Vector Rational Number Reconstruction
By

Curtis Bright

A research paper presented to the
University of Waterloo
In partial fulfillment of the requirements for the degree of
Master of Mathematics
in

Computational Mathematics

Supervisors: Arne Storjohann and Kevin G. Hare

Waterloo, Ontario, Canada

(© Curtis Bright 2009

Vector Rational Number Reconstruction

August 31, 2009

Abstract

The final step of some algebraic algorithms is to reconstruct the common denominator
d of a collection of rational numbers (n;/d)1<i<y, from their images (a;)1<i<, modulo M,
subject to the condition 0 < d < N and |n;| < N for a given magnitude bound N. Using
elementwise rational reconstruction requires that M > 2N?2. We present an algorithm,
based on lattice basis reduction, which can perform the reconstruction for problem
instances such as linear system solving even when the modulus is of considerably smaller
magnitude, M > 2(¢tD/2N1H1/¢ for ¢ a small constant. The cost of the new algorithm is
O(nc®(log M)?) bit operations. This extends the work done in [9] for rational function
reconstruction.

1 Introduction

Many algorithms in computer algebra that compute with rational numbers employ a homo-
morphic imaging scheme to avoid intermediate expression swell, to allow for a simple coarse
grain parallelization, or to facilitate an output sensitive approach. Often, the final step of
these algorithms is to reconstruct the common denominator d € Z- of a collection of rational
numbers (n;/d)i1<;<, from their images (a;)1<;<, modulo M. The images modulo M are
typically computed by combining multiple smaller images, either using Chinese remaindering
(M = pyps - - - pm) or a variation of Newton-Hensel lifting (M = p™).

The overall cost of an algorithm that uses a homomorphic imaging scheme depends
on m, the number of images computed, which is directly related to the bitlength of the
modulus M. Ideally, just enough images are computed to allow reconstruction of the common
denominator d. This paper gives a deterministic algorithm for efficiently computing the
common denominator d that for some applications requires about half as many image
computations as the standard approach.

The remainder of this introduction is divided into three parts. First we recall the standard
scalar rational number reconstruction problem. Then we recall how the simultaneous version
of the problem mentioned above can be solved using an algorithm for the scalar case. Finally,
we define the vector rational reconstruction problem and give an outline of our algorithm
that solves the problem.

1.1 Rational Number Reconstruction

A rational number reconstruction of an integer a € Z with respect to a modulus M > 0 is a
rational number n/d € Q (with coprime n, d € Z) such that

a=n/d (mod M). (1)

The set of solutions to (1) are linked to the extended Euclidean algorithm and the continued
fraction expansion of a/M, see for example [11]. In general, the rational reconstruction of an
integer is not unique, but uniqueness can be ensured in certain cases by stipulating bounds
for the magnitude of n and d. In addition to a and M, the rational number reconstruction
problem takes as input the integer bounds N, D > 0. A solution to the problem is a pair of
integers (d,n) such that

da=n (mod M), In| < N, 0<d<D. (2)

Note that if (d,n) is a solution to (2) that satisfies ged(d, M) = 1 then a = n/d (mod M).
For convenience, we prefer to define a solution to the problem using the slightly more general
condition da = n rather than a = n/d.

As mentioned above, (2) may not have a unique solution in general. For example,
consider the bounds N = D = 5. If a = 10 (mod 45), then (5,5) and (4, —5) are linearly
independent solutions to (2), though the first does not yield a rational reconstruction. If
a =9 (mod 41) then (5,4) and (4, —5) are linearly independent solutions which both yield
rational reconstructions.

However, if the condition M > 2N D is satified, and (2) is solvable, then there is a minimal
solution (d,n) such that every solution of (2) is of the form (ad,an) for a € Z~,. The
minimal solution may be found by running the extended Euclidean algorithm on M and
0 < a < M, producing the sequence of equations Ms; + at; = r;. Then the minimal solution
is (|tx], (—1)*1ry), where k is the minimal index such that 7, < N (see [10] Theorem 4.9).

For example, if N = D =5 and a = 26 (mod 51) then the extended Euclidean algorithm
on (51,26) gives:

108 t; T;
0 1 0 51
1 0 1 26
2 1 -1 25
3 —1 2 1
4 26 =51 0

In this case k = 3 and the minimal solution is (2, 1). All solutions of (2) are given by (2c, o)
for 1 < a <2, 50 a has the unique ‘short’ rational number reconstruction of 1/2.

1.2 Simultaneous Rational Number Reconstruction

The simultaneous rational number reconstruction problem takes as input integers a; for
1 <i <n. A solution to the problem is an integer d together with integers n; for 1 <i<n

2

such that
da; =n; (mod M) and |n;| <N for 1<i<nmn, 0<d<D. (3)

If M is sufficiently large, the simultaneous version of the problem may be solved by considering
it as n instances of the rational number reconstruction problem and then checking if a common
denominator exists for which the bounds are satisfied. Similar to the scalar version of the
problem, if M > 2ND and (3) is solvable then there exists a minimal d that generates all
solutions. For M > 2N D, let RatRecon(a, M, N, D) denote a function which returns the
d > 0 such that (d,remys(da)) is the minimal solution to (2), or returns FAIL in case no
solution of (2) exists.

