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Abstract

This article contains an exposition of one possible derivation of the
quartic formula. It was originally published in conjunction with the quar-
tic formula poster of Curtis Bright.

Introduction

Consider the arbitrary quartic equation

ax4 + bx3 + cx2 + dx + e = 0

for real numbers a, b, c, d, e with a 6= 0. By the fundamental theorem of algebra
this equation has four roots x1, x2, x3, x4 over the complex numbers. Using the
factor theorem gives the factorization

ax4 + bx3 + cx2 + dx + e = a(x− x1)(x− x2)(x− x3)(x− x4).

Expanding out the right-hand side gives

ax4 − a(x1 + x2 + x3 + x4)x3

+ a(x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4)x2

− a(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)x + ax1x2x3x4,

and equating coefficients with the original expression gives the following system
of equations:

b = −a(x1 + x2 + x3 + x4)

c = a(x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4)

d = −a(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)

e = ax1x2x3x4

At this point, we’re basically stuck; this is a complicated non-linear system that
we want to solve for x1, x2, x3, x4.
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Some Sleight-of-hand

It turns out that it is now helpful to introduce the variables y1, y2, y3 using the
following definitions:

y1 = a(x1 + x2 − x3 − x4)

y2 = a(x1 − x2 + x3 − x4)

y3 = a(x1 − x2 − x3 + x4)

And for the real bit of magic, I claim that the following identities hold:

y21 + y22 + y23 = 3b2 − 8ac

y21y
2
2 + y21y

2
3 + y22y

2
3 = 3b4 + 16a2c2 + 16a2bd− 16ab2c− 64a3e

y1y2y3 = −b3 + 4abc− 8a2d

The real trick, of course, is where these identities came from—but once someone
gives you them, it is not necessary to know how they were derived to check that
they are true. It is straightforward, although tedious, to expand out the left
sides using the definitions of y1, y2, and y3, and to expand out the right sides
using the expressions for b, c, d, and e. The result will be equations in terms
of x1, x2, x3, x4, and a, and one merely needs to check that both sides are
identical. [A real magician never reveals their secrets, but if you’re curious I’ve
also written a bit about how the identities were computed.]

Finding the yi

What make the yi so useful is that one can solve for them using the above
identities. It’s not immediately obvious how one would go about doing this,
since again we have a complicated non-linear system of equations to solve. The
trick is to consider a cubic equation which has as its roots y21 , y22 , and y23 ; for
example, (y − y21)(y − y22)(y − y23). Expanding this out gives

y3 − (y21 + y22 + y23)y2 + (y21y
2
2 + y21y

2
3 + y22y

2
3)y − (y1y2y3)2,

and the left-hand side of the identities make an appearance! Rewriting this
using the right-hand sides gives

y3−(3b2−8ac)y2+(3b4+16a2c2+16a2bd−16ab2c−64a3e)y−(−b3+4abc−8a2d)2,

and now one can solve this using the cubic formula, and therefore find the roots
y21 , y22 , and y23 . Taking square roots gives y1, y2, and y3, except now a problem
presents itself: since every number has two square roots, how do you know which
one to take?

Actually, the problem isn’t as bad as it seems. As long as one ensures that
the values for yi chosen satisfy the third identity y1y2y3 = −b3 + 4abc − 8a2d,
choosing different values for the square roots will just end up causing the xi

to be labelled differently. So you don’t have a completely free choice of square
roots (in particular, one can’t just use principal square roots), but 4 of the 8
possible square root selections will give correct answers.
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Finding the xi

Now that the yi have been found we are in a great position to use them to find
the xi and thus solve the quartic. Consider the definitions of the yi augmented
with the expression for b:

b = −a(x1 + x2 + x3 + x4)

y1 = a(x1 + x2 − x3 − x4)

y2 = a(x1 − x2 + x3 − x4)

y3 = a(x1 − x2 − x3 + x4)

We know a, b, y1, y2, and y3, and wish to solve this system for x1, x2, x3, and
x4. Since this is a nonsingular linear system, linear algebra allows us to do this!
The solution (calculated using Gaussian elimation, for example) is as follows:

x1 = (−b + y1 + y2 + y3)/(4a)

x2 = (−b + y1 − y2 − y3)/(4a)

x3 = (−b− y1 + y2 − y3)/(4a)

x4 = (−b− y1 − y2 + y3)/(4a)

Or more concisely, the solution can be expressed as

x =
−b± (y1 ± y2)± y3

4a

where all choices of the ± signs are chosen with the last two equivalent.
Although this is a perfectly legitimate solution of the quartic, it relies on

one “manually” choosing values for square roots so that
√
y21
√
y22
√

y23 = −b3 +
4abc − 8a2d is satisfied. For simplicity, I’ve also derived a slight modification
which only uses principal square roots.
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The Magic Exposed

The trick is that the yi were carefully chosen so that y21 +y22 +y23 , y21y
2
2 +y21y

2
3 +

y22y
2
3 , and y1y2y3 are symmetric polynomials in the xis. This means that the

value of these polynomials do not change if you permute the xi. For example,
the expression y21 + y22 + y23 is

a2(x1 + x2 − x3 − x4)2 + a2(x1 − x2 + x3 − x4)2 + a2(x1 − x2 − x3 + x4)2

and after permuting x1 and x2 becomes

a2(x2 + x1 − x3 − x4)2 + a2(x2 − x1 + x3 − x4)2 + a2(x2 − x1 − x3 + x4)2

= a2(x1 + x2 − x3 − x4)2 + a2(x1 − x2 − x3 + x4)2 + a2(x1 − x2 + x3 − x4)2

= y21 + y22 + y23 .

By the fundamental theorem of symmetric polynomials every symmetric
polynomial can be written in terms of the elementary symmetric polynomials,
which are in fact exactly the expressions derived for b, c, d, and e (up to a factor
of ±a). Therefore by this theorem there is some expression for y21 + y22 + y23 in
terms of a, b, c, d, and e only. There are various ways of computing what that
expression actually is; for example, the three identities I gave were computed
with the following Maple code using Gröbner bases:

T := lexdeg([y1,y2,y3], [x1,x2,x3,x4], [b,c,d,e]):

G := Groebner[Basis]([

y1-a*(x1+x2-x3-x4),

y2-a*(x1-x2+x3-x4),

y3-a*(x1-x2-x3+x4),

b-(-a*(x1+x2+x3+x4)),

c-(a*(x1*x2+x1*x3+x1*x4+x2*x3+x2*x4+x3*x4)),

d-(-a*(x1*x2*x3+x1*x2*x4+x1*x3*x4+x2*x3*x4)),

e-(a*(x1*x2*x3*x4))],

T):

Groebner[Reduce](y1^2+y2^2+y3^2, G, T);

Groebner[Reduce](y1^2*y2^2+y1^2*y3^2+y2^2*y3^2, G, T);

Groebner[Reduce](y1*y2*y3, G, T);
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