Automated Construction of Phylogenetic Trees

Curtis Bright Nam Pham
University of Waterloo University of Waterloo
cbright@cs.uwaterloo.ca npham@cs.uwaterloo.ca

December 20, 2010

Abstract

Given a diverse collection of genomes we implement and analyze an automatic
method of approximating the evolutionary relationships of the source organisms, using
the techniques of compression and clustering.

1 Introduction

Construction of evolutionary trees in an important task in computational biology. Tra-
ditionally this was painstakingly done by extensive analysis of the organisms in question,
but recently the widespread growth and availability of computers has lead to techniques to
automatically estimate phylogeny trees from, for example, a database of DNA sequences.

In particular, a method of Rudi Cilibrasi and Paul Vitanyi [4] is the focus of this report.
The method relies on the concept of normalized information distance from information theory
to determine a ‘closeness’ between two pieces of information, and in practice relies on data
compression as a method of computation. Once the distances between each pair of database
elements is computed, a clustering method is required to group the data into a hierarchical
structure; in particular, we implemented the so-called quartet method. Both of the main steps
in the algorithm (compression and clustering) are completely general, and not limited to
phylogenic analysis.

An inspiration for this project was the possibility of reconstructing the mutations which
lead to the ‘swine flu’ pandemic of 2009. However, as the project progressed we were led to
consider other virii, including the SARS virus which was responsible for a near-pandemic in
2003. Additionally, as a method of testing our clustering implementation, we repeated the
construction of a 24-species phylogeny tree which appeared in [4].

The remainder of this report is organized as follows: Section 2 covers the basic background
necessary, and sections 3 and 4 go into detail about the compression and clustering steps.
Finally, section 5 contains an analysis of our results, and offers conclusions.

2 Background

2.1 Kolmogorov Complexity and Normalized Information Distance

Kolmogorov complexity was introduced by Solomonoff, Kolmogorov, and Chaitin [8] as a
measurement of the information of an object. Any object could be described in different
ways for different purposes. For example, the following three strings have the same meaning:
abcabcabcabe, (abe)?, “abe 4 times”, but they vary greatly in length. A natural question to
ask is: which description is shortest? To answer this question, Kolmogorov complexity is
defined as the size of the shortest program that can produce a string x in some fixed universal
description language U:

K(x) = min{|p|: U(p) = '}

One of the most important uses of Kolmogorov complexity is to estimate the universal
information distance between two objects. Ming Li and Paul Vitanyi defined the universal
normalized information distance, or NID, between x and y to be

max{K(z | y), K(y | x)}
max{ K (z), K(y)}

NID(z,) =

in which K (z | y) denotes the length of the shortest program to produce x, given y (as in [7]).
Unfortunately, since the Kolmogorov complexity is not computable, we have to approximate
it via compression. If C(z) denotes the length of compressed x, the normalized compression
distance, or NCD, between x and y can approximate the NID and is given by

Clary) — min{C(z), Cy)}
max{C(z), C(y)}

NCD(z,y) =

This measurement provides a useful tool for researchers in several areas, such as bioinformat-
ics [1, 6], software engineering [2] and web search [14].

2.2 Normalized Information Distance and Cluster Analysis

Information retrieval systems first need a measure of similarity between documents before
clustering, i.e., organizing objects into similar groupings. Several techniques have been
developed for this purpose, including Bayesian and classical inference [10], as well as neural
networks [12]. However, those techniques have to rely on the understanding of the document
structure. In contrast, the normalized information distance based on Kolmogorov complexity
is universal so it can be used to calculate the distance between any two items without relying
on parsing or semantic analysis. In fact, it has been used for author identification in online
postings [11], contextual information retrieval [9], and spam filtering [13].

Clustering is one of the most successful applications of using NID in information retrieval
systems. Cilibrasi and Vitanyi made the proposal to use normalized compression distance in
hierarchical clustering [4]. It was subsequently successfully applied in clustering languages [7],
music [5], and several other applications.

3 Normalized Compression Distance

3.1 Data Collection

The sequences used in our experiments were downloaded from the National Center for
Biotechnology Information (NCBI) database. The sequence files from NCBI are in FASTA
format, so the first line in each file contains a sequence description. Since this is not actually
part of the sequence it was removed to avoid skewing the computed distances.