The following code fragment shows how to solve an instance of the simultaneous rational
number reconstruction problem in case M > 2N D is satisfied.

d=1;

for ::=1ton do
// If the call to RatRecon returns FAIL then abort.
d = d - RatRecon(remy,(da;), M, N, | D/d]);

Upon completion of the code fragment, if none of the calls to RatRecon returned FAIL, and if
remy(da;) < N for 1 < i < n, then d is the desired minimal common denominator. Note
that the approach described above requires that M > 2N D (a precondition for RatRecon).
Otherwise this method cannot necessarily be used, even if there is in fact a unique solution,
since entrywise there may well not be a unique solution. In general, when M < 2N D there
may be multiple linearly independent solutions to (3).

In the next section we define close variant of the simultaneous rational number recon-
struction problem and give an overview of our algorithm to efficiently compute a generating
set of all solutions even when M is too small to guarantee a unique solution.

1.3 Vector Rational Number Reconstruction

The vector rational number reconstruction problem takes as input a dimension n € Z-g, a
modulus M € Z-, a single image integer vector a € Z%,, and a size bound N > 0. A solution
to the problem is a pair (d,n) € (Z,Z") such that

da=n (mod M), H[d‘n}H2§N. (4)

Here, we use the 2-norm instead of the co-norm because this is a more natural condition for
the algorithm we will present. Also, instead of separate bounds for d and the entries of n, we
use a common bound for the vector [d ‘ n].

In this paper we present an algorithm that computes solutions to (4). Our algorithm
actually computes a complete “generating set” for (4), that is, a set of linearly independent
vectors (d,n) to da = n (mod M) such that every solution of (4) can be expressed as a
Z-linear combination of the members of the generating set. On the one hand, from the scalar

case, we know that a sufficient condition for the generating set to have dimension zero (no
nonzero solution) or one (a unique minimal denominator solution) is that A > 2N?2. On the
other hand, if ¢ is a small integer such that M > 2(ctD/2N1+1/¢ ig satisfied, we prove that
the generating set returned by our algorithm will contain at most ¢ vectors. If M(z) denotes
the cost of multiplication of integers of bitlength x, the algorithm requires

O(n(c®log M) M(log M)) = O(nc*(log M)?) (5)

bit operations.

For inputs a coming from applications such as linear system solving, the solution space
of (4) will be unique even for M considerably smaller than 2N?2. For example, the problem
instance with bound N = 10* and the vector of residues

a=[—23677 —49539 74089 —21989 63531] € Zjgs067 (6)

has a solution space of dimension one, which yields the unique lowest-terms vector recon-

struction
n/d=[-3256 —2012 331 891 —1692] /3137,

although M = 195967 is easily smaller than 2N? = 2 - 108.

Considering (5), our algorithm can be used to compute the unique solution efficiently
provided M > 2(¢tD/2N1+1/e g satisfied for a small constant c. As a concrete example
consider N = 10199 For ¢ = 5, M needs to have about 12000 decimal digits to ensure that
M > 2(etD2N1+1/e ig gatisfied. But for M > 2N? to be satisfied M needs to have length
about 20000 decimal digits.

Now we give an outline of our approach. First note that the problem of finding solutions
to (4) is identical to the problem of finding short vectors, with respect to the 2-norm, in the
lattice generated by the rows of the following matrix:

M

M ' e Z(n+1)><(n+1)' (7)
M

1 a9 as --- a,

The first n rows of the matrix can be used to reduce modulo M the last n entries of any
vector in the lattice; in particular, a vector obtained by multiplying the last row by d. The
first entry of such a vector will still be d and the ¢th entry for 2 <7 < n+ 1 will be congruent
to da;_1; (mod M).

For example, consider the problem instance from (6), which gives rise to the lattice with
basis matrix

195967 |
195967
195967
195967
195967
1 —23677 —49539 74089 —21989 63531 |

4

The vectors in this lattice of norm less than or equal to N give all solutions of (4).

In general, finding short lattice vectors is a difficult problem, but is facilitated by lattice
basis reduction. The LLL Algorithm is guaranteed to return a basis with first vector at
most 2("~1/2 times longer than the shortest vector in an n-dimensional lattice. For example,
running LLL on L yields the LLL-reduced basis matrix

—=3137 3256 2012 331 —891 1692
—3600 —8445 10430 —-9313 —10268 —18111
—4047 —7044 10092 —8673 20465 —1253
241 —23114 15088 22452 —8240 25545 |’
28082 18517 15535 —14341 —3081 —6026
| —11836 8162 10340 34921 17628 —27537 |

from which the first vector immediately gives a solution. In fact, we can easily show that the
other vectors are too large to contribute to a vector shorter than N, by using the fact that
any lattice vector which includes the final vector must be at least as large as the final vector
in the Gram-Schmidt orthogonalization (GSO) of L’. The GSO of L’ is computed as a side
effect of the lattice reduction, and for this example we can check that the last vector in the
GSO of L' has norm M /4 > N, therefore we know the last vector of L’ cannot contribute to
a vector shorter than N. Removing the last vector, we repeat the magnitude check on the
new last vector of the GSO, and continue in this way until the first vector is the only one
remaining. This process is formalized in Section 3.1.

However, when n is large it is infeasible to run LLL on the entire lattice, for two reasons.
Firstly, the fudge factor 2("=1/2 becomes too large to guarantee that short enough vectors
will be found. Secondly, the process of LLL reduction is much too costly. Assuming the
a; are given in the symmetric range the cost of running LLL on lattices of the form (7) is
O(n®(log M)?) bit operations.

