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Abstract
In the 1970s and 1980s, searches performed by
L. Carter, C. Lam, L. Thiel, and S. Swiercz showed
that projective planes of order ten with weight 16
codewords do not exist. These searches required
highly specialized and optimized computer pro-
grams and required about 2,000 hours of computing
time on mainframe and supermini computers. In
2011, these searches were verified by D. Roy us-
ing an optimized C program and 16,000 hours on a
cluster of desktop machines. We performed a veri-
fication of these searches by reducing the problem
to the Boolean satisfiability problem (SAT). Our
verification uses the cube-and-conquer SAT solv-
ing paradigm, symmetry breaking techniques using
the computer algebra system Maple, and a result
of Carter that there are ten nonisomorphic cases to
check. Our searches completed in about 30 hours
on a desktop machine and produced nonexistence
proofs of about 1 terabyte in the DRAT (deletion
resolution asymmetric tautology) format.

1 Introduction
Geometry is one of the oldest branches of mathematics, being
first axiomatically studied by Euclid in the 3rd century BC.
Given a line and a point not on it, Euclid’s “parallel postulate”
implies that there exists exactly one line through the point
and parallel to the given line. For 2000 years mathematicians
tried in vain to prove this axiom but eventually geometries
that did not satisfy the parallel postulate were discovered.
For example, in the early seventeenth century G. Desargues
studied projective geometry where parallel lines do not exist.
Projective geometry became widely studied in the nineteenth
century, leading to the discovery of projective geometries
containing a finite number of points.

Despite a huge amount of study for over 200 years, some ba-
sic questions about finite projective geometries remain open—
for example, how many points can a finite projective plane
contain? It is known [Kåhrström, 2002] that this number must
be of the form n2+n+1 for some natural number n (known as
the order of the plane) and certain orders such as n = 6 have
been ruled out by theoretical arguments. For every other n up
to ten a finite projective plane of order n can be shown to exist

through an explicit construction. No theoretical explanation
is known that answers the question if a projective plane of
order ten exists and answering this question has since become
known as Lam’s problem. In the 1970s and 1980s an enor-
mous amount of computing was used to show that no such
plane exists [Lam, 1991]. The computations were based on the
existence of codewords in the error-correcting code generated
by a projective plane of order ten. It was shown [Carter, 1974]
that such a code must contain codewords of weights 15, 16,
or 19—but exhaustive searches showed that such codewords
do not exist.

Each search required more advanced search techniques and
orders of magnitude more computational power than the pre-
vious search—the weight 15 search being the easiest and the
weight 19 search being the most challenging. In this paper
we focus on the weight 16 search that originally required
about 2,000 hours on supercomputers and a VAX-11 super-
mini machine. Additionally, in 2011, using an optimized C
implementation the weight 16 search was verified in 16,000
core hours split across fifteen desktop machines [Roy, 2011].

We provide a reduction of the weight 16 codeword exis-
tence problem to the Boolean satisfiability problem (SAT) and
a SAT certification that the resulting instances are unsatisfi-
able. This is done using the cube-and-conquer SAT solving
paradigm [Heule et al., 2011] and uses functionality from the
computer algebra system Maple for the purposes of symmetry
breaking. See Section 2 for background on the cube-and-
conquer paradigm and Section 3 for a description of our SAT
encoding and symmetry breaking methods. Our search com-
pleted in about 30 hours on a desktop machine, significantly
faster than any previous search.

Furthermore, no previous search was able to provide any
kind of a certificate following a successful completion. Thus,
an independent party had to take on faith that the searches did
in fact complete. In contrast, our search produces unsatisfia-
bility certificates that an independent party can use to verify
that our searches were successfully run to completion. The
proofs of nonexistence generated by the SAT solver amounted
to about 1 terabyte in the uncompressed DRAT (deletion res-
olution asymmetric tautology) format [Wetzler et al., 2014].
See Section 4 for details on our implementation and results.

