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Abstract

We propose to combine the research areas of satisfiability solving and symbolic computation to develop
efficient procedures which can perform combinatorial searches. Our proposed algorithm and tool combines
efficient general-purpose search procedures (like those in modern SAT solvers) with domain-specific
knowledge (like those in computer algebra systems) to verify, couterexample, and study mathematical
conjectures (especially in combinatorics) and the structures they refer to.
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1 Introduction
“Brute-brute force has no hope. But clever, inspired brute force is the future.” – Doron Zeilberger1

1.1 Motivation
At the 40th International Symposium on Symbolic and Algebraic Computation [Á15] the invited talk Building
Bridges between Symbolic Computation and Satisfiability Checking by Erika Ábrahám made the observation
that in practice there is a disconnect between the disciplines of SAT solving and symbolic computation.
Additionally, she made the case that developing algorithms and tools which combine insights from both these
fields is a promising line of research which could be beneficial to both communities. To this end, we propose
a research project which uses the techniques from these fields with the aim of aiding progress on conjectures
in mathematics, particularly those in combinatorics.

Many conjectures in combinatorial mathematics are simple to state but very hard to verify. For example,
a conjecture like the Hadamard [CD07] might assert the existence of certain combinatorial objects in an
infinite number of cases, which makes exhaustive search impossible. In such cases, mathematicians often
resort to finite verification (i.e., verification up to some finite bound) in the hopes of learning some meta
property of the class of combinatorial structures they are investigating, or discover a counterexample to such
conjectures. However, even finite verification of combinatorial conjectures can be challenging because the
search space for such conjectures is often exponential in the size of the structures they refer to. This makes
straightforward brute-force search impractical.

In recent years, conflict-driven clause learning (CDCL) Boolean SAT solvers [BHvMW09, MSS+99,
MMZ+01] have become very efficient general-purpose search procedures for a large variety of applications.
Indeed, SAT solvers are probably the best general-purpose search procedures we currently have. Despite this
remarkable progress these algorithms have worst-case exponential time complexity, and may not perform
well by themselves for many search applications—but they can become more efficient with appropriately
encoded domain-specific knowledge. By contrast, computer algebra systems (CAS) such as Maple [CFG+86],
Mathematica [Wol99], and Sage [BHvMW09] are often a rich storehouse of domain-specific knowledge, but
do not generally contain sophisticated general-purpose search procedures.

Fortunately the strengths of modern SAT solvers and CAS are complementary, i.e., the domain-specific
knowledge of a CAS can be crucially important in cutting down the search space associated with combinatorial
conjectures, while at the same time the clever heuristics of SAT solvers, in conjunction with CAS, can efficiently
search a wide variety of such spaces.

1.2 Background on SAT/SMT solvers
A propositional formula is an expression involving Boolean variables and logical connectives such as AND (∧),
OR (∨), and NOT (¬). The satisfiability problem is to determine if a given formula is satisfiable, i.e., if there
exists an assignment to the variables of the formula which make the formula true. A SAT solver is a program
which solves the satisfiability problem and produces a satisfying assignment in the case that the given formula
is satisfiable. In practice, SAT solvers usually accept formulae given in conjunctive normal form (CNF), i.e.,
formulae of the form

∧
i Ci where each Ci is a clause (of the form

∨
j lij where each lij is either a Boolean

variable or its negation).
Most modern SAT solvers are based on the Davis-Putnam-Logemann-Loveland (DPLL) algorithm. At

its core this algorithm performs a depth-first search through the space of possible assignments, stopping
when a satisfying assignment has been reached or when the space has been exhausted. Naturally, there are
many details and optimizations which make this idea more practical, such as employing conflict-driven clause
learning. In more detail, the DPLL algorithm repeatedly performs the following steps:

1From Doron Zeilberger’s talk at the Fields institute in Toronto, December 2015 (http://www.fields.utoronto.ca/
video-archive/static/2015/12/379-5401/mergedvideo.ogv, minute 44)
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• Decide: Choose an unassigned variable and assign it a value. If all variables have been assigned without
a conflict, return the satisfying assignment.

• Deduce: Perform simplifications on the clauses in the given formula to detect conflicts and infer values
of variables. The inference process (Boolean Constant Propagation) is used repeatedly until no new
inferences are made.

• Resolve: If a conflict occurs, learn a clause prohibiting the current assignment and perform a “backjump”
by undoing the variable choices leading to the conflict and continuing with another assignment. If the
conflict occurs when there are no variable assignments to undo, return UNSAT.

It is also possible to consider the satisfiability problem for the formulas of first-order logic over various
theories. Some theories which are commonly used include equality logic with uninterpreted functions, array
theory, bitvector theory, and various theories of arithmetic such as integer or real arithmetic (or their linear
arithmetic fragments). Programs which are able to solve the satisfiability problem in this context are known
as SAT-modulo-theories (SMT) solvers.