It is unnecessary to immediately reduce the entire lattice, however. The structure of
the lattice permits a kind of iterative reduction. For example, consider reducing only the
lower-left 2 x 2 submatrix of L:

[0 195967] LLL {—389 —96]
:>

L' =

1 —23677 —149 467

We can now use this to help us reduce the lower-left 3 x 3 submatrix of L. We could have
kept track of the third column of L while doing the above reduction, but this isn’t required
because it is clear that during the reduction the 3rd column will always be ay times the first
column. Then the lattice generated by the lower-left 3 x 3 submatrix of L has the following
basis, which we again reduce:

0 0 | 195967 538 371 470
380 —96 | 19270671 | == | 91 1030 —808
149 467 | 7381311 27089 13738 20045

Now, the final GSO vector of the reduced matrix has norm larger than N, so we can safely
discard the last row, and repeat the same augmentation process to find a sublattice which
contains all short vectors in the lattice generated by the lower-left 4 x 4 submatrix of L.

5

The main contribution of this paper is to show that if A > 2(+D/2NH1/e for ¢ € Zog a
small constant, then the process described above of adding columns and removing final rows
of the lattice will keep the row dimension of the lattice bounded by ¢+ 1. For ¢ = O(1), this
leads to a cost estimate that is linear in n.

The rest of this paper is organized as follows. In Section 2 we establish our notation and
recall the required facts about lattices and the LLL algorithm. In Section 3 we state our
basic algorithm for vector rational reconstruction, prove its correctness, and do a simple cost
analysis. In Section 4 we make several improvements to the algorithm which significantly
improves its running time. In Section 5 we show how the vector rational reconstruction
problem is useful for solving nonsingular linear systems.

2 Preliminaries

2.1 Notation

For a k x n matrix L we let Lg be the rows of L which have indices in S C {1,...,k}, let
L7, be the columns of L which have indices in R C {1,...,n}, and let Lg g denote (Lg)F.
We simply write 4 for {i} and 1..7 for {1,...,i}. When not used with a subscript, LT denotes
the transpose of L.

A subscript on a row vector will always refer to entrywise selection, and the norm of a
row vector will refer to the 2-norm, ||z|| = vVaax™.

Vectors are denoted by lower-case bold variables and matrices by upper-case or greek
bold variables, though the boldface is dropped when refering to individual entries. We denote
the zero vector by 0 (the dimension will be clear from context).

The rem),(x) function returns the reduction of x (mod M) in the symmetric range, and
applies elementwise to vectors and matrices.

2.2 Lattices

A point lattice is a discrete additive subgroup of R™. The elements of the lattice generated
by the rank k matrix L € Z**™ are given by

L(L) = {ZnLizmeZ},

and L is a basis of L(L). If £L(S) C L(L) then £(S) is known as a sublattice of L(L); this
occurs if and only if there exists an integer matrix B such that S = BL. The volume of a

lattice is independent of the choice of basis and given by vol L := \/det(LL™).
The set of vectors in £(L) shorter than some bound N is denoted

Ly(L):={be L(L): b <N}.

A generating lattice of Ly (L) is a sublattice of £(L) which contains all elements of £y (L);
the basis of a generating lattice is known as a generating matriz. S is a generating matrix of

6

Ly (L) when it consists of linearly independent rows from L£(L) such that any b € Ly (L)
can be written as a Z-linear combination of row vectors in S; equivalently,

Ly(L) C L(S) C L(L).
For example, any basis of £(L) is always a generating matrix of Ly (L) for any N. However,

when N is small we might hope to find a generating matrix with fewer than k rows.

2.3 Gram-Schmidt Orthogonalization

For a lattice basis L € ZF*" let L* be the associated Gram-Schmidt orthogonal R-basis with
change-of-basis matrix pu, i.e.,

L 1 L:
L, po1 1 L; (L;, L)
) =) . . with p;; = +
: SR : oL
L, He1 ez v 1 L;

Then we define the GSO (u,d) € (Q***, ZF+1) of a basis L to satisfy
L=pL* and d;=]]IL;|"
=1

with dy = 1, so d;/d;_1 = ||L}]|*>. Note that dj, = (vol L)? and in general d; = (vol L ;).
Also, the d; are useful as denominators for L* and p:
di_1L} € L(L) CZ""
dll'T c kal

2.4 LLL Reduction
Let (p, d) be the GSO of a lattice basis L € ZF*". The GSO is size-reduced if ||pt— x|l max <

5 and 2-reduced if did;—y > (3 — p2,_1)d?_y for 1 < i < k. A GSO is LLL-reduced if it is
both size-reduced and 2-reduced, and a basis is LLL-reduced if its corresponding GSO is
LLL-reduced.

Given a lattice basis L € ZF*™, the lattice basis reduction problem is to compute an
LLL-reduced basis L’ such that £(L) = L£(L'); the algorithm from [6] accomplishes this in

O(nk®log BM(klog B)) = O(nk®(log B)?)

bit operations, where max;||L;|| < B. We restate this algorithm as Algorithm 1.
We will make use of the following theorems about LLL reduction.

Theorem 1. An LLL-reduced basis L € Z**™ satisfies the following properties:

7

) i o
1. ||Ly]| < 207972\ L] for i < j
2. max; || L;|| < 26-D/2|| Ly ||

3. (vol L)k /2k=1/4 < || Lx||

Theorem 2. During the running of Algorithm 2:

1. maxy||L}|| is never increased
2. dy is never increased (for all {)

3. d; < 3d; during step 5

3 The Basic VecRecon Algorithm

We will be concerned with the lattice generated by

M
1@1

M

a2

M

Qn

c Z(n+1)><(n+1)

where a € Z'" and M € Z-,. When a and M are clear from context, A will simply be
denoted A. We present an algorithm which computes an LLL-reduced generating matrix for
Ln(AM) with at most ¢ vectors, where ¢ > 1 is a small constant such that M > 2(c+D/2y1+1/e
is satisfied. The basic algorithm pseduocode is given as Algorithm 3. We now prove the
assertions after step 5 hold, from which the correctness of the algorithm follows.

