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Abstract

Using techniques from the field of satisfiability
checking we verify one of the cases used in the
landmark result that projective planes of order ten
do not exist. In particular, we show that if such a pro-
jective plane does exist then it does not generate any
codewords of weight fifteen, a result first shown in
1973 via an exhaustive computer search. We provide
a simple SAT instance and a certificate of unsatisfi-
ability that can be used to automatically verify this
result for the first time. All previous demonstrations
of this result have relied on search programs that are
difficult or impossible to verify—in fact, our study
uncovered a bug in a prior search.

1 Introduction
A projective plane is a generalization of the Euclidean plane
where parallel lines do not exist. In other words, any two lines
in a projective plane must meet at some point. The existence of
non-Euclidean planes is initially counterintuitive but they have
been widely studied since the beginning of the 18th century.
As a simple example of this phenomenon, consider the case of
geometry on a sphere. In this case the lines on a sphere are the
“great circles” of the sphere and any two distinct lines intersect
in exactly two antipodal points.

A more exotic type of geometry known as finite geometry
occurs when only a finite number of points exist. In this
article we are concerned with finite projective geometry, i.e.,
geometry that include axioms that say that only a finite number
of points exist and that parallel lines do not exist. A finite
projective plane is a model of the finite projective geometry
axioms (see Section 2 for the complete list). In particular, a
finite projective plane is said to be of order n if there are n+1
points on every line.

The biggest open question in finite geometry concerns the
orders n for which finite planes exist. Finite planes of order n
can be constructed whenever n is a prime power but it is
unknown if any exist when n is not a prime power. Despite
a significant amount of effort no one has ever been able to
construct a finite plane in an order n that is not a prime power
and it has been widely conjectured that such a plane cannot
exist [Colbourn and Dinitz, 2006].

A partial result was proven by Bruck and Ryser [1949]
who showed that n must be the sum of two integer squares
if a finite plane of order n exists with n congruent to 1 or 2
(mod 4). Bruck and Ryser’s result implies that a projective
plane of order six cannot exist. Every other n < 10 is a prime
power and therefore a finite plane of order n does exist; the
smallest order that is not a prime power and not covered by
the Bruck–Ryser theorem is ten.

A first step towards solving the existence question in or-
der ten was completed by MacWilliams, Sloane, and Thomp-
son [1973]. In this paper the error-correcting code generated
by a hypothetical projective plane of order ten was studied. In
particular, they showed that the search could be reduced to
four cases that they called the weight 12, 15, 16, and 19 cases
(see Section 2). Furthermore, they used a computer search to
show that the weight 15 case did not lead to a projective plane
of order ten.

In the 1980s a number of extensive computer searches were
performed to settle the question of existence of a projective
plane of order ten. In particular, the weight 12 case was solved
by Lam, Thiel, Swiercz, and McKay [1983], the weight 16
case was solved by Lam, Thiel, and Swiercz [1986] (continu-
ing work by Carter [1974]) and the weight 19 case was solved
by Lam, Thiel, and Swiercz [1989], finally showing that a
projective plane of order ten does not in fact exist.

Each of these cases required a significant amount of com-
putational resources to solve, including about 2.7 months of
computing time on a CRAY-1A supercomputer to solve the
weight 19 case. More recently, Roy [2011] performed a veri-
fication of the non-existence of the projective plane of order
ten and required 3.2 months of computing time using 15 CPU
cores running at 2.4 GHz. The recent works [Casiello et al.,
2010] and [Perrott, 2016] have also performed verifications
of the weight 15 case using custom-written code for the com-
puter algebra systems GAP and Mathematica. Additionally
Bruen and Fisher [1973] showed that the weight 15 case is a
consequence of a result of Denniston [1969] but this was also
obtained via a computer search.

