conquer method has been
used to resolve long-standing combinatorial problems such
as the Boolean Pythagorean triples problem (Heule, Kull-
mann, and Marek 2017) and computing the fifth Schur num-
ber (Heule 2018).

The idea behind the cube-and-conquer method is to split
a SAT instance into subproblems defined by cubes (propo-
sitional formulae of the form Iy A --- A [,, where [; are lit-
erals). Each cube defines a single subproblem—generated
by assuming the cube is true—and each subproblem is then
solved or “conquered” either in parallel or in sequence. One
of the major challenges of this method is to efficiently find a
collection of cubes that makes each of the subproblems easy
enough to solve quickly.

The primary reason that cube-and-conquer has been so
successful is because of the insight that cubing is effec-
tively done by “look-ahead” solvers while conquering is
effectively done by “conflict-driven” solvers. Look-ahead
solvers make progress by reasoning on a global level, i.e., at
each stage they attempt to find the next decision that makes
as much progress as possible. Conversely, conflict-driven
solvers reason on a more local level, attempting to find deci-
sions that happen to work well together even if each individ-
ual decision is not optimal globally (Heule and van Maaren
2009).

Thus, look-ahead solvers are good at partitioning a prob-
lem into subproblems of approximately equal difficulty and
conflict-driven solvers are good at uncovering clever ways
to solve problems that admit relatively short solutions. Us-
ing look-ahead solvers for cubing and conflict-driven solvers
for conquering produces a solving method that often outper-
forms either look-ahead or conflict-driven solvers.

2.2 The SAT+CAS paradigm

The SAT+CAS paradigm is a recently proposed paradigm
for solving problems that can be specified by both logi-
cal and algebraic constraints. First proposed by (Abrahim

2015) and (Zulkoski, Ganesh, and Czarnecki 2015), it has
since been successfully used to solve an impressive variety
of problems (Davenport et al. 2019).

The idea behind the SAT+CAS paradigm is to use a SAT
solver on the constraints that can be directly encoded in
Boolean logic and to use a CAS on the constraints that
are too complex to be directly encoded in SAT. Because
SAT solvers are currently the best solution for many com-
binatorial problems (Heule, Kullmann, and Biere 2018) the
SAT+CAS paradigm can be useful for many problems that
seemingly have nothing to do with logic.

In short, the paradigm is effective because it combines the
search power of modern SAT solvers with the expressiveness
and mathematical functionality of modern computer algebra
systems. The SAT+CAS paradigm has been already been
successful in searching for combinatorial matrices (Bright,
Kotsireas, and Ganesh 2018; Bright et al. 2019) making it
natural to use the paradigm to search for projective planes as
well.

2.3 Projective planes

A projective plane is a collection of points and lines that
satisfy certain axioms, for example, in a projective plane any
two lines intersect at a unique point. Finite projective planes
can be defined in terms of incidence matrices thathave a 1 in
the (4, 7)th entry exactly when the jth point is on the ¢th line.
In this framework, a projective plane of order n is a square
{0, 1}-matrix of order n? + n + 1 such that

(P1) all rows and columns contain exactly n + 1 ones, and
(P2) the inner product of any two rows or columns is one.

Two projective planes are said to be equivalent if one can
be transformed into the other via a series of row or column
permutations.

Projective planes are known to exist in all orders that are
primes or prime powers but despite extensive study for over
200 years it is unknown if they exist in any other orders.
Some orders such as n = 6 have been ruled out on theoret-
ical grounds making n = 10 the first uncertain case. This
stimulated a massive computer search for such a plane (Lam
1991) based on the form such a plane must have assuming
certain codewords exist. A codeword is a {0,1}-vector in
the rowspace (mod 2) of a {0, 1}-matrix and the weight of a
codeword is the number of 1s that it contains.