The rest of the section is devoted to proving the following theorem. In Section 3.1 we
prove correctness and in Section 3.2 we give a crude cost analysis.

Theorem 3. Algorithm 3 returns an LLL-reduced generating matrix S € ZF<(tD of
Ln(AM) with k < c. When a € Z}f™ is given in the symmetric range, the running time is

O(n*c®(log M)3) bit operations.

3.1 Algorithm Correctness

Lemma 1. If L € Z*" has GSO (u,d) then Ly ; has GSO (py ;1.4,do.;) for 1 <i <k,
and if L is LLL-reduced then so is Ly ;.

Proof. Follows immediately from definitions and (L ;)* = Lj ;. O

Corollary 1. Assertion A after step 5 of Algorithm 3 holds.

Proof. The GSO (u,d) is LLL-reduced during step 4 and truncated during step 5, so it
remains LLL-reduced after step 5.]

Lemma 2. If S € Z"" is a generating matrix for Ly(L) and || S;|| > N then Sy j_; is
also a generating matrix for Ln(L).

Proof. Clearly L(S1 x-1) € L(S), and L(S) C L(L) since S is a generating matrix of Ly (L),
so L(S1.x-1) is a sublattice of £(L). It remains to show that Lx(L) C L(S1. x-1), i.e., if
b € Ly(L) then b can be written as a Z-linear combination of the rows of Sy ;1.

Since Ly(L) C £(S), we can write any b € Ly(L) in the form b =S¢ | 7S, for some
r € Z'**. Rewriting using the Gram-Schmidt decomposition, we have b = S} + Zi:ll $; St
for s = rpu € QV*. Since the S; are orthogonal,

k—1
1I[* = rZISEI® + > sEIST I = Z1ISE),

=1
so if 2 # 0 then ||b]| > ||S}]| > N. Thus b € Lx(L) must be in £(Sy__1). O

In the following proofs about a specific step of the computation, let L’ be the new value
of L at the conclusion of the step (and similarly for the other quantities k, ¢, u, d).

Proposition 1. At the completion of steps 3, 4 and 5 in Algorithm 3,

L is a generating matrix of Ly (A}) with GSO (p, d). (%)
Proof. After step 1 we have L = A}l "=[1], so L is a generating matrix of £L(A}!). Also,

(p,d) = ([1],[1]) so L has GSO (u,d) and (x) is satisfied as the loop is entered for the first
time.

Now we show that if (%) holds at the beginning step 2, it also holds at the conclusion
of step 3, and if it holds at the beginning of steps 4 or 5 it also holds at their conclusion.
Denote Aj! , by A and A3l by A'.

e Steps 2-3: For these steps ¢ = ¢ + 1 and L is updated such that

, [o| M . [0 M
L_[L LTa, and L =75 |-

Letting (f1, d) denote the GSO of L', these imply:

d; = M?TI. 2L |1L3) for i > 1
i1 = LM(I@/M for ¢ > 2
fuij = (Li—1, Li_) /| L5 |? ford, j >2

Assuming that (u, d) was the GSO of L these yield the same formulae used to update

(u,d). Thus (fr,d) = (p',d’) is the GSO of L.

9

Assuming that £(L) was a sublattice of £(A), there is some B € ZF*(*1) such that
L = BA. Then £(L') is a sublattice of L(A’), since

, [o] M _[1]o] ,,

Now let b = rA’ for some r € Z“+1 be an arbitrary element of £(A’). But if
be Ly(A') then by, € Ly(A), which is in £(L) by assumption, so there exists some
s € Z"* such that by , = sL. Then

, 0| M 0| M , ,
b:rA:r[A A?ag/]:[rll][sL SLM/]:[rls}L € L(L),

showing Ln(A’) C L(L').

e Step 4: If (x) holds at the start of step 4, then it necessarily holds at its conclusion
since InPlaceLLL ensures £(L’) = L(L) and updates (p',d’) to be the GSO of L'.

e Step 5: By Lemma 1, if (u, d) was the GSO of L then (g/, d’) is the GSO of L'.

Also, by repeated application of Lemma 2, if L was a generating set of Ly(A) then L’
is also a generating set of Ly(A).

By induction, (*) always holds after any step during the loop. H
Corollary 2. Assertion B after step 5 of Algorithm 3 holds.

We now take Proposition 1 as a given, so in particular d; = H;Zl ||L;*||2 after each step.
Proposition 2. After every step during Algorithm 3, M?U~1) < dj < M% for 0 < j <k,

Proof. First, we show inductively that | L}|| < M for 1 < i < k at the completion of every
step. This clearly this holds after step 1, and if it holds at the beginning of step 2:

e It holds after step 3 since ||L{"|| = M and || L;*|| = || L || for i > 1.
e It holds after step 4 since max;||L;"|| < max;||L}|| by Theorem 2.1.
e It holds after step 5 since L",, = L} ..