It should also be noted that in some cases where complete coding sequences were not
available, we used partial ones instead.

3.2 Distance Calculation

The normalized compression distance matrix was computed using the compressor bzip2. To
calculate the distance between two sequences, we have to run bzip2 three times. First of all,
we have to compress the two original files. Then, to calculate C'(xy) we have to compress
the two files combined together. Running bzip2 on the combined file allow the compression
algorithm develop a dictionary on the first file and then apply it to the second. Ideally, if
two files z and 2’ are similar, we will have

bzip2(zz") — bzip2(z) ~ 0,

where bzip2(x) denotes the size of the compressed file containing x. In practice, bzip2 is not
optimal compared to Kolmogorov complexity, hence

bzip2(za') — bzip2(z) = €

and
0 < NCD(z,y) <1+e.

It is very interesting to see that even though individual sequences vary greatly in size, the
NCD between each pair still represents their relationship. As seen in Table 1 the distance
between two virii of a similar kind is always smaller than the distance between two unrelated
virii. For example, AvianIB1 is closer to AvianIB2 than any other virus.

Besides bzip2, we also conducted a few experiments with GenCompress [3]. Even though
GenCompress has a better compression ratio, running our clustering algorithm on the
GenCompress distance matrix returned identical results. Hence, we decided to use bzip2 as
our main compressor in this project.

The process is, unfortunately, very time consuming. To create a distance matrix of n
articles, we have to run the compression algorithm n? 4+ n times. In an experiment, it took 6
hours to generate a 50 x 50 matrix.

AAC | IB1 IB2 | BA3 | DA1 | HA40 | HC1 | MM MS | MH11 | MH2 | PRD1 | RSC | SARS | SIRV1 | SIRV2
AvianAdenolCELO | 0.4261 | 0.9713 | 0.9949 | 0.9940 | 0.9900 | 0.9651 | 0.9903 | 0.9843 | 0.9843 | 0.9955 | 1.0004 | 0.9896 | 0.9910 | 0.9912 | 1.0019 | 1.0013
AvianIB1 0.9713 | 0.4475 | 0.9509 | 1.0014 | 0.9918 | 0.9726 | 0.9857 | 0.9847 | 0.9847 | 0.9903 | 0.9912 | 0.9896 | 0.9906 | 0.9901 | 0.9953 | 0.9996
AvianIB2 0.9949 | 0.9509 | 0.4631 | 1.0017 | 0.9917 | 0.9953 | 0.9910 | 0.9946 | 0.9946 | 0.9917 | 0.9923 | 1.0016 | 0.9915 | 0.9916 | 1.0067 | 1.0018
BovineAdeno3 0.9940 | 1.0014 | 1.0017 | 0.4630 | 0.9958 | 0.9958 | 0.9994 | 0.9945 | 0.9945 | 0.9990 | 0.9981 | 0.9993 | 0.9993 | 0.9978 | 1.0139 | 1.0178
DuckAdenol 0.9900 | 0.9918 | 0.9917 | 0.9958 | 0.4644 | 0.9923 | 0.9903 | 0.9907 | 0.9907 | 0.9903 | 0.9915 | 0.9979 | 0.9931 | 0.9903 | 1.0067 | 1.0050
HumanAdeno40 0.9651 | 0.9726 | 0.9953 | 0.9958 | 0.9923 | 0.3851 | 0.9879 | 0.9911 | 0.9911 | 0.9922 | 0.9969 | 0.9831 | 0.9930 | 0.9953 | 0.9953 | 0.9986
HumanCoronal 0.9903 | 0.9857 | 0.9910 | 0.9994 | 0.9903 | 0.9879 | 0.4502 | 0.9934 | 0.9934 | 0.9884 | 0.9877 | 1.0007 | 0.9896 | 0.9868 | 1.0035 | 0.9992
MeaselsMora 0.9843 | 0.9847 | 0.9946 | 0.9945 | 0.9907 | 0.9911 | 0.9934 | 0.4654 | 0.4654 | 0.9908 | 0.9920 | 1.0040 | 0.9953 | 0.9923 | 1.0097 | 1.0061
MeaselsSch 0.9843 | 0.9847 | 0.9946 | 0.9945 | 0.9907 | 0.9911 | 0.9934 | 0.4654 | 0.4654 | 0.9908 | 0.9920 | 1.0040 | 0.9953 | 0.9923 | 1.0097 | 1.0061
MurineHep11 0.9955 | 0.9903 | 0.9917 | 0.9990 | 0.9903 | 0.9922 | 0.9884 | 0.9908 | 0.9908 | 0.4695 | 0.5319 | 1.0018 | 0.9164 | 0.9918 | 1.0086 | 1.0149
MurineHep2 1.0004 | 0.9912 | 0.9923 | 0.9981 | 0.9915 | 0.9969 | 0.9877 | 0.9920 | 0.9920 | 0.5319 | 0.4732 | 1.0024 | 0.9192 | 0.9911 | 1.0054 | 1.0075
PRD1 0.9896 | 0.9896 | 1.0016 | 0.9993 | 0.9979 | 0.9831 | 1.0007 | 1.0040 | 1.0040 | 1.0018 | 1.0024 | 0.4342 | 1.0030 | 1.0009 | 1.0048 | 1.0083
RatSialCorona 0.9910 | 0.9906 | 0.9915 | 0.9993 | 0.9931 | 0.9930 | 0.9896 | 0.9953 | 0.9953 | 0.9164 | 0.9192 | 1.0030 | 0.4732 | 0.9895 | 1.0087 | 1.0051
SARS 0.9912 | 0.9901 | 0.9916 | 0.9978 | 0.9903 | 0.9953 | 0.9868 | 0.9923 | 0.9923 | 0.9918 | 0.9911 | 1.0009 | 0.9895 | 0.4609 | 1.0052 | 1.0108
SIRV1 1.0019 | 0.9953 | 1.0067 | 1.0139 | 1.0067 | 0.9953 | 1.0035 | 1.0097 | 1.0097 | 1.0086 | 1.0054 | 1.0048 | 1.0087 | 1.0052 | 0.4150 | 0.9180
SIRV2 1.0013 | 0.9996 | 1.0018 | 1.0178 | 1.0050 | 0.9986 | 0.9992 | 1.0061 | 1.0061 | 1.0149 | 1.0075 | 1.0083 | 1.0051 | 1.0108 | 0.9180 | 0.4184