We do not claim our search is a formal verification be-
cause our encoding relies on many mathematical properties
that were not derived in a computer-verifiable form, such as



the result that there are ten nonisomorphic cases that need
to be considered [Carter, 1974] in addition to the correct-
ness of our encoding and implementation. However, we
now have a potential method for producing a formal proof:
by formally deriving our SAT encoding from the projective
plane axioms. This would require expertise in both projec-
tive geometry and a formal proof system and would be a
significant undertaking. However, the tools to do this al-
ready exist and have been used to formally verify other re-
sults derived using SAT certificates [Cruz-Filipe et al., 2018;
Keller, 2019].

2 Background
We now describe the background necessary to understand the
nonexistence results of this paper, including the method that
we used to solve the SAT instances and the mathematical
background on projective planes and their symmetry groups
that is necessary to understand our SAT reduction.
The cube-and-conquer paradigm. The cube-and-conquer
paradigm was first developed by Heule, Kullmann, Wieringa,
and Biere [Heule et al., 2011] for computing van der Waerden
numbers, a notoriously difficult computational problem from
combinatorics. In recent years the cube-and-conquer method
has been used to resolve long-standing combinatorial problems
such as the Boolean Pythagorean triples problem [Heule et al.,
2017] and computing the fifth Schur number [Heule, 2018].

The idea behind the cube-and-conquer method is to split
a SAT instance into subproblems defined by cubes (proposi-
tional formulae of the form l1 ∧ · · · ∧ ln where li are literals).
Each cube defines a single subproblem—generated by assum-
ing the cube is true—and each subproblem is then solved or
“conquered” either in parallel or in sequence.
Projective planes. A projective plane is a collection of
points and lines that satisfy certain axioms, for example, in
a projective plane any two lines intersect at a unique point.
Finite projective planes can be defined in terms of incidence
matrices that have a 1 in the (i, j)th entry exactly when the
jth point is on the ith line. In this framework, a projective
plane of order n is a square {0, 1}-matrix of order n2 + n+ 1
where any two rows or any two columns intersect exactly once
(where two rows or columns intersect when they share a 1 in
the same position). To avoid degenerate cases we also require
that each row contains at least two zeros or equivalently that
each row contains exactly n+ 1 ones. Two projective planes
are said to be isomorphic if one can be transformed into the
other via a series of row or column permutations.

Projective planes are known to exist in all orders that are
primes or prime powers and the prime power conjecture is that
they exist in no other orders. Some orders such as n = 6 have
been ruled out on theoretical grounds making n = 10 the first
uncertain case. This stimulated a massive computer search
for such a plane [Lam, 1991] based on the form such a plane
must have assuming certain codewords exist. A codeword is a
{0, 1}-vector in the rowspace (mod 2) of a {0, 1}-matrix and
the weight of a codeword is the number of 1s that it contains.

It is known [Carter, 1974; Hall, 1980] that a projective plane
of order ten must generate codewords of weight 15, 16, or 19,
thus dramatically shrinking the search space and naturally

Case Symmetries Group Size Initial Cols.
1a S4 o S2 1152 28
1b S4 × S4 576 23
1c S4 o S2 1152 18
2 S4 × S2 48 28
3 D8 16 28
4 D4 × S2 16 28
5 S3 × S2 12 28
6a S2 × S2 4 28
6b S2 2 26
6c S2 × S2 4 24

Table 1: The ten possible cases for the first eight rows of a projec-
tive plane of order ten generating a weight 16 codeword and the
symmetries in the initial columns (see below). Here Sn denotes
the symmetric group of order n!, Dn denotes the dihedral group of
order 2n, and o denotes the wreath product.

splitting the search into three cases. As shown by [Carter,
1974], up to isomorphism there are ten possibilities for the first
eight rows of the planes that generate weight 16 codewords.
Five of these possibilities (cases 2 to 6a in Table 1) were
eliminated by the searches of [Carter, 1974] and the other five
were eliminated by the searches of [Lam et al., 1986].