Next, we show inductively that M*~! < vol L at the completion of every step. This clearly
this holds after step 1, and if it holds at the beginning of step 2:

e It holds after step 3 since M* ' = M* < Mvol L = vol L.
e It holds after step 4 since vol L' = vol L and k' = k.

e It holds after step 5 since M*~! < vol L < M*~* vol L’ (using || L|| < M for k' < i < k).
Dividing by M** yields the desired inequality M* ! < vol L'

10

The upper bound d; < M?% follows by multiplying [|Lf||* < M? for 1 < ¢ < j. The
lower bound M?2U~Y < d; follows by multiplying M2*~1) < (vol L)? by M~2 < ||L||~2 for
j<i<k. 0

Proposition 3. If k = c+ 1 at the start of step 5 of Algorithm 3 then at least one vector is
discarded during that step.

Proof. By Assertion A, Proposition 2, and the algorithm’s required bounds on M:

|L;|| > (vol L)k 2k=1/4 (Theorem 1.3)
> M(k—l)/k/g(k—l)/4 (VolL > Mk—l)
> N (M > 2(e+D/4 1L /ey

Thus dy,/dy_1 > N?, so k is decreased during step 5. O
Corollary 3. Assertion C after step 5 of Algorithm 3 holds.

Proof. k < c holds after step 1, and if it holds before step 2 then k < ¢+ 1 at the beginning of
step 5 and k < ¢ at the end of step 5 by Proposition 3. Assertion C follows by induction. []

3.2 Runtime Analysis

We now examine the runtime of each step of Algorithm 3. Steps 1 and 6 are clearly O(1) and
step 2 is executed at most n times. Steps 3 and 5 require O(c) arithmetic operations and
step 4 runs InPlaceLLL on lattice with at most ¢ 4+ 1 vectors, though we need bounds on the
bitlength of the numbers used to compute the actual number of bit operations required in
these steps.

Proposition 4. At the conclusion of the following steps during Algorithm 3 we have:
e Step 3: max;||L;|| < /a7 + 1M
e Step 4: max||Ly|| < VEM

e Step 5: max;||L;|| < M/2

Proof. After step 4, | L;||*> = 22:1 (7| L5]|* < iM? since an LLL-reduced basis satisfies
pi; <1, and ||Li|| < M from Proposition 2.

After step 5, by Theorem 1.2, || L;| < 2%=V/2||L;|| < 2(¢"V/2N < M/2 by the algorithm’s
bounds on M and since || L;|| < N by choice of k during step 5.

Let L’ be the value of L after step 3. The first time step 3 is executed we have ||L}|| = M
and || L}|| = y/a? + 1, so the bound clearly holds in this case. On subsequent executions,
we have ||L|| = M, and for i > 1, || Lj||* = ||Li—1 || + L7, ya3 < M?*(1 + aj,) by the bound
following step 5. [l

11

Since we are only concerned with @ (mod M), it is reasonable to require that a; be in
the symmetric range, in which case we have max;||L;|| < M? at the end of step 3, and can
take B = M? for our LLL bitlength bound.

Then every execution of step 4 runs in O(¢c®log M M(clog M)) = O(nc®(log M)?) bit
operations, which dominates the loop cost. Step 3 works with integers of bitlength log M,
and so requires O(cM(log M)) = O(c(log M)?) bit operations. Step 5 works with the d; (of
bitlength clog M by Proposition 2) and so requires O(cM(clog M)) = O(c*(log M)?) bit
operations.

Since the loop runs O(n) times, the total cost is O(n%c®(log M)?) bit operations.

4 A Refined VecRecon Algorithm

Due to the special form of the lattices under consideration, the running time of InPlacelLLL in
Algorithm 3 may be improved on. Both the number of swaps and the bitlengths of p; ; and
|L;||* are less than those required in the general case. Additionally, it is unnecessary to keep
track of the entire lattice basis L; ultimately L is uniquely determined by its first column.

Theorem 4. Algorithm 4 returns an LLL-reduced generating matrix S € ZF<(+1) of
Ly(AM) with k < c. When a € Z}f" is given in the symmetric range, the running time is
O(nc®(log M)?) bit operations.

4.1 Algorithm Correctness
Lemma 3. Any L € Z""*+Y with L(L) C L(AM) is of the form

aj. .y
[L? ‘ remy; (LTa, ¢) + MR}
for some R € ZF*¢.

Proof. Since £(L) is a sublattice of £(A) there exists a B € ZF*(“*1) such that
L=BA=B/ A+ Bl A =B}, | Bl a1+ B A i2.1],

so B}, = L. The result follows since M divides every entry of A ¢2 ¢4+1 and remy (Liay) =
LTa, ,+ MQ for some Q € Z"**. O

Corollary 4. At the conclusion of step 5 of Algorithm 3, when L is expressed in the form
from Lemma 3, R is the zero matrix.

Proof. If R was not the zero matrix then some entry of L is not in the symmetric range
(mod M). In which case there would be an entry |L;;| > M/2, so |L;|| > M/2, in
contradiction to Proposition 4. O]

12

This shows that we can reconstruct all the entries of L from just LT at the conclusion of the
algorithm. Also, note that the entries of L} ,., are otherwise irrelevant to the computation:
The execution flow of InPlaceLLL only depends on the GSO (u, d), not on L itself. Therefore
during Algorithm 4 we only keep track of L = LT, and pass L to InPlacelLL, which still
does the proper updates to L in place of of L. This reduces the cost of size-reduction from
O(¢k) arithmetic operations to O(k?).