In this paper we perform a verification of the weight 15
case using the properties derived by MacWilliams, Sloane,
and Thompson [1973]. Our verification is unique in that we
translate the properties of a projective plane into Boolean
logic and then perform the search using a SAT solver. SAT
solvers are known to be some of the best tools to perform



combinatorial searches; for example, Heule, Kullmann, and
Marek [2017] state that today they are the “best solution” for
most kinds of combinatorial searches. Even so, they mention
that there are some problems that SAT solvers have not yet
been successfully applied to. In fact, they explicitly list the
search for a projective plane of order ten as one of these
problems:

An example where only a solution by [special pur-
pose solvers] is known is the determination that
there is no projective plane of order 10 [ . . . ] To
the best of our knowledge the effort has not been
replicated, and there is definitely no formal proof.

The fact that we perform our search using a SAT solver
means that we can produce a formally verifiable certificate that
the weight 15 case does not lead to a solution. In contrast to all
previous searches that have been completed, one can formally
verify our results without needing to trust the particular choice
of hardware, compiler, or search algorithms that we happened
to use in our verification. Instead, one merely needs to trust
our encoding of the problem into SAT (see Section 3).

Although we do not have a machine-verifiable formal proof
that our encoding is bug-free we believe that our SAT instance
and resulting certificate of unsatisfiability is valuable because
it reduces the amount of code that needs to be trusted. In
particular, it is not necessary to trust code that implements a
search algorithm. It also greatly simplifies the code that needs
to be trusted—this is especially important considering that
search code often needs to be written in a convoluted way to
obtain optimum performance. In fact, while verifying that our
SAT encoding was producing correct results we uncovered a
bug in the code of a previous search (see Section 4).

Our result is also a first step towards a formal verifica-
tion. The SAT encoding is deliberately chosen to be as simple
as possible so that (1) the possibility of an encoding bug is
less likely, and (2) it will be as simple as possible to for-
mally generate the SAT clauses directly from the axioms
that define a projective plane of order ten. This approach
of reducing a problem to SAT, solving the resulting SAT in-
stance, and then formally verifying the encoding in a the-
orem prover has recently successfully formally verified the
Boolean Pythagorean triples conjecture [Heule et al., 2016;
Cruz-Filipe et al., 2018].

2 Preliminaries
A finite projective plane of order n consists of a set of lines
and a set of points that satisfy the following axioms:

1. There are n+ 1 points on every line and there are n+ 1
lines through every point.

2. There is exactly one line between every two distinct
points and every two distinct lines intersect in exactly
one point.

A consequence of these axioms is that a finite projective plane
of order n contains exactly n2 + n + 1 points and exactly
n2 + n+ 1 lines. One way of representing a finite projective
plane is by an incidence matrix that encodes the points that lie
on each line. This matrix has a 1 in the (i, j)th entry if and
only if point j is on line i. For example, a finite projective

plane of order ten is equivalent to a 111 × 111 matrix with
entries in {0, 1} such that:

1. Every row and column contains exactly eleven 1s.
2. The inner product of any two distinct rows or two distinct

columns is exactly 1.
The ordering of the rows and columns of the incidence matrix
of a projective plane is arbitrary and we say that two matrices
are isomorphic if one matrix can be transformed into the other
by a reordering of the rows and columns.

Throughout this paper we let M denote the incidence matrix
of a hypothetical projective plane of order ten. The elements
of the row space of M over the finite field F2 are known as
the codewords of M and the number of 1s in a codeword is
known as the weight of the codeword. Let wk denote the
number of codewords of M of weight k. For example, w0 = 1
because the zero vector is in the row space of M and no other
codeword has a weight of zero. Also, it was shown by Assmus
and Mattson [1970] that the values of all wk can be determined
from just the values of w12, w15, and w16.

The relationships between the values of wk are what ul-
timately lead to the contradiction that showed that a projec-
tive plane of order ten cannot exist. In particular, w12 =
w15 = w16 = 0 imply that w19 = 24,675. But a number
of exhaustive computer searches [MacWilliams et al., 1973;
Carter, 1974; Lam et al., 1983; Lam et al., 1986; Lam et al.,
1989] have found no codewords of M of weights 12, 15, 16,
or 19.