Incidence matrix structure. Carter derived numerous prop-
erties that the structure of a projective plane generating a
weight 16 codeword must satisfy. In particular, the projective
plane can be decomposed into a 3× 2 grid of submatrices as
follows:

16 95
8
(

2 k
)

72 9 8− 2k
31 0 k + 3

Here the numbers outside the matrix denote the number of
rows or columns in that part of the submatrix. The numbers
inside the matrix denote how many 1s there are in each column
in that part of the submatrix; certain columns depend on a
parameter k that differs between columns. Additionally, Carter
showed that every entry in the first 16 columns is uniquely
specified by the starting case. We call the columns incident
with at least two of the first eight rows the initial columns and
the columns incident with at least one of the first eight rows
the inside columns. Full starting matrices for each case are
available at uwaterloo.ca/mathcheck/w16.

Symmetry groups. A projective plane (or partial projective
plane) may be symmetric in nontrivial ways, in other words,
there may exist row or column permutations that fix the entries
of the plane. Such symmetries are important to detect because
they can dramatically reduce the search space—and therefore
the running time—of any search that makes use of them [Aloul
et al., 2003; Heule et al., 2015].

For example, Figure 1 shows the initial configuration (the
first eight rows and initial columns) from case 1c. This matrix
is fixed by the permutation that swaps the first two rows and
column k with column k + 4 for 1 ≤ k ≤ 4. The set of all
row and column permutations that fix the entries of a matrix
forms a group known as the symmetry group of the matrix.

https://uwaterloo.ca/mathcheck/w16


1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1

Figure 1: The upper-left 8× 18 submatrix from case 1c.

In the matrix of Figure 1 any permutation of the first four
rows, any permutation of the last four rows, and the permuta-
tion that swaps row i and row i+ 4 for 1 ≤ i ≤ 4 occur (with
appropriate column permutations) in the symmetry group. The
size of this permutation group is 4!2 · 2 = 1152 and the group
is isomorphic to the group of symmetries of a pair of tetrahe-
drons. Up to isomorphism, the symmetry groups for each of
the ten possible initial configurations are given in Table 1.

3 SAT Encoding
We now describe the encoding that we use to prove that projec-
tive planes of order ten with weight 16 codewords do not exist.
Although SAT solvers have been widely used in searching for
combinatorial designs [Zhang, 2009] they have only recently
been applied to projective planes [Bright et al., 2020]. Our
encoding that an incidence matrix defines a projective plane
is described in Section 3.1, although we do not encode the
entire matrix—we choose the number of rows and columns
to use based on the structure of the starting cases and in an
attempt to minimize the number of variables and constraints
necessary. Sections 3.2 and 3.3 describe the methods that we
use to reduce the symmetries present in the search.

3.1 Incidence Constraints
First, we describe how we encode the property that the inci-
dence matrix defined by Boolean variables pi,k (representing
that the (i, k)th entry of the matrix contains a 1) satisfy the
properties of a projective plane. In particular, we encode
the property that any two rows or columns of the projective
plane intersect exactly once by encoding that any two rows
or columns intersect (a) at most once and (b) at least once.
In fact, we only encode intersections occurring in the first 80
rows—our searches find no satisfying assignments of even this
strictly smaller set of constraints.

For (a), the constraints
∧111

k,l=1(¬pi,k∨¬pi,l∨¬pj,k∨¬pj,l)
say that row i and row j do not intersect twice. We include
these constraints for each distinct pair of indices (i, j) with
1 ≤ i, j ≤ 80 and ignore the constraints where k or l is larger
than the last column used (which varied between cases).

For (b), the constraint
∨111

k=1(pi,k ∧pj,k) says that row i and
row j intersect at least once. However, this constraint is not
in conjunctive normal form so it can’t directly be used with
a typical SAT solver. Instead, we use this constraint in the
form

∨
k∈S(i) pj,k where S(i) is the set of indices k such that

pi,k is true. The first eight rows of the projective plane are
completely known beforehand in each starting case, so S(i) is
well-defined for 1 ≤ i ≤ 8. We include these constraints for
all 1 ≤ i ≤ 8 and 9 ≤ j ≤ 80.