Lemma 4. Any L € Z") with £L(L) C L(AY) satisies M**~1 | (vol L)

A

Proof. Since L£(L) is a sublattice of £(A) there exists a B € ZF<(*1) such that L = BA.
Using the Cauchy-Binet formula twice,

(vol L)* = det(LL")
= 3 det((BAYL)?
S

= det(BAY)?
S
2
-y (Z det(BY) det(AR,s))
S R
where the sums range over all subsets of {1,...,¢+ 1} with k elements. For all such subsets,
M* =1 | det(Ags), so every term in the outer sum has a factor of M2*—1. O

Corollary 5. M?U=1 | d; for 1 < j <k at the completion of every step in Algorithm 3.
Proof. Follows by Lemma 4 since £(Ly. ;) C L(L) C L(A}) and (vol Ly ;)* = d;. O

This suggests that we need only store d; = d,; /MU~ instead of the explicit d; like we
do in Algorithm 3. This improvement is taken into account in Algorithm 4. Note that the
computations during LLL do not depend on the || L}||* directly, but on the relative values of
|L5||* and ||L%_,||* for j > 2. Since

L5 dj/dia :djdj—zzga;dj—z
L5 1> dja/djo di 2,

7—1

LLL may be called during Algorithm 4 with d rather than d. In this case we have dy =
do/M* =D = M2,

Proposition 5. When L € Z*+V and £(L) C £L(AY) the d;s may be used as denomi-
nators for L* and p:

|L;||)* = M?d;/d;_y (8)
di_ L' € L(L) C z"*¢D (9)
M?d;u} € 7P (10)

13

Proof. Since L(L) is a sublattice of £(A) there exists a B € Z¥*(**1) such that L = BA.
For (8),)
d; o di/M2(i71) — A2 d;

d; 4 - di_l/MQ(i—U - difl.

For (9), let A be the inverse of p, i.e., AL = L*. Then ALLT = L*L" is an upper
triangular matrix, since (L, L;) = 0 for i > j. Selecting out row ¢ and columns 1..i — 1 from
this matrix we have \;L(L; ;_1)T = 0. Noting that X is unit lower triangular,

1L |* =

>\i,1..i—1L1..i—1(Ll..i—l)T = _Li(Ll..i—l)T-
Since A; ;. ;—1 is the solution of this linear system, by Cramer’s rule,

|det(L.ip;(L1.i1)")] _ |det(B(l..p\jAAT(Bl..z‘—l)T)|

det(Ly ;—1(Ly.i-1)7) d;_1 M2(~2)

[Aijl =

Using Cauchy-Binet twice like in Lemma 4, M?(~? divides the numerator. Thus di)\ €
Zle, SO di_lL;-k = di_lAiL € Q(L)
For (10), we can show M?d; works as a denominator using (8) and (9):

*\T
() T = (G 17) 22D,

)

— L(dLY) " € 7 m

4.2 Runtime Analysis

Steps 1 is clearly O(1) and step 2 is executed at most n times. Steps 3 and 5 require O(c)
arithmetic operations and step 6 requires O(nc) arithmetic operations, all on integers of
bitlength O(log M). Step 4 runs InPlaceLLL on lattice with at most ¢+ 1 vectors, but because
of the special lattice form, all computations in LLL can be done with integers of bitlength
O(log M). There are O(clog M) swaps and O(c?) arithmetic operators required during
size reduction. Therefore Step 4 of Algorithm 4 dominates, and requires O(c®(log M)?) bit
operations every iteration. Since the loop runs O(n) times, the total cost is O(nc®(log M)?)
bit operations.

5 Application to Linear System Solving

In this section let A € Z™™ be a nonsingular matrix and b € Z" be a vector such that
H [A ‘ b] Hmax < B. Consider the problem of computing & € Q" such that Ax = b, using for
example Dixon’s algorithm [3]. This requires reconstructing the solution & from its modular
image rem(x), where M = p™ for some prime p { det(A) and m € Z~ is large enough that
the reconstruction is unique.

We can use p-adic lifting to recover the image vector a@ = remy(x) for m = 2,3,.... The
cost of the lifting is directly related to the number of lifting steps m, which dictates the
precision of the image. Highly optimized implementations of p-adic lifting [2, 4, 5] employ

14

an output sensitive approach to the rational reconstruction of the vector « from a in order
to avoid computing more images than required. As m increases, the algorithm will attempt
to perform a rational reconstruction of the current image vector. The attempted rational
reconstruction should either return the unique minimal denominator solution or FAIL. When
FAIL is returned more lifting steps are performed before another rational reconstruction is
attempted.

In the following let v € Z" and d € Z. Suppose (d,v) is such that @ = remy,(v/d), i.e
Av =db (mod M). To check if Av = db, that is, if v/d is the actual solution of the system
Ax = b, we could directly check if Av = db by performing a matrix vector product and
scalar vector product. However, this direct check is too expensive. The following idea of
Cabay [1] can be used to avoid the direct check, requiring us to only check some magnitude
bounds.

Lemma 5. If ||v|le < M/(2nB), |d| < M/(2B) and Av = db (mod M) then = v/d.

Proof. Note that ||Av||e < nB||v||s and ||db||o < Bld|, so by the given bounds ||Av||w <
M/2 and ||db|l« < M/2. Every integer absolutely bounded by M /2 falls into a distinct
congruence class modulo M, so since the components of Av and db are in this range and
componentwise they share the same congruence classes, Av = db, and the result follows. [J

Algorithm 5 shows how Lemma 5 is combined with the simultaneous rational reconstruction
algorithm described in Section 1.2 to get an output sensitive algorithm for the reconstruction
of « from its image a. This algorithm does not take the size bound N as a parameter, but
calculates an N such that there will be at most one lowest-terms reconstruction, and if a
reconstruction exists it yields the actual solution .