Table 1: The NCD matrix for 16 virii

(a) u paired with v

4 Quartet Clustering

(b) u paired with w

(c) u paired with

Figure 1: The three topologies of the nodes u, v, w, x

Most generally, cluster analysis is a method of classifying observations into groups. For our
purposes, we require hierarchical groups, from which we can infer the evolutionary tree of the
organisms in question. There are many proposed schemes for accomplishing this; we follow
Cilibrasi and Vitanyi and use the so-called quartet method. In this method the organisms
will be represented by leaf nodes in a full binary tree, and the internal nodes of the tree will
represent the clusters; the organisms in the cluster being those descendant of the node.

Given any four organisms, consider the three possible quartet topologies shown in Figure 1.
The topologies consist of “pairing together” the four nodes into two groups of two, i.e., u
can be paired with v, w, or x, and the two remaining nodes are also paired together. Here
“pairing together” means that the path in the tree between the two nodes in one pair does not
cross the path between the two nodes in the other pair.

For any four leaf nodes in a binary tree, there is exactly one way of pairing together the
nodes; the topology which works is said to be consistent with the tree. This suggests a way
of scoring a quartet in a given tree, namely, adding together the NCD between the first pair
of nodes in the consistent topology and the NCD between the second pair of nodes in the
consistent topology. Now consider calculating the cost of every set of four data points in the
tree and summing the result; this is called the total cost of the tree.

When two nodes are close by in the tree they are more likely to be paired together in
topologies, so if we can find a tree with a low total cost, that means many close pairs of
nodes in the tree will have low NCD. That is, the tree will concisely describe, in a simple
hierarchical way, the distance relations given by the NCD matrix.

This raises the question: exactly what is a low total cost for a tree? Since a quartet score
can only be one of three values, it is a simple matter to take the minimum of every quartet
and sum them to find a lower bound m on the best possible tree score. (However, it may be
that no tree actually reaches this minimum, for it might not be possible for a single tree to
be consistent with every minimal topology.) Similarly, we can find an upper bound M on
the worst possible tree score, and scale any tree score C'r. Indeed, for any tree we have the
normalized tree benefit score

OSS(T):]\]@;CT<1.

