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Srinivasa Ramanujan asked [7] in 1913 if the Diophantine equation

x2 + 7 = 2n (1)

had any positive solutions (x, n) other than (1, 3), (3, 4), (5, 5), (11, 7) and (181, 15).
It was first proved by Tryve Nagell [5] in 1948 that these are in fact the only
solutions; see [6] for an English translation. Accordingly, (1) is often referred to as
the Ramanujan-Nagell equation. A summary of its history and related problems is
provided by Edward Cohen [1].

The purpose of this article is to show how the equation may be solved using sim-
ple congruence techniques with the benefit of a computer. The principle underlying
theory required is in the solving of the equation x2 − Dy2 = N . The method is
similar to one presented by Maurice Mignotte [2] although he does not apply it to
(1) and uses a another method [3] in its resolution.

The case where n is even is easily solved, since writing n = 2k leads to the
difference of squares

(x+ 2k)(x− 2k) = −7.

Examining the divisors of −7 we conclude that x + 2k = 7 and x − 2k = −1, i.e.,
x = 3 and 2k = 4, which yields the only solution with n even, (x, n) = (3, 4).

The case where n is odd requires more careful analysis. Writing n = 2k + 1 and
making the substitution y = 2k leads to the equation

x2 − 2y2 = −7, (2)

so we would like to find all solutions (x, y) to (2) such that y is a power of 2.
The set of solutions (x, y) to equations of the form

x2 −Dy2 = N (3)

(where D > 0 is not a square) have a well-known structure. These equations are
generalizations of the so-called Pell equation

x2 −Dy2 = 1, (4)

which in fact plays an important role in solving the generalized case. Note that if
(x̃, ỹ) is a solution of (4) and (x, y) is a solution to (3) then (xx̃+yỹD, xỹ+yx̃) is also
a solution to (3). Using this fact, we may partition solutions to (3) into equivalence
classes: we say that (x, y) ∼ (x′, y′) if there is some solution (x̃, ỹ) to (4) such that
(x′, y′) = (xx̃+ yỹD, xỹ+ yx̃). It may be shown [4] that an equivalent condition is
if xx′ ≡ yy′D (mod |N |) and xy′ ≡ x′y (mod |N |). Thus the pigeonhole principle
gives a (generally weak) upper bound of N2 classes of solutions to (3), since if two
solutions are congruent modulo N then they belong to the same class. In particular,
we have that every solution to (4) belongs to the same class.
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Define the minimal positive solution of a class of solutions to be the unique
solution (x, y) with the smallest x, y > 0. All solutions to (4) may be generated
from its minimal positive solution, so to determine all solutions to (3) we need only
find the minimal positive solution to (4) and a single solution from each class of
(3). This is exposited in the following theorem, which is noted in [8].

Theorem 1. Let (x, y) be a solution of x2 −Dy2 = N and (x̃, ỹ) be the minimal
positive solution of x2 −Dy2 = 1. Define the pair of linear recurrence relations:

Xi = 2x̃Xi−1 −Xi−2

Yi = 2x̃ Yi−1 − Yi−2
(5)

with initial conditions (X0, Y0) = (x, y) and (X1, Y1) = (xx̃+ yỹD, xỹ+ yx̃). Then
all solutions to x2−Dy2 = N in the class of (x, y) are given by ±(Xi, Yi) for i ∈ Z.

Note that (Xi, Yi) is well-defined for i < 0 since rearranging (5) yields
Xi = 2x̃Xi+1 −Xi+2

Yi = 2x̃ Yi+1 − Yi+2.
(6)

Define the fundamental solution of a class of solutions to be the solution (x, y)
with the smallest y ≥ 0, along with x ≥ 0 if (x, y) ∼ (−x, y). We will be able to
use Theorem 1 if we can compute all fundamental solutions of (3) and the minimal
positive solution of (4); methods for doing this are described in [4, 8] and code for
Maple implementations is included at the end of this article. The minimal positive
solution of (4) may be computed by the “PQa” algorithm; this method uses the
convergents to the continued fraction expansion of

√
D. The fundamental solutions

of (3) may often be computed by a brute-force search since general bounds on these
solutions are known; the following were specifically stated in [8].

Theorem 2. Let (x, y) be a fundamental solution of x2 −Dy2 = N and (x̃, ỹ) be
the minimal positive solution of x2 −Dy2 = 1. Then

0 ≤ y ≤
√
N(x̃− 1)

2D
if N > 0;√

|N |
D
≤ y ≤

√
|N |(x̃+ 1)

2D
if N < 0.