It can be shown (Hall 1980) that a projective plane of or-
der ten must generate codewords of weight 15, 16, or 19,
thus dramatically shrinking the search space and naturally
splitting the search into three cases. As shown by (Carter
1974), there are ten possibilities (up to equivalence) for
the first eight rows of the planes that generate weight 16
codewords. These cases are listed in Table 1 along with
the symmetries that exist in the first eight rows and initial
columns (see below for more details). Five of these possi-
bilities (cases II to VI.a) were eliminated by the searches
of (Carter 1974) and the other five were eliminated by the
searches of (Lam, Thiel, and Swiercz 1986).

In each search a computer would attempt to extend the
first eight rows into a complete projective plane, often work-
ing column-by-column. If the search reached a column that



Case Initial Columns Symmetries Group Size

La 28 Sy 15 1152
Lb 23 54 X 54 576
Lc 18 S48 1152
I 28 Sy X S 48

I 28 Dg 16

v 28 D4 X 52 16

\" 28 S3 X S 12
Vl.a 28 SQ X SQ 4
VILb 26 So 2
Vi.c 24 SQ X Sz 4

Table 1: The ten possible cases for the first eight rows of a
projective plane of order ten generating a weight 16 code-
word and the symmetry groups of the initial columns. Here
S, denotes the symmetric group of order n!, D,, denotes the
dihedral group of order 2n, and { denotes the wreath product.

could only be completed by violating the definition of a pro-
jective plane then the search would backtrack to a previous
column and try another possibility until all possibilities had
been tried.

2.4 Structure of the weight 16 starting cases

(Carter 1974) showed that in each weight 16 starting case
the first eight rows and 16 columns can be completely de-
termined up to equivalence. Furthermore, he derived proper-
ties that the structure of the rest of the projective plane must
satisfy. In particular, the projective plane has the following
decomposition into a 3 x 2 grid of submatrices as follows:

16 95

8 /2 k
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Here the numbers outside the matrix denote the number of
rows or columns in that part of the submatrix. The numbers
inside the matrix denotes how many 1s there are in each col-
umn in that part of the submatrix; certain columns depend
on a parameter k that differs between columns. The first 16
columns along with the columns with k£ > 1 are known as
the initial columns. The columns with £ > 0 are known
as inside columns and columns with & = 0 are known as
outside columns. The number of outside columns in the pro-
jective plane varies between cases but each case has at least
45 outside columns so we may assume that the upper-right
8 x 45 submatrix contains zeros.

2.5 Symmetry groups
A projective plane (or partial projective plane) may be sym-
metric in nontrivial ways, in other words, there may exist
row or column permutations that fix the entries of the plane.
Such symmetries are important to detect because they can
dramatically reduce the search space—and therefore the run-
ning time—of any search that makes use of them.

For example, Figure 1 shows the starting partial projective
plane (the first eight rows and initial columns) from case I.c.
This matrix is symmetric under the permutation that swaps

111100000000000010
000011110000000010
000000001111000010
000000000000111110
100010001000100001
010001000100010001
001000100010001001
000100010001000101

Figure 1: The upper-left 8 x 18 submatrix from case I.c.

the first two rows and column k with column k& + 4 for 1 <
k < 4. The set of all row and column permutations that fix
the entries of a matrix forms a group known as the symmetry
group of the matrix.

In the matrix of Figure 1 any permutation of the first four
rows, any permutation of the last four rows, and the per-
mutation that swaps row ¢ and row ¢ + 4 for 1 < ¢ < 4 oc-
cur (with appropriate column permutations) in the symmetry
group. The size of this permutation group is 4!-4!-2 = 1152
and the group is isomorphic to the group of symmetries of
a pair of tetrahedrons. The symmetry groups for each of the
ten possible weight 16 starting configurations (the first eight
rows and the initial columns) are given in Table 1.

3 SAT encoding

We now describe the SAT encoding that we use to prove
the nonexistence of projective planes of order ten contain-
ing weight 16 codewords. We use the Boolean variables p; j,
to correspond with the (7, k)th entry of the projective plane
we are attempting to find, with p; ; assigned to true exactly
when the (¢, k)th entry is a 1.

