Solving Ramanujan’s Square Equation Computationally

Curtis Bright

Srinivasa Ramanujan asked [7] in 1913 if the Diophantine equation

\[x^2 + 7 = 2^n \]

(1)

had any positive solutions \((x, n)\) other than \((1, 3), (3, 4), (5, 5), (11, 7)\) and \((181, 15)\). It was first proved by Tryve Nagell [5] in 1948 that these are in fact the only solutions; see [6] for an English translation. Accordingly, (1) is often referred to as the Ramanujan-Nagell equation. A summary of its history and related problems is provided by Edward Cohen [1].

The purpose of this article is to show how the equation may be solved using simple congruence techniques with the benefit of a computer. The principle underlying theory required is in the solving of the equation \(x^2 - Dy^2 = N\). The method is similar to one presented by Maurice Mignotte [2] although he does not apply it to (1) and uses a another method [3] in its resolution.

The case where \(n\) is even is easily solved, since writing \(n = 2k\) leads to the difference of squares

\[(x + 2^k)(x - 2^k) = -7. \]

Examining the divisors of \(-7\) we conclude that \(x + 2^k = 7\) and \(x - 2^k = -1\), i.e., \(x = 3\) and \(2^k = 4\), which yields the only solution with \(n\) even, \((x, n) = (3, 4)\).

The case where \(n\) is odd requires more careful analysis. Writing \(n = 2k + 1\) and making the substitution \(y = 2^k\) leads to the equation

\[x^2 - 2y^2 = -7, \]

(2)

so we would like to find all solutions \((x, y)\) to (2) such that \(y\) is a power of 2.

The set of solutions \((x, y)\) to equations of the form

\[x^2 - Dy^2 = N \]

(3)

(where \(D > 0\) is not a square) have a well-known structure. These equations are generalizations of the so-called Pell equation

\[x^2 - Dy^2 = 1, \]

(4)

which in fact plays an important role in solving the generalized case. Note that if \((\tilde{x}, \tilde{y})\) is a solution of (4) and \((x, y)\) is a solution to (3) then \((x\tilde{x} + y\tilde{y}D, x\tilde{y} + y\tilde{x})\) is also a solution to (3). Using this fact, we may partition solutions to (3) into equivalence classes: we say that \((x, y) \sim (x', y')\) if there is some solution \((\tilde{x}, \tilde{y})\) to (4) such that \((x', y') = (x\tilde{x} + y\tilde{y}D, x\tilde{y} + y\tilde{x})\). It may be shown [4] that an equivalent condition is if \(xx' \equiv yy' \pmod{|N|}\) and \(xy' \equiv x'y \pmod{|N|}\). Thus the pigeonhole principle gives a (generally weak) upper bound of \(N^2\) classes of solutions to (3), since if two solutions are congruent modulo \(N\) then they belong to the same class. In particular, we have that every solution to (4) belongs to the same class.
Define the minimal positive solution of a class of solutions to be the unique solution \((x, y)\) with the smallest \(x, y > 0\). All solutions to (4) may be generated from its minimal positive solution, so to determine all solutions to (3) we need only find the minimal positive solution to (4) and a single solution from each class of (3). This is exposted in the following theorem, which is noted in [8].

Theorem 1. Let \((x, y)\) be a solution of \(x^2 - Dy^2 = N\) and \((\tilde{x}, \tilde{y})\) be the minimal positive solution of \(x^2 - Dy^2 = 1\). Define the pair of linear recurrence relations:

\[
\begin{align*}
X_i &= 2\tilde{x}X_{i-1} - X_{i-2} \\
Y_i &= 2\tilde{y}Y_{i-1} - Y_{i-2}
\end{align*}
\]

with initial conditions \((X_0, Y_0) = (x, y)\) and \((X_1, Y_1) = (x\tilde{x} + y\tilde{y}D, x\tilde{y} + y\tilde{x})\). Then all solutions to \(x^2 - Dy^2 = N\) in the class of \((x, y)\) are given by \(\pm (X_i, Y_i)\) for \(i \in \mathbb{Z}\).

Note that \((X_i, Y_i)\) is well-defined for \(i < 0\) since rearranging (5) yields

\[
\begin{align*}
X_i &= 2\tilde{x}X_{i+1} - X_{i+2} \\
Y_i &= 2\tilde{y}Y_{i+1} - Y_{i+2}.
\end{align*}
\]

Define the fundamental solution of a class of solutions to be the solution \((x, y)\) with the smallest \(y \geq 0\), along with \(x \geq 0\) if \((x, y) \sim (-x, y)\). We will be able to use Theorem 1 if we can compute all fundamental solutions of (3) and the minimal positive solution of (4); methods for doing this are described in [4, 8] and code for Maple implementations is included at the end of this article. The minimal positive solution of (4) may be computed by the “PQu” algorithm; this method uses the convergents to the continued fraction expansion of \(\sqrt{D}\). The fundamental solutions of (3) may often be computed by a brute-force search since general bounds on these solutions are known; the following were specifically stated in [8].

Theorem 2. Let \((x, y)\) be a fundamental solution of \(x^2 - Dy^2 = N\) and \((\tilde{x}, \tilde{y})\) be the minimal positive solution of \(x^2 - Dy^2 = 1\). Then

\[
\begin{align*}
0 \leq y &\leq \sqrt{\frac{N(\tilde{x} - 1)}{2D}} & \text{if } N > 0; \\
\sqrt{\frac{|N|}{D}} &\leq y \leq \sqrt{\frac{|N(\tilde{x} + 1)}{2D}} & \text{if } N < 0.
\end{align*}
\]

Armed with these theorems, we can now find all solutions to (2), i.e., (3) with \(D = 2, N = -7\). We calculate that the minimal positive solution to \(x^2 - 2y^2 = 1\) is \((3, 2)\) and that the fundamental solutions to \(x^2 - 2y^2 = -7\) are \((x, y) = (1, 2)\) and \((u, v) = (-1, 2)\). Using Theorem 1 we can construct the sequence of solutions \((X_i, Y_i)\) and \((U_i, V_i)\). Table 1 shows the small solutions; all solutions to \(x^2 - 2y^2 = -7\) are given by \(\pm (X_i, Y_i)\) and \(\pm (U_i, V_i)\) for \(i \in \mathbb{Z}\).