In fact, it was shown by Hall [1980] that if w15 and w16

are zero then w19 must be positive. Thus, to show that a
projective plane of order ten does not exist it suffices to show
that there exists no codewords of M of weights 15, 16, or 19.
In the remainder of this paper we describe the construction of
a SAT instance that has a solution only if a codeword of M of
weight 15 exists. We then provide a certificate that this SAT
instance is unsatisfiable and therefore solve one of the three
cases necessary to prove the nonexistence of a projective plane
of order ten.

2.1 Incidence matrix structure
Let w be a codeword of M of weight 15. We now describe the
known structure of M on the assumption that w exists.

Let A be the set of points corresponding to the 1s in w.
MacWilliams et al. [1973] show that M consists of 6 lines
that contain five points of A, 15 lines that contain three points
of A, and 90 lines that contain a single point of A. We call
these lines the heavy, medium, and light lines, respectively.
Furthermore, they show that any two heavy lines intersect at
a point in A. Since each line contains exactly eleven points
each heavy line must contain six points not in A; all these
points are distinct (otherwise there would be heavy lines that
intersect in more than one point) so there are 6 × 6 = 36 of
them. We let B be the set of these 36 points and C be the
remaining 111− 15− 36 = 60 points.

Without loss of generality the columns of M are ordered
so that the points of A appear first and the points of B appear
last. Similarly, the rows of M are ordered so that the heavy
lines appear first, followed by the medium lines and finally
the light lines. MacWilliams et al. [1973] also determine that



each medium line contains 8 points of C and each light line
contains 6 points of C. In summary, we know that M can be
partitioned into a 3× 3 grid of submatrices as follows:

A C B
15 60 36

heavy 6
(

6 0 5
)

medium 15 3 8 0
light 90 1 6 4

Here the numbers outside the matrix denote the number of
rows or columns in that part of M and the numbers inside the
matrix are the number of 1s that appear in each row of the
submatrix in that part of M .

MacWilliams et al. [1973] also show that up to isomor-
phism there is exactly one way of assigning the 1s in each
submatrix except for the last two submatrices of the last row.
Furthermore they provide an explicit representation of the
unique assignment up to isomorphism. In other words, we can
assume that the first 21 rows and 15 columns are explicitly
given.

2.2 Initial entries
As mentioned in Section 2.1 we can assume that the first 21
rows and 15 columns of M are fully specified. We explicitly
give the instantiation of M that we used in our SAT instance
(up to row 43) in Figure 1. We now show that this instantiation
is correct.
Theorem 1. Assume that a finite projective plane of order ten
generates a codeword of weight 15. Then the matrix given in
Figure 1 can be extended into the incidence matrix of a finite
projective plane of order ten.

Proof. As proven by MacWilliams et al. [1973] the heavy and
medium lines (the first 21 rows of M ) have a single represen-
tation up to isomorphism. It is straightforward to check that
the first 21 rows of Figure 1 do specify heavy and medium
lines and do satisfy the axioms of a finite projective plane and
are therefore isomorphic to the representation of MacWilliams
et al. [1973]. (We applied a column permutation to their repre-
sentation to more clearly explain how we assign the 1s in the
later lines.)

The first 15 columns are also specified to be equivalent to
the representation given by MacWilliams et al. [1973]; they
choose to order the rows so that the light lines containing
point 1 appear first, followed by the light lines containing
points 10, 15, and 11 (in that order).

This leaves the lower-right 22× 96 submatrix of Figure 1.
The zeros in that appear in this submatrix are easily deter-
mined; if they were 1s the row that they are on would have
more than one point of intersection with a heavy or medium
line.

Next we show that the diagonal line of 1s that appears on
the left of the 22× 96 submatrix can be assumed without loss
of generality (ignoring for now the other 1s). For example,
consider the light lines through point 1 (rows 22–27). These
lines must share a point of intersection with the fourth medium
line (row 10). There are exactly six possibilities for this point
of intersection (points 16–21). Each of the six lines 22–27
must intersect a different point (since any two lines must

intersect in a exactly one point). It follows that the submatrix
given by rows 22–27 and columns 16–21 is a permutation
matrix and by reordering its rows we can assume without loss
of generality it is the identity matrix. The lines 28–43 are
handled similarly.