The iterative reconstruction algorithm given in Section 1.2 with N = D requires M > 2N?,
and this ensures there is at most one minimal reconstruction. To guarantee that any
reconstruction returned actually yields a solution we take M > 2nBN. Since the entries of
any reconstruction returned by the algorithm are bounded in magnitude by /N, by Lemma 5
if N < M/(2nB) then the rational reconstruction is the actual solution.

Algorithm 6 shows how Lemma 5 is combined with VecRecon instead to get an output
sensitive algorithm for the reconstruction. In this case we need M > 2(¢t)/2N1+1/e ¢4 satisfy
the precondition of VecRecon, and M > 2(¢tD/2n BN to ensure the output is the real solution.

Lemma 6. If Algorithm 6 does not return FAIL then the output is the correct solution .
Proof. First, note that every entry of S is absolutely bounded by M/(2nB):
18] max < max;[|.S;]
< 26702 85
< ole-D/2y
< M/(2nB)

(Norm comparision)
(Theorem 1.2)

(Choice of k in VecRecon)
(M > 2+1)/2n BN)

Then we can use Lemma 5 on any row i of S, since A(S;2 n41)T = Si1b (mod M) by
contruction of S. Therefore every row of S yields a solution @ = S;3 ,+1/S:1, but since

15

there is only one solution and the rows of S are linearly independent, S can have at most one
row. Assuming the algorithm did not return FAIL, we have = S5 ,,+1/S51, as required. [J

Lemma 7. If M > 2(¢*D/2(\/n +1n™2B")*1/¢ then Algorithm 6 will not return FAIL.

Proof. Let denom(x) denote a function which returns the minimal d € Z~q such that de € Z",
and let numer(x) := denom(x) - . By Hadamard’s bound and Cramer’s rule, denom(zx) and
the entries of numer(z) are bounded in absolute value by n™2B", from which it follows that

| [denom(@) | mumer(a)] |[* < (n + 1) n" 5"

Therefore if v/n + 1n™?B"™ < N then VecRecon is guaranteed to find a generating lattice which
includes [denom(x) | numer(x)]. In fact, it is straightforward to see that this condition

holds for the value of N set in step 1 when M > 2(¢+D/2(\/p - 1n?/2B") 1 +1/e, O

The running time of Algorithm 6 is simply that of VecRecon, so we have proved the
following theorem.

Theorem 5. Algorithm 6 works correctly as stated. If M satistfies
M > 2(c+1)/2(\/n—+1nn/23n)1+1/c
then the algorithm will not return fail. The cost of the algorithm is
O(nc®(log M)?) = O(nc®(c + nlog(nB))?)

bit operations.

Note that we require M > 2n"B?" to guarantee Algorithm 5 does not return FAIL, so
Algorithm 6 allows a smaller value of M to work when n and B are large but ¢ is small.
The following table compares the minimum values of log M which work for Algorithm 5 and
Algorithm 6 for various ¢ values.

Table 1: The value of log M required to guarantee Algorithms 5 and 6 return a solution.

n |B| Alg.5 |Alg.6,c=2|Alg.6,c=3|Alg.6,c=4]Alg.6,c=5
200 | 1 | 1060.36 799.76 711.36 667.34 641.06
400 | 1 | 2397.28 1802.97 1603.11 1503.35 1443.63
800 | 1 | 5348.38 4016.82 3570.97 3348.22 3214.70
1600 | 1 | 11805.11 8859.88 7875.91 7384.10 7089.16
Alg. 6/Alg. 5 ~ 5% ~ 67% ~ 63% ~ 60%
Algorithm 5 requires that logM be approximately equal to twice

log (” [denom(x) | numer(x)
only about 1+ % times log (|

16

}) in order to succeed. Algorithm 6 requires that log M be
denom(x) ‘ numer () | ||) in order to succeed.

References

1]

2]

[10]

[11]

S. Cabay. Exact Solution of Linear Equations. Proceedings of the Second Symposium on
Symbolic and Algebraic Manipulation, 392-398. 1971.

7. Chen and A. Storjohann. A BLAS Based C Library for Exact Linear Algebra on
Integer Matrices. Proceedings of the 2005 International Symposium on Symbolic and
Algebraic Computation, 92-99. 2005.

J. D. Dixon. Exact Solution of Linear Equations Using P-Adic Expansions. Numerische
Mathematik, 40:137-141. 1982.

J.-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi, B. Hovinen, E. Kaltofen, B. D. Saun-
ders, W. J. Turner, and G. Villard. LinBox: A Generic Library for Exact Linear Algebra.
Mathematical Software: Proceedings of the First International Congress of Mathematical
Software, 40-50. 2002.

P. Giorgi. Arithmétique et algorithmique en algébre linéaire exacte pour la bibliothéque
LinBox, PhD Thesis. 2004.

A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovasz. Factoring Polynomials with Rational
Coefficients. Mathematische Annalen, 261:513-534. 1982.

M. Monagan. Maximal Quotient Rational Reconstruction: An Almost Optimal Algo-
rithm for Rational Reconstruction. Proceedings of the 2004 International Symposium on
Symbolic and Algebraic Computation, 243-249. 2004.

P. Nguyen and D. Stehlé. An LLL Algorithm with Quadratic Complexity. SIAM Journal
on Computing, 39:874-903. 2009.

Z. Olesh and A. Storjohann. The Vector Rational Function Reconstruction Problem.
Proceedings of the Waterloo Workshop on Computer Algebra 2006, 137-149. 2007.