3.1 Incidence constraints

First, we describe how we encode the property that the inci-
dence matrix defined by the p; ; satisfies the properties of a
projective plane. In particular, we encode property (P2) that
any two rows or columns of the projective plane intersect
exactly once (we say two rows or two columns intersect if
they share a 1 in the same location). The constraints are split
into two types:

(1) All row and column inner products are at most 1.
(2) All row and column inner products are at least 1.

Additionally, in the second case, it was only necessary
to consider the inner products between the first eight rows
and the later rows, and the inner products between the first
16 columns and the later columns. We also only used the
first 80 rows and at most 71 columns. Our searches showed
that there are no satisfying assignments of even these weaker
constraints.

For (1), the constraints

/\ (=pik vV =pii V opjk VD)
1<k,1<111

say that row ¢ and row j do not intersect twice. In other
words, the inner product of row ¢ and 7 is at most 1. We in-
clude these constraints for each distinct pair of indices (4, j)



with 1 < 4,7 < 80 and ignore the constraints where k or [
is larger than the last column used (which varied between
cases).

For (2), the constraint \/,1;:11 (pi.k A pj k) says that row ¢
and row j intersect at least once (i.e., have an inner product
of at least 1). However, this constraint is not in conjunctive
normal form so it can’t directly be used with a typical SAT
solver.

Instead, we use this constraint in the form \/;cg.;) pjk

where S(¢) is the set of indices k such that p; j, is true. The
first eight rows of the projective plane are completely known
beforehand in each starting case, so S(7) is well-defined for
1 <7 < 8. We include these constraints forall 1 < ¢ < 8
and 9 < 5 < 80.

Similarly, we include constraints that say that column &
and column [ intersect at least once. These constraints are of
the form \/; 74 pi, where T'(k) is the set of indices i such

that p; j, is true. We used these constraints for all k& between
1 and 16 and for all [ > 16 up to the last column used.

We have chosen the number of rows and columns to use
based on the known structure of the starting cases and in an
attempt to minimize the number of variables and constraints
necessary. In order to use the above constraints we require at
least 80 rows and all inside columns because the indices in
the set S(¢) for 1 < ¢ < 8 are from the inside columns, and
the indices in the set T'(k) for 1 < k < 16 are from the first
80 rows. By experimentation we found that only using in-
side columns produced satisfiable instances—we found that
it was necessary to use an additional five outside columns to
make all instances unsatisfiable.

3.2 Breaking column symmetries

Consider the starting matrix shown in Figure 2 (the first eight
rows of case VI.c with the inside columns). This matrix has
a symmetry group containing 5!¢ - 412 . 22 permutations. The
factor of 22 arises from symmetries that involve row permu-
tations and we discuss how we handle those in Section 3.3.
The larger 5!° - 412 factor arises from column permutations
of the last 38 columns. We break these symmetries by en-
forcing a lexicographic ordering on the columns.

In each starting case the first 16 columns of the projec-
tive plane are explicitly known and each column has exactly
nine 1s following the first eight rows. Thus, by sorting the
rows following the first eight rows we can ensure there are
nine consecutive 1s in the first column (see Figure 3).

We describe how we enforce a lexicographic ordering on
the columns through the example submatrix in Figure 3. For
simplicity we assume the first column does not intersect with
any of the columns being ordered in the first eight rows. A
similar construction can still be used if this is not true (re-
placing the first column with another column). Each row of
the submatrix contains at most a single 1 or we would have
a pair of columns that intersect each other twice. Thus, lexi-
cographically ordering the columns of the submatrix ensures
that a 1 cannot be in the upper-right or lower-left corners of
the submatrix as displayed by the Os in Figure 3.

Similarly, each column of the submatrix contains at most
a single 1. By assumption, the first column must intersect

each of the other columns in question somewhere in the
given submatrix, so each column contains exactly a single 1.
Consider the entry marked x in Figure 3. If this entry con-
tains a 1 then all entries in the next column that are above it
must be 0 for the columns to be correctly ordered.