Armed with these theorems, we can now find all solutions to (2), i.e., (3) with
D = 2, N = −7. We calculate that the minimal positive solution to x2 − 2y2 = 1
is (3, 2) and that the fundamental solutions to x2 − 2y2 = −7 are (x, y) = (1, 2)
and (u, v) = (−1, 2). Using Theorem 1 we can construct the sequence of solutions
(Xi, Yi) and (Ui, Vi). Table 1 shows the small solutions; all solutions to x2 − 2y2 =
−7 are given by ±(Xi, Yi) and ±(Ui, Vi) for i ∈ Z.

Note that (Xi, Yi) = (−U−i, V−i), and since we only want to find solutions (x, y)
to (2) where y is a power of 2, it sufficies to just find when Yi is a power of 2.
Examining Table 1, we see that Yi = 2k for i ∈ {−3,−1, 0, 1}, with k ∈ {7, 2, 1, 3},
leading to the remaining solutions (x, n) of (1): (181, 15), (5, 5), (1, 3) and (11, 7).

Next, we will show that these are in fact the only instances when Yi is a power of
2, and thus completely solve (1). We do this by examining the following sequences:

z1(m) = {2i mod m}∞i=0

z2(m) = {Yi mod m}∞i=0
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i Xi Yi Ui Vi
−5 −6149 4348 −12875 9104
−4 −1055 746 −2209 1562
−3 −181 128 −379 268
−2 −31 22 −65 46
−1 −5 4 −11 8
0 1 2 −1 2
1 11 8 5 4
2 65 46 31 22
3 379 268 181 128
4 2209 1562 1055 746
5 12875 9104 6149 4348

Table 1. Small solutions to x2 − 2y2 = −7.

for some suitable m. It is clear from their definition that both z1(m) and z2(m) are
periodic for all m. Given some m, define λi to be the period of zi(m) and µi to be
the pre-period of zi(m). Note that µ2 = 0 since the periodic portion of z2(m) will
extend backwards by (6). If we can show that{

2i mod m
}µ1+λ1−1

i=µ1
∩
{
Yi mod m

}λ2−1

i=0
= ∅ (7)

then Yi 6= 2k for all i ∈ Z unless k < µ1.
Now all that remains is to find an m which satisfies (7); this is best accomplished

by a computer search. Although I will not go into detail here, rather than checking
each m > 1 individually there are conditions which simplify the search considerably.
In our case, with m = 1966336 = 28 · 7681 we find that

µ1 = 8, λ1 = 3840, µ2 = 0, λ2 = 256.

There are 3840 residues in {2i mod m}3847i=8 and 256 residues in {Yi mod m}255i=0, but
(7) is satisfied! Since we have already noted all k such that Yi = 2k for k < 8, we
have proved that no other solutions to Ramanujan’s square equation exist.

As a final remark, we note that alterative possibilities for m include 16777472 =
28 · 65537 and 25167872 = 211 · 12289.
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Maple Code 1 Returns the minimal positive solution (x, y) to the Pell equation
x2 −Dy2 = 1 (where D > 0 is not a perfect square) using the PQa algorithm.
pellsolve := proc(D::posint)

local P, Q, a, A, B, i;

if type(sqrt(D), integer) then

error("D must be a nonsquare integer");

end if;

P := 0;

Q := 1;

a := floor(sqrt(D));

A := 1, a;

B := 0, 1;

for i from 1 do

P := a*Q - P;

Q := (D - P^2)/Q;

a := floor((P+sqrt(D))/Q);

A := A[2], a*A[2]+A[1];

B := B[2], a*B[2]+B[1];

if Q = 1 and i mod 2 = 0 then

break;

end if;

end do;

return A[1], B[1];

end;

Maple Code 2 Returns a set containing all fundmental solutions (x, y) to the
generalized Pell equation x2 − Dy2 = N (where D > 0 is not a perfect square)
using brute-force search between bounds on y.
genpellsolve := proc(D::posint, N::integer)

local t, u, L1, L2, sols, x, y;

if type(sqrt(D), integer) then

error("D must be a nonsquare integer");

end if;

t, u := pellsolve(D);

if N > 0 then

L1 := 0;

L2 := floor(sqrt(N*(t-1)/(2*D)));

elif N < 0 then

L1 := ceil(sqrt(-N/D));

L2 := floor(sqrt((-N)*(t+1)/(2*D)));

else

return {[0, 0]};

end if;

sols := {};

for y from L1 to L2 do

x := sqrt(N+D*y^2);

if type(x, integer) then

sols := sols union {[x, y]};

if x^2+y^2*D mod N <> 0 or 2*x*y mod N <> 0 then

sols := sols union {[-x, y]};

end if;

end if;

end do;

return sols;

end;