V. Shoup. A Computational Introduction to Number Theory and Algebra, Cambridge
University Press. 2008.

J. von zur Gathen and J. Gerhard. Modern Computer Algebra, Cambridge University
Press. 2003.

17

Algorithm 1 The LLL(k, L) lattice basis reduction algorithm.

Input: A lattice basis L € ZF<¥',
Output: Update L to be an LLL-reduced basis of the input lattice.

1. [Compute Gram-Schmidt orthogonalization]
(1, d) = GSO(L);

2. [LLL reduction]
InPlaceLLL(k, u,d, L);

Algorithm 2 The InPlaceLLL(k, , d, L) lattice basis reduction algorithm.

Input: The GSO (u,d) € (Q%**, ZF+1) of a lattice basis L € Z"*¥'.
Output: Update L to be a basis of the input lattice, with LLL-reduced GSO (p, d).

1. [Continually increment ¢ by 1 until i > k]
for + :=2to k do

2. [Size reduce vector i against vectors 1,2,...,i — 1]
for j:==i—1to1do

3. [Size reduce vector i against vector j]

ri= (Mi,j - %17
L, =L;,—rLj
i = i — TH;

4. [Check Lovész condition]
5. [Swap vectors i — 1 and 1]
m = fii-1;
di_y =did;_o/d;i—y +m?d;_y;
Swap(Li—h Li);
swap(pi—1, 1i);
swap(p;_y, 1,);
pio= gl —mp
piy =l A mdi/di)
dimy = dj_y;
i = max(i —2,1);

assert L, ; has LLL-reduced GSO (pt1.i1.i, do..i)

18

Algorithm 3 The basic VecRecon(n, a, M, N, c) generating matrix algorithm.

Input: a € Zt*" and N, ¢ € Zwo with M > 2(ctD/2N1+1/e
Output: An LLL-reduced generating matrix S € Z**"+1 of L (AM) with k < c.

/| Note L € ZF<"HD d € 7M1 and pu € Q¥* throughout (with ¢ starting at 0).

1. [Initialization]
k=1, L11=1,dy=1;dy .= 1; 11 = 1;

2. [Iterative lattice augmentation]
for /:=1ton do

3. [Add new vector to generating matrix]

1 0 1 0| M
Bkl e HZM/M /J’ d= {MQd} L= {Jr LM}

4. [LLL reduction]
InPlaceLLL(k, pt,d, L);

5. [Remove superfluous vectors from generating matrix]|
Set k to be the maximal value such that d/d_; < N2
If no such k exists, return the unique element of Z0*(+1),

L:=L ;; p:=pi 1k d=dyy;

assert A. (u,d) is LLL-reduced
B. L is a generating matrix of Ly (A}) with GSO (p, d)
C.k<c

6. [Return generating matrix]|
return S := L;

19

Algorithm 4 A refined VecRecon(n, a, M, N, ¢) generating matrix algorithm.

Input: a € Z45" and N, ¢ € Zso with M > 2(+D/2N1+1/e,

Output: An LLL-reduced generating matrix § € Z¥*"+1) of Lx(AM) with k < c.

/| Note L € Z"', d € Z¥*! and p € Q*** throughout.

1. [Initialization]
k —1 Lll—l d() —M2 dll—l [,611:—]_

2. [Iterative lattice augmentation]
for ¢ :=1ton do

3. [Add new vector to generating matrix]|
bbb |00 g [ME] 2 [Y.
TR a/M [L)
4. [LLL reduction]
InPlaceLLL(k, p, d, L);

5. [Remove superfluous vectors from generating~ma1:rix]
Set k to be the maximal value such that M?dy/dy_ < N2
If no such k exists, return the unique element of Z0*(n+1)

L=1Ly;; p=prpis d=doy;

assert A. (p,d) is LLL-reduced, where d := diag,;, (M*" d

C.

6. [Complete generating matrix|
return S := [L ‘ remy(La) |;

(ke
[‘ rem; (La,)] is a generating matrix of Ly (AL) with GSO (p
k<

,d)

20

Algorithm 5 An output sensitive LinSolRecon(n, a, M, B) using scalar reconstruction.
Input: The image a € Z}; of the solution of the linear system Ax = b, and B € Z-, an
upper bound on the magnitude of the entries of A and b.

Output: Either the solution € Q™ or FAIL.

// Need M > 2N? and M > 2nBN.

1. [Set an acceptable size bound|

N = Lmin(\/M/Q,M/(Q”B»J;

2. [Simultaneous rational reconstruction]
d:=1,;
for :=1ton do

3. [Entrywise rational reconstruction]
d = d - RatRecon(remy,(da;), M, N, | N/d|);
If the call to RatRecon returns FAIL then return FAIL.

4. [Check reconstruction]
If |[remp/(da)||s > N then return FAIL.

5. [Return solution]
return remy,(da)/d;

Algorithm 6 An output sensitive LinSolRecon(n, a, M, B, ¢) using vector reconstruction.
Input: The image a € Z%, of the solution of the linear system Ax = b, and B € Z-,,
an upper bound on the magnitude of the entries of A and b. Also, a parameter ¢ € Z-q
controlling the maximum lattice dimension to use in VecRecon.

Output: Either the solution € Q™ or FAIL.

// Need M > 2(+D/2N1+1/e and M > 2(¢+D/2n BN,

1. [Set an acceptable size bound|
N = |min(M</ (D) /2¢/2 M /(20D B)) |

2. [Vector rational reconstruction]
S := VecRecon(n, a, M, N, c) € ZF*(+1).
If £ =0 then return FAIL.

assert k=1

3. [Return solution]
return S, ,,.1/51;

21