Figure 2: The upper-left 8 × 62 submatrix in case 6c where black
squares represent 1s and white squares represent 0s. The first 24
columns form the initial configuration and without loss of generality
the remaining inside columns are taken in lexicographic order.

Similarly, we include constraints that say that column k and
column l intersect at least once. These constraints are of the
form

∨
i∈T (k) pi,l where T (k) is the set of indices i such that

pi,k is true. We used these constraints for all k between 1 and
16 and for all l > 16 up to the last column used.

In order to use these constraints we require at least 80 rows
and all inside columns because the indices in the set S(i) for
1 ≤ i ≤ 8 are from the inside columns, and the indices in
the set T (k) for 1 ≤ k ≤ 16 are from the first 80 rows. Ex-
perimentally we find that only using inside columns produces
satisfiable instances—to make all instances unsatisfiable we
use five additional ‘outside’ columns (selected to be incident
to a row needing another five points to contain eleven 1s).

3.2 Breaking Column Symmetries
Consider the starting matrix shown in Figure 2 (the first eight
rows of case 6c). This matrix has a symmetry group contain-
ing 5!6 · 4!2 · 22 permutations. The factor of 22 arises from
symmetries that involve row permutations and we discuss how
we handle those in Section 3.3. The larger 5!6 · 4!2 factor
arises from column permutations of the last 38 columns which
can be split into six blocks of five columns and two blocks
of four columns. We break these symmetries by enforcing a
lexicographic ordering on certain submatrices of the columns.

For example, consider the final block of case 6c (the last four
columns shown in Figure 2). By the definition of a projective
plane each of these columns must intersect the first column
somewhere in the matrix. An examination of the full matrix
shows there are exactly six rows where this intersection could
happen. Figure 3 shows the case when the rows of the matrix
are ordered so that the six rows occur adjacent to each other—
so that the intersections must occur in a 6× 4 submatrix. We
break the column symmetries by lexicographically ordering
the columns in this submatrix.

Each row of the submatrix contains at most a single 1 or we
would have a pair of columns that intersect each other twice.
Thus, lexicographically ordering the columns of the submatrix
ensures that a 1 cannot be in the upper-right or lower-left
corners of the submatrix as displayed by the 0s in Figure 3.

Similarly, each column of the submatrix contains at most
a single 1 (in fact it must contain exactly a single 1 since the
first column must intersect each of the other columns in the
submatrix). Consider the entry marked x in Figure 3. If this
entry contains a 1 then all entries in the next column that are
above it must be 0 for the columns to be correctly ordered.

Thus, considering the variables labelled x and y in Fig-
ure 3, we include the clause ¬x ∨ ¬y in our encoding. We
include similar clauses for each unknown entry in the subma-
trix. The remaining satisfying assignments are exactly those
whose columns are in lexicographic order, therefore enforcing



1 1 1 1

1 0 0 0
1 0 0
1 y 0
1 0 x
1 0 0
1 0 0 0

...

· · ·

Figure 3: A 6 × 4 submatrix demonstrating our column symmetry
breaking encoding. The 0s that appear are known under the as-
sumption that the submatrix’s columns are lexicographically ordered.
This also implies that the entry marked y is 0 if the entry marked x
contains a 1.

a unique ordering on columns which are otherwise identical.
By using this method on each block of column symmetries this
decreases the search space size by a factor of 5!6 · 4!2 ≈ 1015

in the case of Figure 2. Each block is independent of the others
and will have its symmetries broken in a different submatrix.

3.3 Breaking Initial Symmetries
In Section 3.2 we described how we break most of the symme-
tries in our instances. However, it remains to break the initial
symmetries involving both row and column permutations (i.e.,
those described in Table 1). We used two methods of breaking
these symmetries. One method was particularly effective when
the size of the symmetry group was not too large and was used
in the cases 2 to 6c. The second method took advantage of the
specific form of the symmetry group of the cases 1a–c.