Modern SMT solvers typically combine a SAT solver with appropriate theory solver(s) to determine
satisfiability of first-order formulas. Given a existentially-quantified first-order formula in conjunctive normal
form it is possible to abstract the formula into a pure propositional formula by replacing each theory constraint
with a fresh propositional variable. A SAT solver is then used to determine if the abstracted formula is
satisfiable; if so, the assignment is given to the theory solver to determine if the assignment yields a genuine
solution of the original formula. If the assignment does not give rise to a solution then the theory solver
determines a clause which encodes a reason why the assignment is prohibited by the theory and passes that
to the SAT solver so the search can be resumed.

The above procedure forms the basis of the DPLL(T ) algorithm (here T represents the theory under
consideration). The procedure is called lazy if it waits until all propositional variables have been assigned
until querying the theory solver. Less lazy variants are possible which also query the theory solver with
partial assignments and therefore pass theory lemmas to the SAT solver more frequently.

2 Proof-of-concept: The MathCheck system
In this section we outline a proof-of-concept system we call MathCheck which uses SAT and CAS func-
tionalities to finitely verify conjectures in mathematics. The first version of MathCheck [ZGC15] was
developed by Edward Zulkoski, Vijay Ganesh, and Krzysztof Czarnecki and was successfully used to verify
two conjectures from graph theory up to bounds which had previously been unobtainable. A SAT solver was
the primary search tool used, but the system would periodically make queries to a CAS to learn facts about
the remaining search space. These facts were then translated into a form the SAT solver could use and the
search was resumed with these additional clauses.

The second version of MathCheck was developed by the author with Vijay Ganesh, Albert Heinle,
Ilias Kotsireas, Saeed Nejati, and Krzysztof Czarnecki. It was used to study conjectures in combinatorial
design theory, as we describe in Section 2.2. The system can be viewed as a parallel systematic generator of
combinatorial structures referred to by the conjecture-under-verification C. It uses a CAS to prune away
structures that do not satisfy C, while the SAT solver is used to verify whether any of the remaining structures
satisfy C. In addition, if the SAT solver used supports the generation of UNSAT cores (concise encodings of
why a formula is unsatisfiable) we use them to further prune the search in a CDCL-style learning feedback
loop.

2.1 Architecture of MathCheck2
The architecture of the MathCheck2 system is outlined in Figure 1. At its heart is a generator of
combinatorial structures, written in Python, which uses data provided to it by CAS functions to prune the
search space and interfaces with SAT solvers to verify the conjecture-in-question. The generation script
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Figure 1: Outline of the architecture of MathCheck2.

contains functions useful for translating combinatorial conditions into clauses which can be read by a SAT
solver. In particular, the generator is currently optimized to deal with conjectures which concern Hadamard
matrices from coding and combinatorial design theory. The generation script can also be tailored to search
for specific classes of Hadamard matrices such as those generated by Williamson matrices (see Theorem 1 in
Section 3.2).

Once the class of combinatorial objects has been determined, the script accepts a parameter n which
determines the size of the object to search for. For example, when searching for Hadamard matrices, the
parameter n denotes the order (i.e., the number of rows) of the matrix. The generation script then queries
the CAS it is interfaced with for properties that any order n instance of the combinatorial object in question
must satisfy. The result returned by the CAS is read by the generator and then used to prune the space
which will be searched by the SAT solver.

Once the generator determines the space to be searched it splits the space into distinct subspaces in
a divide-and-conquer fashion. Once the partitioning of the search space has been completed, the script
generates two types of files:

1. A single “master” file in DIMACS CNF (conjunctive normal form) format which contains the conditions
specifying the combinatorial object being searched for. These are encoded as propositional formulas in
conjunctive normal form. An assignment to the variables which makes all of them true would give a
valid instance of the object being searched for (and a proof that no such assignment exists proves that
no instance of the object in question exists).

2. A set of files which contain partial assignments of the variables in the master file. Each file corresponds
to exactly one subspace of the search space produced by the generator.

There are at least 2 advantages of splitting up the problem in such a way:

1. It easily facilitates parallelization. For example, once the instances are generated each instance can be
given to a cluster of SAT solvers running in parallel.

2. It allows domain-specific knowledge to be used in the splitting process; partitioning the space in a
fortuitous manner can considerably speed up the search, as the SAT solver executes its search without
using such domain-specific knowledge.

Furthermore, in cases that an instance is found to be unsatisfiable, some SAT solvers such as Maple-
SAT [LGPC16], that support the generation of a so-called UNSAT core, can be used to further prune away
other similar structures that do not satisfy the conjecture-under-verification. Given an unsatisfiable instance
φ, its UNSAT core is a set of clauses that pithily characterizes the reason why φ is unsatisfiable and thus
encodes an unsatisfying subspace of the search space.
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2.2 Application to the Hadamard conjecture
As a case study of the MathCheck2 system we applied MathCheck2 to the Hadamard conjecture from
combinatorial design theory. This conjecture states that for any natural number n, there exists a 4n× 4n
matrix H with ±1 entries for which HHT is a diagonal matrix with each diagonal entry equal to 4n. In
particular, we specialize in Hadamard matrices generated by the so-called Williamson method. As described
in Section 5.1, we were able to verify that such Hadamard matrices do not exist in order 4 · 35, a result
previously computed using a different methodology by D. Ðoković [Ðok93]. However, due to the nature of
the problem and the techniques used, no short certificate of the computations could be produced, making it
difficult to check the work short of re-implementing the approach from scratch. In fact, the author specifically
states that

In the case n = 35 our computer search did not produce any solutions [. . . ] Although we are
confident about the correctness of this claim, an independent verification of it is highly desirable
since this is the first odd integer, found so far, with this property.