Finally, consider the 1s that appear in the lower-right 22×36
submatrix of M . For example, consider the last 6 columns.
Each light line through the point 1 must intersect line 6 and by
inspection we see that the intersection must be on the six points
106–111. Since there are six lines that intersect six points and
each point of intersection must be distinct the submatrix given
by rows 22–27 and columns 106–111 is a permutation matrix.
By reordering its columns we can assume without loss of
generality it is the identity matrix. The other columns 76–105
are handled similarly.

Note that once the 1s in the lower-right submatrix of M
have been assigned some previously undetermined entries
of M can be set to 0 but for simplicity we ignore these for
now.

3 SAT encoding
Our encoding will use the Boolean variables pij where i and j
are between 1 and 111. When pij is true it represents that the
(i, j)th entry of M is 1 and when pij is false it represents that
the (i, j)th entry of M is 0.

We found that only two properties were necessary to show
that the initial entries of M given in Section 2.2 cannot be
extended into a projective plane. In particular, it was only
necessary to encode the following two properties:

1. Any two lines do not intersect twice.
2. Every light line intersects every heavy and medium line.

We discuss our encoding of these properties in Sections 3.1
and 3.2. Additionally, it was only necessary to consider the
lines up to row 43 and it was not possible to decrease this num-
ber. In other words, we were able to fill in the missing entries
of the first 42 rows of Figure 1 to form a partial projective
plane (see Figure 2).

3.1 Any two lines do not intersect twice
Consider lines i and j for arbitrary 1 ≤ i, j ≤ 43 with i 6= j.
To enforce that these lines do not intersect twice we must
enforce that there do not exist points k and l (where 1 ≤
k, l ≤ 111 and k 6= l) such that

Mi,k = Mi,l = Mj,k = Mj,l = 1.

As clauses in conjunctive normal form we encode this as∧
i<j

∧
k<l

(¬pi,k ∨ ¬pi,l ∨ ¬pj,k ∨ ¬pj,l).

3.2 Light line intersections
Consider the intersection of line i where 1 ≤ i ≤ 21 (a heavy
or medium line) with line j where 22 ≤ j ≤ 43 (a light
line). The axioms of a projective plane specify that line i
and line j must intersect at some point. In certain cases (e.g.,
i = 1 and j = 22) this happens in the first 15 columns
of M that are already known so those cases can be ignored.



< points 1-15 >< points 16-75 >< points 76-111 >
> 111110000000000000000000000000000000000000000000000000000000000000000000000111111000000000000000000000000000000

100001111000000000000000000000000000000000000000000000000000000000000000000000000111111000000000000000000000000
lines 010001000111000000000000000000000000000000000000000000000000000000000000000000000000000111111000000000000000000
1-6 001000100100110000000000000000000000000000000000000000000000000000000000000000000000000000000111111000000000000

000100010010101000000000000000000000000000000000000000000000000000000000000000000000000000000000000111111000000

< 000010001001011000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000111111

> 100000000100001000000000000000000000010000000110000110000110000100000000000000000000000000000000000000000000000
100000000010010000000111111000000000000000000000000000100000010000000000000000000000000000000000000000000000000
100000000001100000000000000111111000000000000000100000000000000000100000000000000000000000000000000000000000000
010000100000001111111000100000000000000000000000000000000000000000100000000000000000000000000000000000000000000
010000010000010000000000000000010001000000000000000000000101100010000100001000000000000000000000000000000000000
010000001000100000000000010000000000001110110000000000000000000100000001000000000000000000000000000000000000000
001001000000001000000001000000000010000000010000111000001000000010000000000000000000000000000000000000000000000

lines 001000010001000000100000001000000000000001000101000000000000000000000001110000000000000000000000000000000000000
7-21 001000001010000010000000000000001000000000000000000101000000001000011000001000000000000000000000000000000000000