Thus, considering the variables labeled x, y, and 2 in Fig-
ure 3, we include the clauses —x V —y and —x V —z in our
encoding. We include similar clauses for each unknown en-
try in the submatrix. The remaining satisfying assignments
are exactly those whose columns are in lexicographic order,
therefore enforcing a unique ordering on columns which are
otherwise identical. In the case of the columns shown in Fig-
ure 2 this decreases the size of the search space by a factor
of 516 - 412 ~ 10,

3.3 Breaking initial symmetries

In Section 3.2 we described how we break most of the sym-
metries in our instances. However, it remains to break the
initial symmetries involving both row and column permuta-
tions (i.e., those described in Table 1). We used two meth-
ods of breaking these symmetries. One method was particu-
larly effective when the size of the symmetry group was not
too large and was used in the cases II to VI.c. The second
method took advantage of the specific form of the symmetry
group of the cases L.a—c.

Method 1 In addition to the column symmetries of the
last 38 columns of the matrix in Figure 2 there are an ad-
ditional two generators ; and - of the symmetry group
of this matrix. These generators involve both row and col-
umn permutations. In cycle notation the row permutations
are (15)(26)(34) and (12)(34)(56)(78) and the column per-
mutations are completely determined by these row permuta-
tions. For example, after swapping rows 1 and 5 and rows 2
and 6, the first column (containing 1s in rows 1 and 2) be-
comes the 14th column (containing 1s in rows 5 and 6),
so 1 must send column 1 to column 14.

In a similar way, permutations of the first 16 columns
uniquely extend to permutations of the first 80 rows. Con-
sider the symmetries of the first 80 rows and the initial
columns where the undetermined entries are given some
fixed value such as zero. In the example given in Figure 2,
the initial columns are the first 24 columns. Our first sym-
metry breaking method focuses on the unknown entries in
the upper-left 80 x 24 submatrix P.

In particular, we fix an ordering on the variables in the
submatrix P whose values are undetermined. For example,
one possible ordering of these variables is left-to-right and
top-to-bottom, i.e.,

Lp = [p9,17, P9,18, P9,19, - - -, P80,22, P80,23; p80,24]-

Under the symmetry ¢, this ordering becomes

[p56,197 Ds6,225 P56,175 - - -5 P17,185 P17,205 p17,24]

which we denote by 1 (Lp). If P is a 80 x 24 partial pro-
jective plane then ¢, (P) is also a 80 x 24 partial projec-
tive plane. It follows that any partial projective plane of this
form can be transformed into an equivalent partial projective



11110000000000001100000011111000000000000000000000000000000000
10001110000000000011000000000111110000000000000000000000000000
01000001110000000010100000000000001111100000000000000000000000
00001000001110001000100000000000000000011111000000000000000000
00100000001001100010010000000000000000000000111110000000000000
00000101000001011000001000000000000000000000000001111100000000
00000010100100010100010100000000000000000000000000000011110000
00010000010010100001001100000000000000000000000000000000001111

Figure 2: The upper-left 8 x 62 submatrix in case Vl.c.
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Figure 3: An internal 9 x 5 submatrix of a projective plane
where the columns share a 1 in one of the first eight rows,
the rows share a 1 in the first column, and no 1s appear
in the hidden rows above the submatrix. The Os that ap-
pear are known under the assumption that the columns are
lexicographically ordered. This also implies that the entries
marked y and z are 0 if the entry marked « contains a 1.

plane with Lp <jex 1(Lp). Similarly, up to equivalence we
can assume that
Lp <ix ¢(Lp) (*)
where ¢ is any symmetry of P. In the example of Figure 2
we take ¢ to be @1, @a, and @1 o @ (there is no need to
take ¢ to be the identity symmetry since then (x) is trivial).
It remains to describe how we encode the lexicographic
constraint (x) in conjunctive normal form. We express the
general lexicographic constraint

[zla---axn] Slex [yl;-"ayn]

using 3n — 2 clauses and n — 1 new variables (Knuth 2015).
Denoting the new variables by aq, . . ., a,—1, the clauses are

Tk VYV ag—1, 7T VagV ag—1, Yk VagV oag—1

for k = 1, ..., n — 1 (with —ag omitted) along with the
clause ~x, Vy, V "an_1.