Because MathCheck2 was written completely independently, uses different techniques internally, and
makes use of well-tested SAT solvers and CAS functions, our system is able to provide an independent
verification as requested by Ðoković. (The above notes equally apply to the verification in [HKTR08].)

MathCheck2 was also used to show that n = 35 is the true smallest number for which no Williamson
matrices of order n exist, not merely the smallest odd number with this property. This was done by
constructing Hadamard matrices using the Williamson method for all orders n < 35. We submitted the
Hadamard matrices generated by our system (the largest of which has order 156) to the Magma database of
Hadamard matrices. There were 160 matrices that we generated which were not previously included in this
database.

3 Background on Hadamard matrices and Combinatorial Mathe-
matics

In this section we discuss the mathematical preliminaries necessary to understand MathCheck2 and its
application to the Hadamard conjecture.

3.1 Hadamard matrices
First, we define the combinatorial objects known as Hadamard matrices and present some of their properties.

Definition 1. A matrix H ∈ {±1}n×n, n ∈ N, is called a Hadamard matrix, if for all i 6= j ∈ {1, . . . , n},
the dot product between row i and row j in H is equal to zero. We call n the order of the Hadamard matrix.

First studied by Hadamard [Had93], he showed that if n is the order of a Hadamard matrix, then either
n = 1, n = 2 or n is a multiple of 4. In other words, he gave a necessary condition on n for there to exist a
Hadamard matrix of order n. The Hadamard conjecture is that this condition is also sufficient, so that there
exists a Hadamard matrix of order n for all n ∈ N where n is a multiple of 4.

Hadamard matrices play an important role in many widespread branches of mathematics, for example in
coding theory [Mul54, Ree54, Wal23] and statistics [HW+78]. Because of this, there is a high interest in the
discovery of different Hadamard matrices up to equivalence. Two Hadamard matrices H1 and H2 are said
to be equivalent if H2 can be generated from H1 by applying a sequence of negations/permutations to the
rows/columns of H1, i.e., if there exist signed permutation matrices U and V such that U ·H1 · V = H2.

There are several known ways to construct sequences of Hadamard matrices. One of the simplest such
constructions is by Sylvester [Syl67]: given a known Hadamard matrix H of order n,

[
H H
H −H

]
is a Hadamard

matrix of order 2n. This process can of course be iterated, and hence one can construct Hadamard matrices
of order 2kn for all k ∈ N from H.
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There are other methods which produce infinite classes of Hadamard matrices such as those by Paley [Pal33].
However, no general method is known which can construct a Hadamard matrix of order n for arbitrary
multiples of 4. The smallest unknown order is currently n = 4 · 167 = 668 [CD07]. A database with many
known matrices is included in the computer algebra system Magma [BCP97]. Further collections are available
online [Slo, Seb].

Because there are 2n
2

matrices of order n with ±1 entries, the search space of possible Hadamard matrices
grows extremely quickly as n increases, and brute-force search is not feasible. Because of this, researchers
have defined special types of Hadamard matrices which can be searched for more efficiently because they lie
in a small subset of the entire space of Hadamard matrices.

3.2 Williamson matrices
One prominent class of special Hadamard matrices are those generated by so-called Williamson matrices.
These are described in this section.

Theorem 1 (cf. [Wil44]). Let n ∈ N and let A, B, C, D ∈ {±1}n×n. Further, suppose that

1. A, B, C, and D are symmetric;

2. A, B, C, and D commute pairwise (i.e., AB = BA, AC = CA, etc.);

3. A2 +B2 + C2 +D2 = 4nIn, where In is the identity matrix of order n.

Then the matrix 
A B C D
−B A −D C
−C D A −B
−D −C B A


is a Hadamard matrix of order 4n.

For practical purposes, one considers A, B, C, and D in the Williamson construction to be circulant
matrices, i.e., those matrices in which every row is the previous row shifted by one entry to the right (with
wrap-around, so that the first entry of each row is the last entry of the previous row). Such matrices are
completely defined by their first row [x0, . . . , xn−1] and always satisfy the commutativity property. If the
matrix is also symmetric then we must further have x1 = xn−1, x2 = xn−2, and in general xi = xn−i for
i = 1, . . . , n− 1. Therefore, if a matrix is both symmetric and circulant its first row must be of the form

[x0, x1, x2, . . . , x(n−1)/2, x(n−1)/2, . . . , x2, x1] if n is odd
[x0, x1, x2, . . . , xn/2−1, xn/2, xn/2−1, . . . , x2, x1] if n is even. (1)

Definition 2. A symmetric sequence of length n is one of the form (1), i.e., one which satisfies xi = xn−i
for i = 1, . . . , n− 1.