—-m
Since a tree’s cost can be computed easily, we could simply score random trees and select
the one with highest S(7). Instead, we start off with a random tree and perform a process
reminiscent of natural selection; we perform ‘mutations’ on the tree, and if they increase the
tree’s score they are kept, otherwise they are discarded. In this way we hopefully progress
toward a high scoring tree.

The exact mutations used are swapping leaves, swapping subtrees, and transferring
subtrees from one place in the tree to another. Usually a only few mutations are done
each iteration, though the number of iterations follows a geometric distribution, so that
occasionally many mutations will occur at once; this is to help prevent against getting stuck
in only a local optimum.

5 Results

A computer program to automatically construct the NCD matrix from the sequences was
written in Java, while a program to automatically perform the quartet clustering from the
NCD matrix was written in C.

5.1 Swine Flu

Our project was initially focused on identifying the origin of the 2009 ‘swine flu’ virus. We
located 168 sequences of the virus in the NCBI database, spread across 8 gene types (NS,
MP, NA, NP, HA, PA, PB1, PB2). Running our distance calculator on the 13 sequences of
type PB2 produced Table 2.

1 2 3 4 5 6 7 8 9 10 11 12 13

1 PB2_A_Arizona_02_2009 0.3460 | 0.3460 | 0.3460 | 0.3608 | 0.3460 | 0.3460 | 0.3460 | 0.3516 | 0.3544 | 0.3460 | 0.3460 | 0.3460 | 0.3460
2 PB2_A_California_04_2009 0.3460 | 0.3460 | 0.3460 | 0.3608 | 0.3460 | 0.3460 | 0.3460 | 0.3516 | 0.3544 | 0.3460 | 0.3460 | 0.3460 | 0.3460
3 PB2_A_California_05_2009 0.3460 | 0.3460 | 0.3460 | 0.3608 | 0.3460 | 0.3460 | 0.3460 | 0.3516 | 0.3544 | 0.3460 | 0.3460 | 0.3460 | 0.3460
4 PB2_A_California_06_2009 0.3608 | 0.3608 | 0.3608 | 0.3503 | 0.3608 | 0.3608 | 0.3608 | 0.3642 | 0.3665 | 0.3608 | 0.3608 | 0.3608 | 0.3608
5 PB2_A_California_07_2009 0.3460 | 0.3460 | 0.3460 | 0.3608 | 0.3460 | 0.3460 | 0.3460 | 0.3516 | 0.3544 | 0.3460 | 0.3460 | 0.3460 | 0.3460
6 PB2_A_California_14_2009 0.3460 | 0.3460 | 0.3460 | 0.3608 | 0.3460 | 0.3460 | 0.3460 | 0.3516 | 0.3544 | 0.3460 | 0.3460 | 0.3460 | 0.3460
7 PB2_A_Minnesota_02_2009 0.3460 | 0.3460 | 0.3460 | 0.3608 | 0.3460 | 0.3460 | 0.3460 | 0.3516 | 0.3544 | 0.3460 | 0.3460 | 0.3460 | 0.3460
8 PB2_A_New_York_1669-2009 | 0.3516 | 0.3516 | 0.3516 | 0.3642 | 0.3516 | 0.3516 | 0.3516 | 0.3453 | 0.3600 | 0.3516 | 0.3516 | 0.3516 | 0.3516
9 PB2_A_New_York_1682_2009 | 0.3544 | 0.3544 | 0.3544 | 0.3665 | 0.3544 | 0.3544 | 0.3544 | 0.3600 | 0.3517 | 0.3544 | 0.3544 | 0.3544 | 0.3544
10 PB2_A_New_York_18.2009 | 0.3460 | 0.3460 | 0.3460 | 0.3608 | 0.3460 | 0.3460 | 0.3460 | 0.3516 | 0.3544 | 0.3460 | 0.3460 | 0.3460 | 0.3460