In practice this method breaks almost all of the symme-
tries of the search space that exist in the initial columns,
though it is not guaranteed to break them all. This is because
for certain instantiations of the variables of P it may be the
case that (x) does not remove any equivalent solutions. This
occurs when P is unchanged under all symmetries ¢ of the
symmetry group (i.e., when Lp = ¢(Lp) for all symme-
tries ). However, this did not occur very often in practice.

Because this method uses constraints of the form (x) for
every nontrivial symmetry ¢, it worked best when the sym-
metry group was relatively small. We used this symmetry
breaking method on the starting cases I[I-Vl.c.

Method 2 Consider the starting matrix given in Figure 1
(case I.c). Since each row contains eleven 1s in total and
there are five 1s per row in the initial columns, there are an-
other six 1s in each row. Furthermore, since the rows are
already pairwise intersecting in the initial columns, none
of the rows intersect following the initial columns. In other
words, each row contains six 1s on columns that are not in-
cident with the other rows. We call the columns that contain
those six 1s a block of 1s.

Without loss of generality we may assume that the first
block occurs on columns 19-24, the second block occurs on
columns 25-30, the third block on columns 31-36, etc. By
exhaustive search, we find that there are 49,472 solutions of
the SAT instance that uses the first 80 rows, the columns
up to and including the first block, and the lexicographic
column ordering clauses described in Section 3.2.

Our symmetry breaking method now uses the following
properties of the symmetry group of case I.c:

1. The symmetry group fixing the first row (i.e., the symme-
tries that do not move the first block) is S4 x Ss.

2. The action of the symmetry group on the set of blocks is
transitive, i.e., for each pair of blocks there exists a sym-
metry that sends one block to another block.

We use the first property to show that of the 49,472 possibil-
ities for the first block, only 469 possibilities are inequiva-
lent under the symmetries that fix the first row. These num-
bers agree with those reported by (Lam, Thiel, and Swiercz
1986). This splits the search into 469 distinct cases, one for
each nonequivalent possibility of the first block. Addition-
ally, we now use the second property to remove further sym-
metries within these cases.

We label each of the 49,472 possibilities for the first block
with a label between 1 and 469 and let ¢ be the labeling
function that when given an instantiation of the first block
returns its label. Furthermore, let B; denote the submatrix
consisting of the ¢th block where 1 < 7 < 8 and let ; denote
a symmetry that sends block % to block 1 where 2 < ¢ < 8.
(By the second property such a symmetry exists.) We extend
the labeling function ¢ by giving an instantiation B of an
arbitrary block B; the same label as ¢;(B).

In case I.c a partial projective plane that includes all initial
columns and all blocks is made up of 18+4-8-6 = 66 columns.
Up to equivalence we can assume in this case that any such
partial projective plane must satisfy

t(B1) <t(B;) for 2<i<8. (k%)

In other words, we can assume that the first block has the
minimum label of all the blocks 1-8. For suppose a par-



11110000000000001111111
00001111000000001000000
00000000111100000100000
00000000000011110010000
10001000100010000000000
01000100010001000000000
00100010001000100000000
00010001000100010000000

Figure 4: The upper-left 8 x 23 submatrix from case La.

tial projective plane did not satisfy this condition: then there
must be an index m such that block m has the minimum la-
bel. Applying ,, to this partial projective plane permutes
the block labels and produces an equivalent partial projec-
tive plane such that block 1 has the minimum label.

To encode the constraint () in our SAT instances we use
a series of blocking clauses. In each SAT instance the left-
hand side of (xx) is known in advance, since each instance
contains a fixed instantiation of the first block. In the first
SAT instance the label of the first block is 1. In this case (xx)
is trivial and does not block any solutions.

