SOLVING RAMANUJAN'S SQUARE EQUATION COMPUTATIONALLY

CURTIS BRIGHT

Srinivasa Ramanujan asked [7] in 1913 if the Diophantine equation

$$
\begin{equation*}
x^{2}+7=2^{n} \tag{1}
\end{equation*}
$$

had any positive solutions (x, n) other than $(1,3),(3,4),(5,5),(11,7)$ and $(181,15)$. It was first proved by Tryve Nagell [5] in 1948 that these are in fact the only solutions; see [6] for an English translation. Accordingly, (1) is often referred to as the Ramanujan-Nagell equation. A summary of its history and related problems is provided by Edward Cohen [1].

The purpose of this article is to show how the equation may be solved using simple congruence techniques with the benefit of a computer. The principle underlying theory required is in the solving of the equation $x^{2}-D y^{2}=N$. The method is similar to one presented by Maurice Mignotte [2] although he does not apply it to (1) and uses a another method [3] in its resolution.

The case where n is even is easily solved, since writing $n=2 k$ leads to the difference of squares

$$
\left(x+2^{k}\right)\left(x-2^{k}\right)=-7
$$

Examining the divisors of -7 we conclude that $x+2^{k}=7$ and $x-2^{k}=-1$, i.e., $x=3$ and $2^{k}=4$, which yields the only solution with n even, $(x, n)=(3,4)$.

The case where n is odd requires more careful analysis. Writing $n=2 k+1$ and making the substitution $y=2^{k}$ leads to the equation

$$
\begin{equation*}
x^{2}-2 y^{2}=-7, \tag{2}
\end{equation*}
$$

so we would like to find all solutions (x, y) to (2) such that y is a power of 2 .
The set of solutions (x, y) to equations of the form

$$
\begin{equation*}
x^{2}-D y^{2}=N \tag{3}
\end{equation*}
$$

(where $D>0$ is not a square) have a well-known structure. These equations are generalizations of the so-called Pell equation

$$
\begin{equation*}
x^{2}-D y^{2}=1 \tag{4}
\end{equation*}
$$

which in fact plays an important role in solving the generalized case. Note that if (\tilde{x}, \tilde{y}) is a solution of (4) and (x, y) is a solution to (3) then $(x \tilde{x}+y \tilde{y} D, x \tilde{y}+y \tilde{x})$ is also a solution to (3). Using this fact, we may partition solutions to (3) into equivalence classes: we say that $(x, y) \sim\left(x^{\prime}, y^{\prime}\right)$ if there is some solution (\tilde{x}, \tilde{y}) to (4) such that $\left(x^{\prime}, y^{\prime}\right)=(x \tilde{x}+y \tilde{y} D, x \tilde{y}+y \tilde{x})$. It may be shown [4] that an equivalent condition is if $x x^{\prime} \equiv y y^{\prime} D(\bmod |N|)$ and $x y^{\prime} \equiv x^{\prime} y(\bmod |N|)$. Thus the pigeonhole principle gives a (generally weak) upper bound of N^{2} classes of solutions to (3), since if two solutions are congruent modulo N then they belong to the same class. In particular, we have that every solution to (4) belongs to the same class.

Define the minimal positive solution of a class of solutions to be the unique solution (x, y) with the smallest $x, y>0$. All solutions to (4) may be generated from its minimal positive solution, so to determine all solutions to (3) we need only find the minimal positive solution to (4) and a single solution from each class of (3). This is exposited in the following theorem, which is noted in [8].

Theorem 1. Let (x, y) be a solution of $x^{2}-D y^{2}=N$ and (\tilde{x}, \tilde{y}) be the minimal positive solution of $x^{2}-D y^{2}=1$. Define the pair of linear recurrence relations:

$$
\begin{align*}
X_{i} & =2 \tilde{x} X_{i-1}-X_{i-2} \tag{5}\\
Y_{i} & =2 \tilde{x} Y_{i-1}-Y_{i-2}
\end{align*}
$$

with initial conditions $\left(X_{0}, Y_{0}\right)=(x, y)$ and $\left(X_{1}, Y_{1}\right)=(x \tilde{x}+y \tilde{y} D, x \tilde{y}+y \tilde{x})$. Then all solutions to $x^{2}-D y^{2}=N$ in the class of (x, y) are given by $\pm\left(X_{i}, Y_{i}\right)$ for $i \in \mathbb{Z}$.