Williamson matrices are circulant matrices A, B, C, and D which satisfy the conditions of Theorem 1.
Since they must be circulant, they are completely defined by their first row. (In light of this, we may simply
refer to them as if they were sequences.) Furthermore, since they are symmetric the Hadamard matrix
generated by these matrices is completely specified by the 4

⌈
n+1
2

⌉
variables

a0, a1, . . . , ad(n−1)/2e, b0, . . . , bd(n−1)/2e, c0, . . . , cd(n−1)/2e, d0, . . . , dd(n−1)/2e.

Given an assignment of these variables, the rest of the entries of the matrices A, B, C, and D may be
chosen in such a way that conditions 1 and 2 of Theorem 1 always hold. There is no trivial way of enforcing
condition 3, but we will later derive consequences of this condition which will simplify the search for matrices
which satisfy it.
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There are three types of operations which, when applied to the Williamson matrices, produce different
but essentially equivalent matrices. For our purposes, generating just one of the equivalent matrices will be
sufficient, so we impose additional constraints on the search space to cut down on extraneous solutions and
hence speed up the search.
1. Ordering: Note that the conditions on the Williamson matrices are symmetric with respect to A, B, C,
and D. In other words, those four matrices can be permuted amongst themselves and they will still generate
a valid Hadamard matrix. Given this, we enforce the constraint that

|rowsum(A)| ≤ |rowsum(B)| ≤ |rowsum(C)| ≤ |rowsum(D)|,

where rowsum(X) denotes the sum of the entries of the first (or any) row of X. Any A, B, C, and D can be
permuted so that this condition holds.
2. Negation: The entries in the sequences defining any of A, B, C, or D can be negated and the sequences
will still generate a Hadamard matrix. Given this, we do not need to try both possibilities for the sign of the
rowsum of A, B, C, and D. For example, we can choose to enforce that the rowsum of each of the generating
matrices is nonnegative. Alternatively, when n is odd we can choose the signs so they satisfy rowsum(X) ≡ n
(mod 4) for X ∈ {A,B,C,D}. In this case, a result of Williamson [Wil44] says that aibicidi = −1 for all
1 ≤ i ≤ (n− 1)/2.
3. Permuting entries: We can reorder the entries of the generating sequences with the rule ai 7→ aki mod n

where k is any number coprime with n, and similarly for bi, ci, di (the same reordering must be applied to
each sequence for the result to still be equivalent). Such a rule effectively applies an automorphism of Zn to
the generating sequences.

3.3 Power spectral density
Because the search space for Hadamard matrices is so large, it is advantageous to focus on a specific
construction method and describe properties which any Hadamard matrix generated by this specific method
must satisfy; such properties can speed up a search by significantly reducing the size of the necessary space.
One such set of properties for Williamson matrices is derived using the discrete Fourier transform from
Fourier analysis. The discrete Fourier transform of a sequence A = [a0, a1, . . . , an−1] is the periodic function

DFTA(s) :=

n−1∑
k=0

akω
ks for s ∈ Z,

where ω := e2πi/n is a primitive nth root of unity. Because ωks = ωks mod n one has that DFTA(s) =
DFTA(s mod n), so that only n values of DFTA need to be computed and the remaining values are determined
through periodicity. In fact, when A consists of real entries, it is well-known that DFTA(s) is equal to the
complex conjugate of DFTA(n− s). Hence only

⌊
n+1
2

⌋
values of DFTA need to be computed.

The power spectral density of the sequence A is given by

PSDA(s) := |DFTA(s)|2 for s ∈ Z.

Note that PSDA(s) will always be a nonnegative real number.

Example 1. Let ω = e2πi/5. The discrete Fourier transform and power spectral density of the sequence
A = [1, 1,−1,−1, 1] are given by:

DFTA(0) = 1 + 1− 1− 1 + 1 = 1 PSDA(0) = 1

DFTA(1) = 1 + ω − ω2 − ω3 + ω4 ≈ 3.236 PSDA(1) ≈ 10.472

DFTA(2) = 1 + ω2 − ω4 − ω6 + ω8

= 1− ω + ω2 + ω3 − ω4 ≈ −1.236 PSDA(2) ≈ 1.528
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3.4 Periodic autocorrelation
As we will see, the defining properties of Williamson matrices (in particular, condition 3 of Theorem 1) can
be re-cast using a function known as the periodic autocorrelation function (PAF). Re-casting the equations
in this way is advantageous because many other combinatorial conjectures can also be stated in terms of the
PAF. Hence, code which is used to counter-example or finitely verify one such conjecture can be re-applied to
many other conjectures.

Definition 3. The periodic autocorrelation function of the sequence A is the periodic function given
by

PAFA(s) :=

n−1∑
k=0

aka(k+s) mod n for s ∈ Z.