In the second SAT instance we need to block all solutions
where t(B;) = 1 for 2 < ¢ < 8. To do this, suppose B is an
instantiation of the first block that is labeled 1. We generate
©; H(p(B)) for all 2 < i < 8 and all ¢ in the symmetry
group fixing the first line. This gives us an explicit collection
of instantiated blocks that we want to ignore. If B’ is one of
these blocks then the clause

LA 2= Vo

pEB’, p true pEB’, p true

prevents B’ from occurring in the solution of the SAT in-
stance. We include such clauses in the SAT instance for all
B’ of the form ;' (¢(B)). Similarly, in the kth SAT in-
stance we include clauses of this form for all B’ of the form
©; "(p(B)) where B is an instantiation of the first block
whose label is strictly less than k.

The above description specifically applies to case I.c, but
cases I.a and I.b can be handled in a similar way. In case L.a
the main difference is that each block consists of seven
columns and some columns are shared between blocks.
However, the same method applies because the two prop-
erties of the symmetry group that we used in IL.c also hold in
this case (cases I.a and I.c have the same symmetry group).

Figure 4 shows the submatrix containing the first eight
rows in case lL.a, along with the first 16 columns and the
columns of the first block. In this case we find 21,408 so-
Iutions of the SAT instance using the first 80 rows and
23 columns. We also use the lexicographic column order-
ing clauses (as described in Section 3.2) on the final four
columns as these columns are otherwise identical. Using the
symmetries that fix the first row we find that only 275 of the
21,408 solutions are inequivalent, thus naturally splitting the
problem into 275 SAT instances that we solve in the same
way as we solve the instances from case I.c.

We solve case L.b in a similar way, but in this case four of
the blocks contain seven columns and the other four blocks
contain six columns. We order the blocks such that the first

four blocks contain seven columns and the last four blocks
contain six columns. The first block is chosen to consist of
the inside columns with 1s on the first row so that the upper-
left 8 x 23 submatrix is identical to the matrix in Figure 4.
Thus we also have 21,408 solutions of the SAT instance us-
ing the first 80 rows and 23 columns. The symmetry group
that fixes the first row is the same as in case L.a so we also
have 275 inequivalent solutions.

In case L.b the symmetry group does not act transitively on
the blocks because there are no symmetries that send blocks
with seven columns to blocks with six columns or vice versa.
However, the symmetry group does act transitively on the
first four blocks. Thus we use the same symmetry breaking
condition given in (xx) except replacing the condition on ¢
with2 <7 < 4.

4 Implementation and results

All symmetry groups and row/column permutations in the
symmetry groups were computed using the computer al-
gebra system Maple 2018. Once those had been explic-
itly computed, a simple Python script (of approximately
200 lines) was written to generate the SAT instances. The
script used 80 rows in all cases and accepted the number of
columns to use as a parameter. Ten variations of this script
were used, one for each starting case described in Table 1.

4.1 CasesIIto Vl.c

The SAT instances in these cases included the constraints (1)
and (2) from Section 3.1, the column symmetry breaking
constraints from Section 3.2, and the symmetry breaking
constraints from method 1 in Section 3.3. The cube-and-
conquer paradigm solved these SAT instances faster than
any other method we tried. As described in (Heule, Kull-
mann, and Marek 2017) a two-level splitting process was
used.

The top-level splitting was performed by exhaustively
finding all possible satisfying assignments for a small por-
tion of the projective plane—the first k£ columns where k
began at 17 and was incremented by one until over 50 solu-
tions were found. The exhaustive search was performed by
a version of the SAT solver MapleSAT (Liang et al. 2016)
that also generates proofs that no solutions are missed (i.e.,
a proof that C'A—'/, S; is unsatisfiable where C' are the SAT
constraints and S; is a cube specifying the ith solution).