Note that $\left(X_{i}, Y_{i}\right)$ is well-defined for $i<0$ since rearranging (5) yields

$$
\begin{align*}
X_{i} & =2 \tilde{x} X_{i+1}-X_{i+2} \\
Y_{i} & =2 \tilde{x} Y_{i+1}-Y_{i+2} \tag{6}
\end{align*}
$$

Define the fundamental solution of a class of solutions to be the solution (x, y) with the smallest $y \geq 0$, along with $x \geq 0$ if $(x, y) \sim(-x, y)$. We will be able to use Theorem 1 if we can compute all fundamental solutions of (3) and the minimal positive solution of (4); methods for doing this are described in $[4,8]$ and code for Maple implementations is included at the end of this article. The minimal positive solution of (4) may be computed by the "PQa" algorithm; this method uses the convergents to the continued fraction expansion of \sqrt{D}. The fundamental solutions of (3) may often be computed by a brute-force search since general bounds on these solutions are known; the following were specifically stated in [8].

Theorem 2. Let (x, y) be a fundamental solution of $x^{2}-D y^{2}=N$ and (\tilde{x}, \tilde{y}) be the minimal positive solution of $x^{2}-D y^{2}=1$. Then

$$
\begin{aligned}
& 0 \leq y \leq \sqrt{\frac{N(\tilde{x}-1)}{2 D}} \\
& \sqrt{\frac{|N|}{D}} \leq y \leq \sqrt{\frac{|N|(\tilde{x}+1)}{2 D}} \text { if } N>0 \\
& \sqrt{\frac{\mid N}{}} \quad
\end{aligned}
$$

Armed with these theorems, we can now find all solutions to (2), i.e., (3) with $D=2, N=-7$. We calculate that the minimal positive solution to $x^{2}-2 y^{2}=1$ is $(3,2)$ and that the fundamental solutions to $x^{2}-2 y^{2}=-7$ are $(x, y)=(1,2)$ and $(u, v)=(-1,2)$. Using Theorem 1 we can construct the sequence of solutions $\left(X_{i}, Y_{i}\right)$ and $\left(U_{i}, V_{i}\right)$. Table 1 shows the small solutions; all solutions to $x^{2}-2 y^{2}=$ -7 are given by $\pm\left(X_{i}, Y_{i}\right)$ and $\pm\left(U_{i}, V_{i}\right)$ for $i \in \mathbb{Z}$.

Note that $\left(X_{i}, Y_{i}\right)=\left(-U_{-i}, V_{-i}\right)$, and since we only want to find solutions (x, y) to (2) where y is a power of 2 , it sufficies to just find when Y_{i} is a power of 2 . Examining Table 1, we see that $Y_{i}=2^{k}$ for $i \in\{-3,-1,0,1\}$, with $k \in\{7,2,1,3\}$, leading to the remaining solutions (x, n) of $(1):(181,15),(5,5),(1,3)$ and $(11,7)$.

Next, we will show that these are in fact the only instances when Y_{i} is a power of 2 , and thus completely solve (1). We do this by examining the following sequences:

$$
\begin{aligned}
& z_{1}(m)=\left\{2^{i} \bmod m\right\}_{i=0}^{\infty} \\
& z_{2}(m)=\left\{Y_{i} \bmod m\right\}_{i=0}^{\infty}
\end{aligned}
$$

i	X_{i}	Y_{i}	U_{i}	V_{i}
-5	-6149	4348	-12875	9104
-4	-1055	746	-2209	1562
-3	-181	128	-379	268
-2	-31	22	-65	46
-1	-5	4	-11	8
0	1	2	-1	2
1	11	8	5	4
2	65	46	31	22
3	379	268	181	128
4	2209	1562	1055	746
5	12875	9104	6149	4348

TABLE 1. Small solutions to $x^{2}-2 y^{2}=-7$.
for some suitable m. It is clear from their definition that both $z_{1}(m)$ and $z_{2}(m)$ are periodic for all m. Given some m, define λ_{i} to be the period of $z_{i}(m)$ and μ_{i} to be the pre-period of $z_{i}(m)$. Note that $\mu_{2}=0$ since the periodic portion of $z_{2}(m)$ will extend backwards by (6). If we can show that

$$
\begin{equation*}
\left\{2^{i} \bmod m\right\}_{i=\mu_{1}}^{\mu_{1}+\lambda_{1}-1} \cap\left\{Y_{i} \bmod m\right\}_{i=0}^{\lambda_{2}-1}=\emptyset \tag{7}
\end{equation*}
$$