Lex method. In addition to the column symmetries of the
last 38 columns of the matrix in Figure 2 there are an ad-
ditional two generators ϕ1 and ϕ2 of the symmetry group
of this matrix. These generators involve both row and col-
umn permutations. In cycle notation the row permutations
are (1, 5)(2, 6)(3, 4) and (1, 2)(3, 4)(5, 6)(7, 8) and the col-
umn permutations are completely determined by these row
permutations. For example, after swapping rows 1 and 5 and
rows 2 and 6, the first column (containing 1s in rows 1 and 2)
becomes the 14th column (containing 1s in rows 5 and 6),
so ϕ1 must send column 1 to column 14.

Similarly, permutations of the first eight rows can be ex-
tended to permutations of the entries in the submatrix P con-
sisting of the first 80 rows and the initial columns—the exten-
sion uniquely determined by the restriction that the initially
known entries remain fixed. We now consider the action
of these permutations on the submatrix P . For example, in
case 6c the first 24 columns form the initial columns and
the lex symmetry breaking method focuses on the unknown
entries in the upper-left 80× 24 submatrix P .

In particular, we fix an ordering on the variables in the
submatrix P whose values are undetermined. For example,
one possible ordering of these variables is left-to-right and
top-to-bottom, i.e.,

LP := [p9,17, p9,18, p9,19, . . . , p80,22, p80,23, p80,24].

Under the symmetry ϕ1 this ordering becomes

[p56,19, p56,22, p56,17, . . . , p17,18, p17,20, p17,24]

which we denote by ϕ1(LP ). If P is a 80 × 24 partial pro-
jective plane then ϕ1(P ) is also a 80 × 24 partial projective
plane. It follows that any partial projective plane of this form
can be transformed into an isomorphic partial projective plane
with LP ≤lex ϕ1(LP ). Similarly, up to equivalence we can
assume that

LP ≤lex ϕ(LP ) (∗)
where ϕ is any symmetry of P . In the example of Figure 2 we
take ϕ to be ϕ1, ϕ2, and ϕ1 ◦ϕ2 (there is no need to take ϕ to
be the identity symmetry since then (∗) is trivial).

It remains to describe how we encode the lexicographic
constraint (∗) in conjunctive normal form. We express the gen-
eral lexicographic constraint [x1, . . . , xn] ≤lex [y1, . . . , yn]
using 3n− 2 clauses and n− 1 new variables [Knuth, 2015].
Denoting the new variables by a1, . . . , an−1, the clauses are

¬xk ∨ yk ∨ ¬ak−1, ¬xk ∨ ak ∨ ¬ak−1, yk ∨ ak ∨ ¬ak−1
for k = 1, . . . , n−1 (with ¬a0 omitted) along with the clause
¬xn ∨ yn ∨ ¬an−1.

In practice this method breaks almost all of the symmetries
of the search space that exist in the initial columns, though it
is not guaranteed to break them all. This is because for certain
instantiations of the variables of P it may be the case that (∗)
does not remove any isomorphic solutions. This occurs when
P is unchanged under all symmetries ϕ of the symmetry group
(i.e., when LP = ϕ(LP ) for all symmetries ϕ). However, this
did not occur very often in practice.

Similar to the work [Crawford et al., 1996] this method
uses constraints of the form (∗) for every nontrivial symmetry.
Because of this, it worked best when the symmetry group was
relatively small. We used this symmetry breaking method on
the starting cases 2–6c.
Block method. Consider the starting matrix given in Fig-
ure 1 (case 1c). Since each row contains eleven 1s in total
and there are five 1s per row in the initial columns, there are
another six 1s in each row. Furthermore, since the rows are
already pairwise intersecting in the initial columns, none of the
rows intersect following the initial columns. In other words,
each row contains six 1s on columns that are not incident with
the other rows. We call the columns that contain those six 1s a
block of 1s.

Without loss of generality we may assume that the first
block occurs on columns 19–24, the second block occurs on
columns 25–30, the third block on columns 31–36, etc. By
exhaustive search, we find that there are 49,472 solutions of
the SAT instance that uses the first 80 rows, the columns up
to and including the first block, and the lexicographic column
ordering clauses described in Section 3.2.