Similar to the discrete Fourier transform, one has PAFA(s) = PAFA(s mod n) and PAFA(s) = PAFA(n−s)
(see [Kot13a]), so that the PAFA only needs to be computed for s = 0, . . . ,

⌊
n−1
2

⌋
; the other values can be

computed through symmetry and periodicity.

Example 2. The values of the periodic autocorrelation function of the sequence A = [1, 1,−1,−1, 1] are
given by:

PAFA(0) = 12 + 12 + (−1)2 + (−1)2 + 12 = 5

PAFA(1) = 12 + (−1) + (−1)2 + (−1) + 12 = 1

PAFA(2) = (−1) + (−1) + (−1) + (−1) + 12 = −3

By symmetry, PAFA(3) = PAFA(2) and PAFA(4) = PAFA(1).

Now we will see how to rewrite condition 3 of Theorem 1 using PAF values. Note that the sth entry in
the first row of A2 +B2 + C2 +D2 is

PAFA(s) + PAFB(s) + PAFC(s) + PAFD(s).

Condition 3 requires that this entry should be 4n when s = 0 and it should be 0 when s = 1, . . . , n− 1. The
condition when s is 0 does not need to be explicitly checked because in that case the sum will always be 4n,
as PAFA(0) =

∑n−1
k=0(±1)2 = n and similarly for B, C, and D.

Additionally, the first row of A2 + B2 + C2 + D2 will be symmetric as each matrix in the sum has a
symmetric first row. Thus ensuring that

PAFA(s) + PAFB(s) + PAFC(s) + PAFD(s) = 0 for s = 1, . . . ,
⌈
n−1
2

⌉
(2)

guarantees that every entry in the first row of A2+B2+C2+D2 is 0 besides the first. Since A2+B2+C2+D2

will also be circulant, ensuring that (2) holds will ensure condition 3 of Theorem 1.

3.5 Compression
Because the space in which a combinatorial object lies is proportional to the size of the object, it is
advantageous to instead search for smaller objects when possible. Recent theorems on so-called “compressed”
sequences allow us to do that when searching for Williamson matrices.

Definition 4 (cf. [ÐK15]). Let A = [a0, a1, . . . , an−1] be a sequence of length n = dm and set

a
(d)
j = aj + aj+d + · · ·+ aj+(m−1)d, j = 0, . . . , d− 1.

Then we say that the sequence A(d) = [a
(d)
0 , a

(d)
1 , . . . , a

(d)
d−1] is the m-compression of A.
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Example 3. The sequence A = [1, 1,−1,−1,−1, 1,−1, 1, 1,−1, 1,−1,−1,−1, 1] of length 15 has the following
two compressions:

A(3) = [−3, 1, 1] and A(5) = [3,−1,−1,−1,−1].

As we will see, the space of the compressed sequences that we are interested in will be much smaller
than the space of the uncompressed sequences. What makes compressed sequences especially useful is that
we can derive conditions that the compressed sequences must satisfy using our known conditions on the
uncompressed sequences. To do this, we utilize the following theorem which is a special case of a result
from [ÐK15].

Theorem 2. Let A, B, C, and D be sequences of length n = dm which satisfy

PAFA(s) + PAFB(s) + PAFC(s) + PAFD(s) =

{
4n if s = 0

0 if 1 ≤ s < len(A).
(3)

Then for all s ∈ Z we have

PSDA(s) + PSDB(s) + PSDC(s) + PSDD(s) = 4n. (4)

Furthermore, both (3) and (4) hold if the sequences A, B, C, D are replaced with their compressions A(d),
B(d), C(d), D(d).

Since PSDX(s) is always nonnegative, equation (4) implies that PSDA(d)(s) ≤ 4n (and similarly for B, C,
D). Therefore if a candidate compressed sequence A(d) satisfies PSDA(d)(s) > 4n for some s ∈ Z then we
know that the uncompressed sequence A can never be one of the sequences which satisfies the preconditions
of Theorem 2.
Useful properties: Lastly, we derive some properties that the compressed sequences which arise in our
context must satisfy. For a concrete example, note that the compressed sequences of Example 3 fulfill these
properties.

Lemma 1. If A is a sequence of length n = dm with ±1 entries, then the entries a(d)i , i ∈ {0, . . . , d− 1},
have absolute value at most m and a

(d)
i ≡ m (mod 2).

Proof. For all 0 ≤ j < d we have, using the triangle inequality, that

∣∣a(d)j ∣∣ =

∣∣∣∣m−1∑
k=0

aj+kd

∣∣∣∣ ≤ m−1∑
k=0

|aj+kd| = m.

Additionally, a(d)j ≡
∑m−1
k=0 1 ≡ m (mod 2) since aj+kd ≡ 1 (mod 2).

Lemma 2. The compression of a symmetric sequence is also symmetric.

Proof. Suppose that A is a symmetric sequence of length n = dm. We want to show that a(d)j = a
(d)
d−j for

j = 1, . . . , d− 1. By reversing the sum defining a(d)j and then using the fact that n = md, we have

m−1∑
k=0

aj+kd =

m−1∑
k=0

aj+(m−1−k)d =

m−1∑
k=0

an+j−d(k+1).