Note that \((X_i, Y_i) = (-U_{-i}, V_{-i})\), and since we only want to find solutions \((x, y)\) to (2) where \(y\) is a power of 2, it suffices to just find when \(Y_i\) is a power of 2. Examining Table 1, we see that \(Y_i = 2^k\) for \(i \in \{-3, -1, 0, 1\}\), with \(k \in \{7, 2, 1, 3\}\), leading to the remaining solutions \((x, n)\) of (1): \((181, 15), (5, 5), (1, 3)\) and \((11, 7)\).

Next, we will show that these are in fact the only instances when \(Y_i\) is a power of 2, and thus completely solve (1). We do this by examining the following sequences:

\[
\begin{align*}
z_1(m) &= \{2^i \text{ mod } m\}_{i=0}^\infty \\
z_2(m) &= \{Y_i \text{ mod } m\}_{i=0}^\infty
\end{align*}
\]
SOLVING RAMANUJAN’S SQUARE EQUATION COMPUTATIONALLY

for some suitable \(m \). It is clear from their definition that both \(z_1(m) \) and \(z_2(m) \) are periodic for all \(m \). Given some \(m \), define \(\lambda_i \) to be the period of \(z_i(m) \) and \(\mu_i \) to be the pre-period of \(z_i(m) \). Note that \(\mu_2 = 0 \) since the periodic portion of \(z_2(m) \) will extend backwards by \(\lambda_2 \).

Given some \(m \), define \(\lambda_i \) to be the period of \(z_i(m) \) and \(\mu_i \) to be the pre-period of \(z_i(m) \). Note that \(\mu_2 = 0 \) since the periodic portion of \(z_2(m) \) will extend backwards by \(\lambda_2 \).

Table 1. Small solutions to \(x^2 - 2y^2 = -7 \).

<table>
<thead>
<tr>
<th>(i)</th>
<th>(X_i)</th>
<th>(Y_i)</th>
<th>(U_i)</th>
<th>(V_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>-6149</td>
<td>4348</td>
<td>-12875</td>
<td>9104</td>
</tr>
<tr>
<td>-4</td>
<td>-1055</td>
<td>746</td>
<td>-2209</td>
<td>1562</td>
</tr>
<tr>
<td>-3</td>
<td>-181</td>
<td>128</td>
<td>-379</td>
<td>268</td>
</tr>
<tr>
<td>-2</td>
<td>-31</td>
<td>22</td>
<td>-65</td>
<td>46</td>
</tr>
<tr>
<td>-1</td>
<td>-5</td>
<td>4</td>
<td>-11</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>8</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>65</td>
<td>46</td>
<td>31</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>379</td>
<td>268</td>
<td>181</td>
<td>128</td>
</tr>
<tr>
<td>4</td>
<td>2209</td>
<td>1562</td>
<td>1055</td>
<td>746</td>
</tr>
<tr>
<td>5</td>
<td>12875</td>
<td>9104</td>
<td>6149</td>
<td>4348</td>
</tr>
</tbody>
</table>

Then \(Y \equiv 2^k \) for all \(i \in \mathbb{Z} \) unless \(k < \mu_1 \).

Now all that remains is to find an \(m \) which satisfies (7); this is best accomplished by a computer search. Although I will not go into detail here, rather than checking each \(m > 1 \) individually there are conditions which simplify the search considerably. In our case, with \(m = 1966336 = 2^8 \cdot 7681 \) we find that

\[
\{2^i \text{ mod } m\}_{i=0}^{\mu_1+\lambda_1-1} \cap \{Y_i \text{ mod } m\}_{i=0}^{\lambda_2-1} = \emptyset
\]

(7)

for all \(i \in \mathbb{Z} \) unless \(k < \mu_1 \).

References

Maple Code 1 Returns the minimal positive solution \((x, y)\) to the Pell equation \(x^2 - Dy^2 = 1\) (where \(D > 0\) is not a perfect square) using the PQa algorithm.

```maple
def pellsolve(D):
    P, Q, a, A, B, i = 0, 1, floor(sqrt(D)), 1, 0, 1
    if type(sqrt(D), integer):
        raise ValueError("D must be a nonsquare integer")
    for i from 1 do
        P := a*Q - P;
        Q := (D - P^2)/Q;
        a := floor((P+sqrt(D))/Q);
        if Q = 1 and i mod 2 = 0 then
            break;
        end if;
    end do;
    return A[1], B[1];
```

Maple Code 2 Returns a set containing all fundamental solutions \((x, y)\) to the generalized Pell equation \(x^2 - Dy^2 = N\) (where \(D > 0\) is not a perfect square) using brute-force search between bounds on \(y\).

```maple
def genpellsolve(D, N):
    t, u := pellsolve(D);
    L1 := 0;
    L2 := floor(sqrt(N*(t-1)/(2*D)));
    if N > 0 then
        L1 := 0;
        L2 := floor(sqrt(N*(t+1)/(2*D)));
    elif N < 0 then
        L1 := ceil(sqrt(-N/D));
        L2 := floor(sqrt((-N)*(t+1)/(2*D)));
    else
        return 
```