Our symmetry breaking method now uses the following
properties of the symmetry group of case 1c:
1. The symmetry group fixing the first row (i.e., the symme-

tries that do not move the first block) is isomorphic to
S4 × S3. It has a set of generators {ϕ2, ϕ3, ϕ5, ϕ6, ϕ7}
where ϕi is a permutation that swaps rows i and i + 1
(and appropriate columns) but fixes each of the other first
eight rows.

2. The action of the symmetry group on the set of blocks
is transitive, i.e., for each pair of blocks there exists a



symmetry that sends one block to another block. For
example, ϕ1 sends block 1 to block 2.

We use the first property to show that of the 49,472 possibilities
for the first block, only 469 possibilities are nonisomorphic
under the symmetries that fix the first row. These numbers
agree with those reported by [Lam et al., 1986]. This splits
the search into 469 distinct cases, one for each nonequivalent
possibility of the first block. Additionally, we now use the
second property to remove further symmetries within these
cases.

We label each of the 49,472 possibilities for the first block
with a label between 1 and 469 and let t be the labelling
function that when given an instantiation of the first block
returns its label. Furthermore, let Bi denote the submatrix
consisting of the ith block where 1 ≤ i ≤ 8 and let ψi denote
a symmetry that sends block i to block 1 where 2 ≤ i ≤ 8.
With ϕi defined as above, we can take ψ2 := ϕ1, ψ5 :=
(1, 5)(2, 6)(3, 7)(4, 8) (as row permutations in cycle notation),
and ψi := ϕi−1 ◦ ψi−1 for all other i. We extend the labelling
function t by giving an instantiationB of an arbitrary blockBi

the same label as ψi(B).
Up to isomorphism we can assume that any partial projec-

tive plane in case 1c must satisfy
t(B1) ≤ t(Bi) for 2 ≤ i ≤ 8. (∗∗)

In other words, we can assume that the first block has the
minimum label of all the blocks 1–8. For suppose a partial
projective plane did not satisfy this condition: then there must
be an index m such that block m has the minimum label.
Applying ψm to this partial projective plane permutes the
block labels and produces an isomorphic partial projective
plane such that block 1 has the minimum label.

To encode the constraint (∗∗) in our SAT instances we use a
series of blocking clauses. In each SAT instance the left-hand
side of (∗∗) is known in advance, since each instance contains
a fixed instantiation of the first block. In the first SAT instance
the label of the first block is 1. In this case (∗∗) is trivial and
does not block any solutions.

In the second SAT instance we need to block all solutions
where t(Bi) = 1 for 2 ≤ i ≤ 8. To do this, suppose B is an
instantiation of the first block that is labelled 1. We generate
ψ−1i (ϕ(B)) for all 2 ≤ i ≤ 8 and all ϕ in the symmetry group
fixing the first line. This gives us an explicit collection of
instantiated blocks that we want to ignore. If B′ is one of
these blocks andB′ |= pmeans that variable p is assigned true
in the assignment defined by B′ then the clause

∨
B′|=p ¬p

preventsB′ from occurring in the solution of the SAT instance.
We include such clauses in the SAT instance for all B′ of
the form ψ−1i (ϕ(B)). Similarly, in the kth SAT instance we
include clauses of this form for all B′ of the form ψ−1i (ϕ(B))
where B is an instantiation of the first block whose label is
strictly less than k.

The above description specifically applies to case 1c, but
cases 1a and 1b can be handled in a similar way. In case 1a the
main difference is that each block consists of seven columns
and some columns are shared between blocks. However, the
same method applies because the two properties of the sym-
metry group that we used in 1c also hold in this case (cases 1a
and 1c have an isomorphic symmetry group).

In case 1a we find 21,408 solutions of the SAT instance
using the first 80 rows and the columns up to and including the
first block (the block containing 1s on the first row). Using the
symmetries that fix the first row we find that only 275 of the
21,408 solutions are nonisomorphic, thus naturally splitting
the problem into 275 SAT instances that we solve in the same
way as we solve the instances from case 1c.