The “cubing” solver March_cu (Heule et al. 2011) was
used to generate a second-level partition of each SAT in-
stance using all initial columns, all inside columns, and five
outside columns. For each SAT instance, March_cu gener-
ates a collection of cubes and produces a set of incremen-
tal SAT instances that contain both the constraints and the
cubes. Performance in this step was improved by simplify-
ing the SAT constraints before calling March_cu. We used
the preprocessor of the SAT solver Lingeling (Biere 2017)
because it generated simplification proof traces without re-
naming variables. The “conquering” SAT solver iGlucose,
a modification of Glucose (Audemard and Simon 2018) by
M. Heule, was used to solve the incremental SAT instances
and produce proofs of unsatisfiability.



Case Instances Columns Time (h) Proof size

La 275 65 6.79 16G
Lb 275 68 15.51 32G
Ic 469 59 96.04 164G
I 75 65 3.25 16G
I 52 65 1.57 9.9G
1AY 54 65 0.14 0.5G
v 196 65 0.66 3.2G
Vla 81 65 1.26 8.5G
VLb 160 66 2.40 15G
Vl.c 64 67 3.87 24G

Table 2: Summary of the results of our implementation ap-
plied to all weight 16 cases.

The proofs from the simplification, cubing, and conquer-
ing steps were combined into a single proof by concatena-
tion and the proofs were verified using the proof checker
DRAT-trim (Wetzler, Heule, and Hunt 2014). The proof that
the top-level partition was exhaustive was also verified by
DRAT-trim.

4.2 Casesl.atol.c

In cases l.a to I.c the SAT instances included the con-
straints (1) and (2) from Section 3.1 and the column symme-
try breaking constraints from Section 3.2. Using MapleSAT
we find all satisfying assignments of the columns up to and
including the first block. A Python script checks which so-
lutions are equivalent under the symmetries that fix the first
row.

For every inequivalent solution a new SAT instance is
generated including the symmetry breaking constraints from
method 2 in Section 3.3. The cube-and-conquer method did
not perform well on these instances, perhaps because the
symmetry breaking clauses used in method 2 had length 36,
significantly longer than the clauses used in method 1 which
had length 3. We used MapleSAT to solve these instances
and produce proofs of unsatisfiability which were then veri-
fied by DRAT-trim. The instances in cases [.a—b used all ini-
tial columns, all inside columns, and five outside columns.
The instances in case I.c were the same except the columns
in blocks 2 and 3 were ignored because (Lam, Thiel, and
Swiercz 1986) found no solutions even in this restricted
search area.

Surprisingly, 3 of the 469 SAT instances in case I.c were
found to be satisfiable, producing four 80 x 59 partial projec-
tive planes (one instance had two inequivalent solutions and
two instances had one solution each). Including the columns
from blocks 2 and 3 in these instanced produced unsatisfi-
able instances, i.e., none of the solutions could be extended
into a 80 x 71 partial projective plane.

4.3 Results

A summary of our results is presented in Table 2. In partic-
ular, this table specifies the number of SAT instances used
in each case and how many columns were used in each SAT
instance. The table also includes the total running time (in
hours) of the SAT solvers and the size of the proofs (after

trimming with DRAT-trim) in each case. The computations
were run on a cluster of Intel Xeon E5-2683 processors run-
ning at 2.1 GHz. All cases were solved in approximately
130 hours with the hardest being case I.c. In this case the
SAT instances tended to get progressively easier because the
symmetry breaking method included an increasing number
of blocking clauses.

The four 80 x 59 partial projective planes that were found
in case L.c are included in the supplementary material. These
are particularly interesting since (Lam, Thiel, and Swiercz
1986) claim that they should not exist. In this case we fol-
lowed their initialization of the search exactly, using the
same starting configuration matrix (shown in Figure 1), the
same 80 rows, and the same 59 columns (only 41 of which
contain undetermined entries). Thus we are forced to con-
clude their search was incomplete but because no certificate
of their search exists it is impossible to determine the source
of the discrepancy.