11 PB2_A_Texas_04-2009 0.3460 | 0.3460 | 0.3460 | 0.3608 | 0.3460 | 0.3460 | 0.3460 | 0.3516 | 0.3544 | 0.3460 | 0.3460 | 0.3460 | 0.3460
12 PB2_A_Texas_07_2009 0.3460 | 0.3460 | 0.3460 | 0.3608 | 0.3460 | 0.3460 | 0.3460 | 0.3516 | 0.3544 | 0.3460 | 0.3460 | 0.3460 | 0.3460
13 PB2_A_Texas_09-2009 0.3460 | 0.3460 | 0.3460 | 0.3608 | 0.3460 | 0.3460 | 0.3460 | 0.3516 | 0.3544 | 0.3460 | 0.3460 | 0.3460 | 0.3460

Table 2: The NCD matrix for the swine flu sequences (PB2 gene)

Running our clustering implementation on Table 2 was found to produce an optimal tree
quite quickly, after about 100 iterations. However, if allowed to keep testing new trees it found
numerous optimal trees, some of which bore no resemblance to each other. An examination
of the NCD matrix showed that many values were equal to each other and all values were
approximately 0.35. In fact, examining the sequences revealed they were extremely similar,
often differing by only a few characters.

We concluded that a compressor such as bzip2 would not be sensitive enough to produce
a NCD matrix of precision sufficient for clustering, and unfortunately could not complete the
goal of completing a phylogenic tree for the 2009 swine flu virus.

5.2 Test Run with 24 Species

In order to test our clustering algorithm we decided to run our clustering implementation on
the 24-species NCD matrix found on page 15 of [4]. They also offer their own phylogeny tree
on page 13; for reference this is included in this report as Figure 2a.

The clustering algorithm was run for 1,000,000 iterations, but the best tree was found on
iteration 4,078; a graph of the tree score progress is shown in Figure 3a. The best found tree
had a normalized tree benefit score of S(T") = 0.995, and this tree is shown pictorially in this
report as Figure 2b. We have manually labeled the red nodes so as to help comparisons to
Figure 2a, which should be noted has the slightly better score of S(7') = 0.996. However, as
both trees are almost identical to each other, we conclude our implementation passed this
test.

We also compared the quartet clustering method to the single linkage method and Ward’s
method, which are available in the R programming environment. The single linkage method
worked quite well, discovering another almost identical tree, while Ward’s method made some
notable errors, for example placing Gibbon and Carp in close proximity.

Figure 2: Evolutionary tree construction of 24 different species

(a) Phylogetic tree construction from [4] (b) Our constructed tree, quartet method used

camp

Cow
BlueWhale
FinbackWhale
cat Ferungulates
BrownBear
PolarBear
GreySeal
HarborSeal Eutheria

Horse
‘WhiteRhino
Gibbon

Gorilla Primates
Human
Chimpanzee
PygmyChimp
Orangutan
SumatranOrangutan

PolarBear

Eutheria - Rodents

Rat
Opossum
Wallaroo
Echidna
Platypus

Metatheria

< Eutheria - Rodents

Gt > () @

Chimpanzee

Max Tree Cost: 19759.438000
Min Tree Cost: 18632.701000
Tree Cost: 18638.032000
Normalized Tree Benefit Score: 0.995269

(c) Single linkage clustering used (d) Ward’s method clustering used

Orangutan

carp
Echidna SumOrangutan

Platypus } Chimpanzee
Opossum PygmyChimp
Wataroo

Gibbon

Gorilla

Human

Orangutan BrownBear
SumOrangutan PolarBear

GreySeal
HarborSeal
BlueWhale

Gorilla

Human

Chimpanzee

PygmyChimp FinbackWhale
HouseMouse Echidna
Rat } Platypus
Cow Horse
BlueWhale WhiteRhino
FinbackWhale cat
Horse Cow
WhiteRhino HouseMouse

Rat
Opossum
Wallaroo

cat

BrownBear

PolarBear
GreySeal carp
HarborSeal Gibbon

Figure 3: Tree score progress with quartet clustering

(a) 24 species run (b) 16 virii run
s | o
— —
o _| «©]
o o
[} (0]
3 8
n (]
= s 3
<) [
o [s1]
5] (o]
[} [
£ =
T o« B o«
N o S o7
© ©
£ £
S S
z =z
S N
o o
o | o
o o
T T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 0 10000 20000 30000 40000 50000 60000
Iteration # Iteration #

5.3 SARS

In the spirit of our original proposal, we decided on trying to construct a phylogeny tree
which would show the evolutionary lineage of the SARS virus, and compare our result to
another tree in [4], reproduced here as Figure 4a. Although the exact same virii sequences
could not be found, similar ones from the NCBI database were expected to be close enough
to enable a comparison between our trees.