We solve case 1b in a similar way, but in this case four of
the blocks contain seven columns and the other four blocks
contain six columns. We order the blocks such that the first
four blocks contain seven columns and the last four blocks
contain six columns. The first block coincides with the first
block in case 1a and the symmetry group that fixes the first row
is the same as in case 1a, so we also have 275 nonisomorphic
solutions of the first block in case 1b.

In case 1b the symmetry group does not act transitively on
the blocks because there are no symmetries that send blocks
with seven columns to blocks with six columns. However, the
symmetry group does act transitively on the first four blocks.
Thus we use the same symmetry breaking condition given
in (∗∗) except replacing the condition on i with 2 ≤ i ≤ 4.

4 Implementation and Results
The ten starting matrices were constructed following [Carter,
1974] who provides the first 8 rows and 16 columns of each
case. The symmetry groups in each case were computed
using the computer algebra system Maple 2019 which uses
the library nauty [McKay and Piperno, 2014]. A complete
collection of the row and column permutations in each group
were saved so that they could be later used in the symmetry
breaking method. A Python script of about 250 lines was
written to generate the constraints (a) and (b) from Section 3.1,
the column symmetry breaking constraints from Section 3.2,
and for cases 2–6c the symmetry breaking constraints from the
lex method in Section 3.3. As input it took the case for which
to generate constraints and the number of rows and columns to
use (though we used 80 rows in all cases). The script required
the starting matrix as well as the permutations necessary for
breaking the initial symmetries to be explicitly provided.

Cases 2–6c. For these cases the lex symmetry breaking
method described in Section 3.3 was used. Our Python script
was used to generate a single SAT instance for each case us-
ing all inside columns and an additional five columns. The
cube-and-conquer SAT solving paradigm [Heule et al., 2017]
was then used to show that each instance was unsatisfiable.
The preprocessor of the SAT solver Lingeling [Biere, 2017]
(at optimization level 5) simplified the instances prior to cub-
ing, the lookahead SAT solver March_cu [Heule et al., 2011]
generated the cubes, and an incremental version of Maple-
SAT [Liang et al., 2018] solved the instances and generated
proofs of unsatisfiability.

In each case the proofs from the simplification and con-
quering steps were combined into a single proof by concate-
nation and the combined proof was verified using the proof
checker DRAT-trim [Wetzler et al., 2014] as well as the GRAT
toolchain [Lammich, 2020]. These cases took about 10 total
hours to generate seven proofs whose size together totalled
about 300 gigabytes in the plain uncompressed DRAT format.



Cases 1a–c. In these cases the block symmetry breaking
method described in Section 3.3 was used. To begin, we gen-
erated SAT instances without the initial symmetry breaking
clauses and using the columns up to and including the first
block. In order to find all nonisomorphic solutions of the first
block we use a “programmatic” (see [Ganesh et al., 2012]) ver-
sion of the MapleSAT solver [Bright et al., 2018]. Whenever
a solution is found we record the solution and then program-
matically learn clauses that block the solution in addition to
all solutions isomorphic to the found solution (using the sym-
metry group fixing the first block as computed by Maple). In
this way, only the nonisomorphic solutions are recorded.

For every nonisomorphic solution a SAT instance is gener-
ated (by another Python script) that includes unit clauses com-
pletely specifying the first block and the symmetry breaking
clauses from the block method in Section 3.3. The cube-and-
conquer method then solves these instances similar to how the
previous cases are solved, though cases 1a–c generated 1019
individual proofs (469 in case 1c and 275 for each case 1a
and 1b). The fact that these cases are exhaustive relies on non-
trivial symmetry group computations, so we did not attempt
to combine these proofs together.