By the symmetry of A, an+j−d(k+1) = ad(k+1)−j , which equals ad−j+dk. The sum in question is therefore
equal to

∑m−1
k=0 ad−j+dk = a

(d)
d−j , as required.
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4 Encoding and Search Space Pruning Techniques
An attractive property of Hadamard matrices when encoding them in a SAT context is that each of their
entries is one of two possible values, namely ±1. We choose the encoding that 1 is represented by true
and −1 is represented by false. We call this the Boolean value or BV encoding. Under this encoding,
the multiplication function of two x, y ∈ {±1} becomes the XNOR function in the SAT setting, i.e.,
BV(x · y) = XNOR(BV(x),BV(y)).

4.1 Naive encoding of Hadamard matrices in SAT
In order to check if a matrix H ∈ {±1}n×n with rows H0, . . . , Hn−1 is Hadamard, it is necessary to verify
that Hi ·Hj = 0 for all 0 ≤ i, j < n with i 6= j. In other words, we want to verify that the component-wise
product

Hi ∗Hj =
[
hi,0 · hj,0 hi,1 · hj,1 · · · hi,n−1 · hj,n−1

]
has a row sum of 0. To compute hik · hjk in the SAT setting we define the new ‘product’ variables
pijk := XNOR(BV(hik),BV(hjk)) for all 0 ≤ i, j, k < n with i < j; these variables store the Boolean values
of the entries of Hi ∗Hj . In order to add together the entries of Hi ∗Hj as Boolean values, we employ a
network of full and half bit adders. A half adder consumes two Boolean values and produces two Boolean
values; when thought of as bits, the two outputs store the binary representation of the sum of the inputs. (A
full adder does the same thing, but consumes three inputs.)

Repeatedly using the adders on the set of variables pijk for k = 0, . . . , n − 1 yields blog2 nc + 1 new
variables which store the binary representation of

∑n−1
k=0 pijk. We want there to be n/2 true BVs and n/2 false

BVs in this sum so that the rowsum of Hi ∗Hj is zero. Therefore we want to ensure the binary representation
of
∑n−1
k=0 pijk is exactly n/2, because false BVs count for 0 and true BVs count for 1 in the adder network.

4.2 Williamson autocorrelation encoding
The Williamson encoding is very similar to the general encoding but with fewer variables; we merely have the
4
⌈
n+1
2

⌉
variables

a0, a1, . . . , ad(n−1)/2e, b0, . . . , bd(n−1)/2e, c0, . . . , cd(n−1)/2e, d0, . . . , dd(n−1)/2e.

Also, instead of the conditions rowsum(Hi ∗Hj) = 0 for i 6= j we must enforce the conditions

rowsum(Ai ∗Aj +Bi ∗Bj + Ci ∗ Cj +Di ∗Dj) = 0 for i 6= j.

Like in Section 4.1 this is done by defining new variables to represent the entries of the component-wise
products. Also, note that because of the circulant property most of the conditions to enforce will be identical.
As previously mentioned in Section 3.4, it is only necessary to encode the

⌈
n−1
2

⌉
autocorrelation equations

given in (2) to ensure that such matrices generate a valid Hadamard matrix.

4.3 Technique 1: Sum-of-squares decomposition
As a special case of compression, consider what happens when d = 1 and m = n. In this case, the compression
of A is a sequence with a single entry whose value is

∑n−1
k=0 ak = rowsum(A). If A, B, C, and D are

{±1}-sequences which satisfy the conditions of Theorem 2, then the theorem applied to this m-compression
says that

PAFA(1)(0) + PAFB(1)(0) + PAFC(1)(0) + PAFD(1)(0) = 4n

which simplifies to

rowsum(A)2 + rowsum(B)2 + rowsum(C)2 + rowsum(D)2 = 4n,

and by Lemma 1 each rowsum must have the same parity as n.
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In other words, the rowsums of the sequences A, B, C, and D decompose 4n into the sum of four perfect
squares whose parity matches the parity of n. Since there are usually only a few ways of writing 4n as a sum
of four perfect squares this severely limits the number of sequences which could satisfy the hypotheses of
Theorem 2. Furthermore, some computer algebra systems contain functions for explicitly computing what
the possible decompositions are (e.g., PowersRepresentations in Mathematica and nsoks by Joe Riel of
Maplesoft [Rie]). We can query such CAS functions to determine all possible values that the rowsums of A,
B, C, and D could possibly take. For example, when n = 35 we find that there are exactly three ways to
write 4n as a sum of four positive odd squares, namely,

12 + 32 + 32 + 112 = 12 + 32 + 72 + 92 = 32 + 52 + 52 + 92 = 4 · 35.

When using this technique it is necessary to encode constraints on the rowsum of the generating matrices,
e.g., rowsum(A) = 1. This may be simply done by using a binary adder network on the variables a0, . . . ,
ad(n−1)/2e. We give the variables which appear twice in the first row of A (due to symmetry) a weight of 2 in
the binary adder network so that the rowsum is computed correctly.