then $Y_{i} \neq 2^{k}$ for all $i \in \mathbb{Z}$ unless $k<\mu_{1}$.
Now all that remains is to find an m which satisfies (7); this is best accomplished by a computer search. Although I will not go into detail here, rather than checking each $m>1$ individually there are conditions which simplify the search considerably. In our case, with $m=1966336=2^{8} \cdot 7681$ we find that

$$
\mu_{1}=8, \quad \lambda_{1}=3840, \quad \mu_{2}=0, \quad \lambda_{2}=256
$$

There are 3840 residues in $\left\{2^{i} \bmod m\right\}_{i=8}^{3847}$ and 256 residues in $\left\{Y_{i} \bmod m\right\}_{i=0}^{255}$, but (7) is satisfied! Since we have already noted all k such that $Y_{i}=2^{k}$ for $k<8$, we have proved that no other solutions to Ramanujan's square equation exist.

As a final remark, we note that alterative possibilities for m include $16777472=$ $2^{8} \cdot 65537$ and $25167872=2^{11} \cdot 12289$.

References

[1] E. Cohen, On the Ramanujan-Nagell Equation and Its Generalizations, Number Theory: Proceedings of the First Conference of the Canadian Number Theory Association (1990), 81-92.
[2] M. Mignotte, On the Automatic Resolution of Certain Diophantine Equations, EUROSAM 84 Proceedings, Lecture Notes In Computer Science 174 (1984), 378-385.
[3] M. Mignotte, Une nouvelle résolution de l'équation $x^{2}+7=2^{n}$, Rendiconti del Seminario della Facoltà di Scienze dell'Università di Cagliari 54 (1984), 41-43.
[4] R. Mollin, Fundamental Number Theory with Applications (1998), 249, 298-301, 338-339.
[5] T. Nagell, Løsning til oppgave nr 2, 1943, s. 29, Norsk Mathematisk Tidsskrift 30 (1948), 62-64.
[6] T. Nagell, The Diophantine Equation $x^{2}+7=2^{n}$, Arkiv för Matematik 4 (1961), 185-187.
[7] S. Ramanujan, Question 464, Journal of the Indian Mathematical Society 5 (1913), 120.
[8] J. Robertson, Solving the generalized Pell equation $x^{2}-D y^{2}=N$, online article (2004), http://hometown.aol.com/jpr2718/pell.pdf.
[9] E. Weisstein, Ramanujan's Square Equation, from MathWorld-A Wolfram Web Resource, http://mathworld.wolfram.com/RamanujansSquareEquation.html.

```
Maple Code 1 Returns the minimal positive solution (x,y) to the Pell equation
x}-D\mp@subsup{y}{}{2}=1\mathrm{ (where D>0 is not a perfect square) using the PQa algorithm.
pellsolve := proc(D::posint)
    local P, Q, a, A, B, i;
    if type(sqrt(D), integer) then
        error("D must be a nonsquare integer");
    end if;
    P := 0;
    Q := 1;
    a := floor(sqrt(D));
    A := 1, a;
    B := 0, 1;
    for i from 1 do
        P := a*Q - P;
        Q := (D - P^2)/Q;
        a := floor((P+sqrt(D))/Q);
        A := A[2], a*A[2]+A[1];
        B := B[2], a*B[2]+B[1];
        if Q = 1 and i mod 2 = 0 then
            break;
        end if;
    end do;
    return A[1], B[1];
end;
```

Maple Code 2 Returns a set containing all fundmental solutions (x, y) to the generalized Pell equation $x^{2}-D y^{2}=N$ (where $D>0$ is not a perfect square) using brute-force search between bounds on y.

```
genpellsolve := proc(D::posint, N::integer)
    local t, u, L1, L2, sols, x, y;
    if type(sqrt(D), integer) then
        error("D must be a nonsquare integer");
    end if;
    t, u := pellsolve(D);
    if N > 0 then
        L1 := 0;
        L2 := floor(sqrt(N*(t-1)/(2*D)));
    elif N < O then
        L1 := ceil(sqrt(-N/D));
        L2 := floor(sqrt((-N)*(t+1)/(2*D)));
    else
        return {[0, 0]};
    end if;
    sols := {};
    for y from L1 to L2 do
        x := sqrt(N+D*y^2);
        if type(x, integer) then
            sols := sols union {[x, y]};
            if x^2+y^2*D mod N <> 0 or 2*x*y mod N <> 0 then
                sols := sols union {[-x, y]};
            end if;
        end if;
    end do;
    return sols;
end;
```