These instances use five outside columns and all inside
columns with the exception of the noninitial columns in
block 5 (in cases 1a–b) and blocks 2 and 3 (in case 1c)—
removing these columns generates a strictly smaller set of
constraints that increases the performance of the SAT solver.
Similarly, [Lam et al., 1986] ignored the columns in blocks 2
and 3 of case 1c and found no solutions. We verified their re-
sult, though this depends on the choice of representatives cho-
sen for the nonisomorphic solutions of the first block—some
choices of the representatives do in fact lead to satisfiable
instances.

Interestingly, the performance in cases 1a and 1c improves
if the initial symmetry breaking clauses are left out of the
instances provided to the cubing solver, as the cubes gener-
ated in this manner are still effective in the conquering phase.
In case 1b this causes some cubes to have dramatically un-
balanced difficulties, so in this case we include the initial
symmetry breaking clauses in the cubing instances.

Following [Lam et al., 1986], the nonisomorphic solutions
of the first block are ordered in increasing size of their stabi-
lizer group. In other words, the solutions that are isomorphic
to many other solutions are given small labels and the solu-
tions that are isomorphic to few other solutions are given large
labels.

Results. The computations were run on a desktop machine
with an Intel i7 CPU at 2.7 GHz. A summary of our results
is presented in Table 2. In particular, this table specifies the
total number of cubes used in each case, the proportion of
the running time spent running the cubing solver, the total
running time (in hours) of the SAT solvers, and the size of the
proofs produced. The scripts used to generate and solve the
SAT instances are available at uwaterloo.ca/mathcheck and
the proofs are archived at zenodo.org/record/3767062.

The amount of cubing was controlled by the cubing cutoff
-n parameter of March_cu (replacing the default heuristic
cutoff). This cutoff method stops cubing once the number of

Case Cubes Cubing Time Time (h) Proof size
1a 222310 4.9% 2.61 82.0G
1b 379969 15.1% 2.58 89.1G
1c 1300912 3.6% 13.98 551.5G
2 4486 2.0% 1.82 18.4G
3 36388 7.1% 1.39 37.6G
4 1529 8.8% 0.03 1.0G
5 4582 1.4% 0.42 9.7G
6a 8109 1.9% 0.53 13.3G
6b 91448 3.6% 2.21 76.3G
6c 224942 4.6% 3.26 141.5G

Table 2: Summary of the results of our implementation applied to all
weight 16 cases.

free variables drops below the given bound. We attempted to
perform an amount of cubing that would minimize the total
solve time of each case, but we do not claim we used an exactly
optimal amount. Typically starting with a cubing cutoff bound
equal to about 75% of the free variables in the instance worked
well and we tuned the bound higher or lower based on the
solver performance. The cubing process was done once for
each SAT instance and the cubes were incrementally solved
by MapleSAT (which was used because it performed better
than the default cube-and-conquer solvers).

5 Conclusion and Future Work
We have provided a SAT certification that there exist no
projective planes of order ten generating weight 16 code-
words. This verifies the original searches of [Carter, 1974;
Lam et al., 1986], as well as the verification of [Roy, 2011] that
was based on an equivalent but different way of decomposing
the search. The previous searches relied on highly optimized
computer programs and special-purpose search algorithms.
In contrast, our search used widely available and well-tested
SAT solvers, computer algebra systems, and proof verifiers.
Our search produced the first nonexistence certificates for this
problem that can be checked by a third party.

Furthermore, our search is the fastest known verification of
this result. The search of [Carter, 1974] that used about 140
hours on supercomputers was verified in about 4 hours, and
the search of [Lam et al., 1986] that used about 2000 hours on
a VAX-11 was verified in about 25 hours. This is in large part
due to the increase in computation power available today—
however, the verification of [Roy, 2011] which used modern
AMD CPUs running at 2.4 GHz required 16,000 hours.

A similar SAT encoding has been used to show the nonexis-
tence of weight 15 codewords in a few minutes—and under
10 seconds using programmatic symmetry breaking [Bright et
al., 2020]. The next challenge is to show the nonexistence of
weight 19 codewords. We believe our approach will be useful
in this search but it will likely require alternative symmetry
breaking methods specifically tailored to the weight 19 search.
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