4.4 Technique 2: Divide-and-conquer
Because each instance can take a significant amount of time to solve, it is beneficial to divide instances
into multiple partitions, each instance encoding a subset of the search space. In our case, we found that an
effective splitting method was to split by compressions, i.e., to have each instance contain one possibility of
the compressions of A, B, C, and D. To do this, we first need to know all possible compressions of A, B, C,
and D. These can be generated by applying Lemmas 1 and 2. For example, when n = 35 and d = 5 there are
28 possible compressions of A with rowsum(A) = 1. Of those, only 12 satisfy PSDA(s) ≤ 4n for all s ∈ Z.
There are also 12 possible compressions for each of B, C, and D with rowsum(B) = rowsum(C) = 3 and
rowsum(D) = 11. Thus there are 124 total instances which would need to be generated for this selection of
rowsums, however, only 41 of them satisfy the conditions given by Theorem 2.

Furthermore, if n has two nontrivial divisors m and d then we can find all possible m-compressions and
d-compressions of A, B, C, and D. In this case, each instance can set both the m-compression and the
d-compression of each of A, B, C, and D. Since there are more combinations to check when dealing with two
types of compression this causes an increase in the number of instances generated, but each instance has
more constraints and a smaller subspace to search through.

4.5 Technique 3: UNSAT core
After using the divide-and-conquer technique one obtains a collection of instances which are almost identical.
For example, the instances will contain variables which encode the rowsums of A, B, C, and D. Since there
are multiple possibilities of the rowsums (as discussed in Section 4.3), not all instances will set those variables
to the same values. However, since the instances are the same except for those variables, it is sometimes
possible to use an UNSAT core result from one instance to learn that other instances are unsatisfiable.

MapleSAT is one SAT solver which supports UNSAT core generation. Provided a master instance and a
set of assumptions (variables which are set either true or false), the UNSAT core contains a subset of the
assumptions which make the master instance unsatisfiable. Thus, any other instance which sets the variables
in the UNSAT core in the same way must also be unsatisfiable.

5 Experimental Results

5.1 Nonexistence of Williamson matrices of order 35

We searched for Williamson matrices of order 35 using the techniques described in Section 4 with both 5 and
7-compression. Despite the exponential growth of possible first rows of the matrices A, B, C, and D, the
described pruning results in 21,674 SAT instances of three possible forms, as described in Figure 2. Each
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rowsum(A) rowsum(B) rowsum(C) rowsum(D) Number of Instances
1 3 3 11 6960
1 3 7 9 8424
3 5 5 9 6290

Figure 2: The number of instances of each type generated in the process of searching for Williamson matrices
of order 35.

Order
Base Encoding

(Sec. 4.2)
Technique 1
(Sec. 4.3)

Technique 2
(Sec. 4.4)

Technique 3
(Sec. 4.5)

25 317s (1) 1702s (4) 408s (179) 408s (179)
26 865s (1) 3818s (3) 61s (3136) 34s (1592)
27 5340s (1) 8593s (3) 1518s (14994) 1439s (689)
28 7674s (1) 2104s (2) 234s (13360) 158s (439)
29 - 21304s (1) N/A N/A
30 1684s (1) 36804s (1) 139s (370) 139s (370)
31 - 83010s (1) N/A N/A
32 - - 96011s (13824) 95891s (348)
33 - - 693s (8724) 683s (7603)
34 - - 854s (732) 854s (732)
35 - - 31816s (21674) 31792s (19356)

Figure 3: The numbers in parentheses denote how many MapleSAT calls successfully returned a result for
the given Williamson order. The timings refer to the total amount of time used during those calls. A hyphen
denotes a timeout after 24 hours.

instance has subsequently been checked with several SAT solvers, and each one has been discovered to be
unsatisfiable. Using MapleSAT with UNSAT core generation, 19,356 SAT solver calls were necessary to
determine that all instances were unsatisfiable.

5.2 Experimental setup and methodology
Timings were run on the high-performance computing cluster SHARCNET. Specifically, the cluster we
used ran CentOS 5.4 and used 64-bit AMD Opteron processors running at 2.2 GHz. Each SAT instance
was generated using MathCheck2 with the appropriate parameters and the instance was submitted to
SHARCNET to solve by running MapleSAT on a single core (with a timeout of 24 hours).

Figure 3 contains a summary of the performance of our encoding and pruning techniques. The timings are
for searching for Williamson matrices of order n with 25 ≤ n ≤ 35 and for each of the techniques discussed
in Section 4. We did not use Techniques 2 and 3 for orders 29 and 31 as they have no nontrivial divisors
to perform compression with, but they were otherwise very effective at partitioning the search space in an
efficient way. Technique 3 was effective at cutting down the number of instances generated in certain orders.
Although the instances pruned tended to be those which would have been quickly solved, this technique
would be especially valuable in a situation where few cores are available, as it allows many SAT solver calls
(which have a fixed overhead) to be avoided.