5 Conclusion and future work

We have provided for the first time a SAT certification
that there exist no projective planes of order ten generating
weight 16 codewords. This verifies the searches of (Carter
1974), (Lam, Thiel, and Swiercz 1986), and the verifica-
tion of (Roy 2010). The previous searches relied on highly
optimized computer programs and special-purpose search
algorithms. In contrast, our search used widely available
and well-tested SAT solvers, computer algebra systems, and
proof verifiers. Our search produced the first proof of nonex-
istence for this problem that can be checked by a third party.

Furthermore, our search is the fastest known verification
of this result. The searches of (Carter 1974) that used about
140 hours on supercomputers were verified in under 7 hours,
and the searches of (Lam, Thiel, and Swiercz 1986) that
used about 2000 hours on a VAX-11 were verified in un-
der 125 hours. This is in large part due to the increase in
computation power available today—however, the verifica-
tion of (Roy 2010) which used modern AMD CPUs running
at 2.4 GHz required 16,000 hours.

We do not claim our search is a formal verification of
this result because our encoding relies on many properties
that were derived mathematically and not in a computer-
verifiable form. However, we now have a practical method
for producing such a formal proof: by formally deriving the
SAT encoding that we used from the projective plane ax-
ioms. This would require expertise in both projective ge-
ometry and a formal proof system and would certainly be
a significant undertaking. However, the tools to do this al-
ready exist and have been used to formally prove other re-
sults derived using SAT certificates (Cruz-Filipe, Marques-
Silva, and Schneider-Kamp 2018).

A similar SAT+CAS encoding can also be used to show
the nonexistence of weight 15 codewords in under 10 sec-
onds. The next challenge is to show the nonexistence of
weight 19 codewords as well. We believe the SAT+CAS
approach will be useful in this search but it will likely re-
quire alternative encodings and/or symmetry breaking meth-
ods that exploit the peculiarities of the weight 19 search.
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A SAT Certification for the Nonexistence of Weight 16 Codewords in a Projective
Plane of Order Ten: Supplementary Material

Partial projective planes

Figures 1-4 contain the four inequivalent 80 x 59 partial
projective planes generated from the satisfying assignments
found in case I.c. The examples 3 and 4 are nearly identical
and only differ in two columns of block 5.

It is straightforward to verify that these examples are valid
partial projective planes: each column and row contains at
most eleven 1s, and the inner product of any two rows (or
columns) is at most 1. Furthermore, any row (or column)
with exactly eleven 1s has an inner product with any other
row (or column) of exactly 1. As an additional check, the
structural properties of the partial plane with 80 rows de-
rived by (Carter 1974) are satisfied: namely, there are exactly
six 1s (plus one 1 in the first eight rows) in each column of
each block and there are exactly eight 1s in each outside col-
umn.

Our search used the exact same initialization as the search
described by (Lam, Thiel, and Swiercz 1986); we used the
same upper-left 8 x 18 submatrix, the same 80 rows, and
the same 59 columns. 41 of those columns contain undeter-
mined entries, namely, the 36 columns from blocks 1 and
blocks 4-8 (ignoring blocks 2 and 3) and the five outside
columns that are incident with the row that is incident to
columns 5 and 10.

The search of (Lam, Thiel, and Swiercz 1986) found no
partial projective planes of this form:

The program [...] did not find any completions for
these 41 columns.

Since we found legal completions that should have been de-
tected by their search we are forced to conclude that their
search was incomplete. Despite this, they were correct in
claiming that there are no projective planes that can be gen-
erated from the starting matrix of case I.c. Each of the ex-
amples we found could not be extended into a 80 x 71 par-
tial projective plane that also includes the columns from
blocks 2 and 3.

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: 80 x 59 partial projective plane example 1.
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Figure 2: 80 x 59 partial projective plane example 2.
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Figure 3: 80 x 59 partial projective plane example 3.
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Figure 4: 80 x 59 partial projective plane example 4.