The NCD matrix output has already been given in Table 1. The clustering algorithm was
run for 100,000 iterations, and the best tree was found on iteration 55,592, following a long
period of inactivity. Probably because of the fewer nodes involved, the tree score progress
curve (Figure 3b) was steeper than in the 24 species run; a tree of score better than 0.8 was
found after only 50 iterations. The best tree found (Figure 4b) had S(7") = 0.985, opposed
to S(T') = 0.988 in [4], however the trees are fairly similar topologically.

5.4 Final Conclusions

We have demonstrated a very general method for hierarchical clustering which is applicable
to many different domains. Assuming the data is available electronically, and of sufficient
diversity, one only needs a generic data compressor and our software to automatically organize
the data in a hierarchical manner—perhaps revealing previously unseen patterns.

Figure 4: Evolutionary tree construction of 16 different virii

(a) Phylogetic tree construction from [4] (b) Our constructed tree, quartet method used

SARSTOR2v120408
(HumenCoronat >

HumanCoronal

-
RaSialCorona '

AvianlB2
AvianlB1

MurineHepll

MurineHep2

DuckAdenol

AvianAdenolCELO

e

Max Tree Cost: 3631.303420
Min Tree Cost: 3502.293336

Tree Cost: 3504.221087
Normalized Tree Benefit Score: 0.985057

References

[1] Cecile Ane and Michael J. Sanderson. Missing the forest for the trees: Phylogenetic
compression and its implications for inferring complex evolutionary histories, 2005.

[2] Xin Chen, Brent Francia, Ming Li, Brian Mckinnon, and Amit Seker. Shared information
and program plagiarism detection. IEEE TRANS. INFORM. TH, 50:1545-1551, 2004.

[3] Xin Chen, Sam Kwong, and Ming Li. A compression algorithm for dna sequences and
its applications in genome comparison. pages 52-61, 1999.

[4] R. Cilibrasi and P. M. B. Vitanyi. Clustering by compression. IEEE Transactions on
Information Theory, 51(4):1523-1545, April 2005.

[5] Rudi Cilibrasi, Paul Vitédnyi, and Ronald De Wolf. Algorithmic clustering of music based
on string compression. Comput. Music J., 28:49—67, December 2004.

[6]

[10]

[11]

[12]

Andrés Kocsor, Attila Kertész-Farkas, Laszlé Kajan, and Sandor Pongor. Application of
compression-based distance measures to protein sequence classification: a methodological
study. Bioinformatics, 22:407-412, February 2006.

Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul Vitanyi. The similarity metric. In
Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms,
SODA ’03, pages 863-872, Philadelphia, PA, USA, 2003. Society for Industrial and
Applied Mathematics.

Ming Li and Paul Vitanyi. An introduction to Kolmogorov complexity and its applications
(2nd ed.). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1997.

R. Martinez, M. Cebrian, F. de Borja Rodriguez, and D. Camacho. Contextual informa-
tion retrieval based on algorithmic information theory and statistical outlier detection.
In Information Theory Workshop, 2008. ITW ’08. IEEFE, pages 292 —297, May 2008.

F. Mosterller and D. L. Wallice. Applied bayesian and classical inference: the case of
the federalist papers, 1964.

David Parry. Use of kolmogorov distance identification of web page authorship, topic
and domain, 2005.

S. Singhe and F. J. Tweedie. Neural networks and disputed authorship: new challenges.
In Artificial Neural Networks, 1995., Fourth International Conference on, pages 24 —28,
June 1995.

L. M. Spracklin and L. V. Saxton. Filtering spam using kolmogorov complexity estimates.
Advanced Information Networking and Applications Workshops, International Conference
on, 1:321-328, 2007.

Xian Zhang, Yu Hao, Xiaoyan Zhu, Ming Li, and David R. Cheriton. Information
distance from a question to an answer. In Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD ’07, pages
874-883, New York, NY, USA, 2007. ACM.

10