6 Proposal for Future Work
We propose to extend our work in the following directions:

1. Scale our current MathCheck2 system to Hadamard matrices of higher order and find new inequivalent
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Hadamard matrices. For this, we plan to refine and generalize our method to apply to other Hadamard
construction types. As a concrete example, some types we plan to consider include Hadamard matrices
with circulant core [KKS06b] and Hadamard matrices with two circulant cores [KKS06a]. Both of
these Hadamard matrix types can be defined using a similar number of variables (i.e., O(n)) as the
Williamson construction.

The latter type is especially interesting to consider because of the structured Hadamard conjec-
ture [Kot13b] of Kotsireas, Koukouvinos, and Seberry. This states that there exists a Hadamard
matrix with two circulant cores of order 4n for all n > 0. (In contrast, most other types of Hadamard
matrices are either known or expected to not exist for all orders.)

2. Use our system to search for other combinatorial objects which can be defined by conditions using
the autocorrelation function. For example, in Algorithms and Metaheuristics for Combinatorial
Matrices [Kot13a] Kotsireas lists at least eleven different types of combinatorial objects which are simply
defined using the autocorrelation function (either periodic or aperiodic). The periodic autocorrelation
function has been previously defined, and the aperiodic autocorrelation function (AAF) is defined by

AAFA(s) :=

n−s−1∑
k=0

akā(k+s) mod n for s = 0, . . . , n− 1.

for a complex sequence A = [a0, . . . , an−1], where the bar represents complex conjugation. (In contrast
to the PAF sum which has n terms, the AAF sum contains only n− s terms.)

A concrete example of a combinatorial object we plan to consider are complex Golay sequences. These
are pairs A, B of sequences of length n whose entries are from {±1,±i} and which satisfy

AAFA(s) + AAFB(s) = 0 for s = 1, . . . , n− 1.

The smallest open case for this problem is n = 23 [CHK02]. Since the entries of the sequences can
take 4 possible values, it will be necessary to use two Boolean variables to encode each entry. This will
necessarily make the encoding of multiplication more complicated, however, preliminary experimentation
shows that it is possible to construct a logic circuit expressed in conjunctive normal form which encodes
x · ȳ for two numbers x, y ∈ {±1,±i} with sixteen clauses.

3. Make custom modifications to the SAT solvers used; this allows domain-specific code to be used which
is specifically tailored to each conjecture under verification. The idea of modifying a SAT solver in
this way to make a “programmatic SAT solver” was introduced by Ganesh et al. [GOS+12]. Using a
special API they allow user-provided code to examine partial solutions as the search progresses and
programmatically influence the behaviour of the solver by generating problem-specific learned clauses.
Additionally, they showed that the programmatic SAT approach was up to 100 times more efficient
than a standard SAT approach in the context of RNA folding problems.

In our context, the programmatic SAT idea has many potential benefits:

(a) Increased expressiveness. It is often simpler to express a condition in a programmatic way rather
than as a CNF propositional formula.

(b) Efficiency. The fact that some conditions require many additional new variables and clauses to be
added to the SAT instances can be detrimental to the SAT solver’s performance.
For example, the MathCheck2-generated Williamson instances required an encoding of constraints
like rowsum(A) = 1. From this we can determine the number of the variables a0, . . . , an−1 which
must be true and the number which must be false. Instead of encoding this constraint using a
network of binary adders, we can have the SAT solver keep track of how many a0, . . . , an−1 are
true and false and stop the search when any partial solution has counts which are inconsistent
with the given constraint.
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(c) Better leverage of CAS functionality. The current version of MathCheck2 uses the results from a
CAS to derive conditions which limit the search space, but does not use a CAS while the search is
in progress. However, calling CAS functions from inside the SAT solver will allow theory-specific
lemmas to be learned as the search progresses (similar to the DPLL(T ) algorithm).
This was found to be useful in the first version of MathCheck [ZGC15], which for example made
use of a function in Sage to find the shortest path between two points. In our context, we plan
to use CAS functions to compute automorphisms which would allow the detection of symmetries
and removal of isomorphic solutions. For example, the last equivalence operation of Section 3.2
(permuting entries) is difficult to encode using propositional formulae but should be tractable using
a CAS.

7 Related Work
The idea of combining the capabilities of SAT/SMT solvers and computer algebra systems or domain-
specific knowledge has been examined by various research groups. Junges et al. [JLCÁ13] studied an
integration of Gröbner basis theory in the context of SMT solvers. Although they implemented their
own version of Buchberger’s algorithm, they describe that it is possible to “plug in an off-the-shelf GB
procedure implementation such as the one in Singular” as the core procedure. Singular [DGPS15] is
a computer algebra system with specialized algorithms for polynomial systems. Ábrahám later highlights
the potentials of combining symbolic computation and SMT solving in [Á15]. The veriT SMT solver
[BDODF09] uses the computer algebra system Reduce [Hea04] to support non-linear arithmetic. The Lean
theorem prover [dMKA+15] combines domain-specific knowledge with SMT solvers. SAT-based results on
the Erdős discrepancy conjecture [KL14] inspired the previous version of MathCheck [ZGC15].
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