000101000000010001000000000100000000000101001000000011010000000000000000000000000000000000000000000000000000000
000100100001000000000100000000000111111000000000000000000000000000001000000000000000000000000000000000000000000
000100001100000000001000000000100000000000000000000000101000000001000110100000000000000000000000000000000000000
000011000000100100000010000000000000100000000011000000000000100000010010000000000000000000000000000000000000000
000010100010000000000000000010000000000000101000010000000011000001000000010000000000000000000000000000000000000

< 000010010100000000010000000001000100000010000000001000010000011000000000000000000000000000000000000000000000000

> 1000000000000001 000000000000 0 00 0 00 0 00 0 0 0 000000000000 1 1
100000000000000 1 000000000000 0 00 0 00 0 00 0 0 0 000000000000 1 1
100000000000000 1 000000000000 0 00 0 00 0 00 0 0 0 000000000000 1 1
100000000000000 1 000000000000 0 00 0 00 0 00 0 0 0 000000000000 1 1
100000000000000 1 000000000000 0 00 0 00 0 00 0 0 0 000000000000 1 1
100000000000000 1000000000000 0 00 0 00 0 00 0 0 0 0000000000001 1
000000000100000 001 00 0 0 0 00 000 00000 000 0 00 0 1000000000000 1
000000000100000 00 1 00 0 0 0 00 000 00000 000 0 00 0 1 000000000000 1
000000000100000 00 1 00 0 0 0 00 000 00000 000 0 00 0 1 000000000000 1
000000000100000 00 1 00 0 0 0 00 000 00000 000 0 00 0 1 000000000000 1

lines 000000000100000 00 1 00 0 0 0 00 000 00000 000 0 00 0 1 000000000000 1
22-43 000000000100000 00 1 00 0 0 0 00 000 00000 000 0 00 0 1 0000000000001

000000000000001000000 00 1 0 0 0 00 00000 000 00 0 1 1000000000000
000000000000001000000 00 1 0 0 0 00 00000 000 00 0 1 1 000000000000
000000000000001000000 00 1 0 0 0 00 00000 000 00 0 1 1 000000000000
000000000000001000000 00 1 0 0 0 00 00000 000 00 0 1 1 000000000000
000000000000001000000 00 1 0 0 0 00 00000 000 00 0 1 1 000000000000
000000000000001000000 00 1 0 0 0 00 00000 000 00 0 1 1 000000000000
000000000010000 0 000000 0 01 0 0 0 0 00 00 00 0 00 00 000000 000000
000000000010000 0 000000 0 0 1 0 0 0 0 00 00 00 0 00 00 000000 000000
000000000010000 0 000000 0 0 1 0 0 0 0 00 00 00 0 00 00 000000 000000

< 000000000010000 0 000000 0 0 1 0 0 0 0 00 00 00 0 00 00 000000 000000

Figure 1: Our initial instantiation of the first 43 rows of M where blank spaces represent unknown entries.

< points 1-15 >< points 16-75 >< points 76-111 >

> 100000000000000100000000000000000000001000001000001000000000000000000000101000000000000000001000100100000000001
100000000000000010000000000000000100000001100000000000000000000010000010000000000000000000010100000001000000010
100000000000000001000000000000000000100000000000000000001001001000000001000000000000000000100010000000100000100
100000000000000000100000000000000001000000010000000000010000000001010000000000000000000001000000010010000001000
100000000000000000010000000000000000000100000001010000000000000000001100000000000000000010000000001000010010000
100000000000000000001000000000000010000010000000000001000000100000000000010000000000000100000001000000001100000
000000000100000010000100000100000000000000010001000000000001000000000000000010000000001000000000000000001000001
000000000100000000100010000010000000001000000000000001000000000010000000000100000000010000000000000000010000100
000000000100000100000001000000001001000100000000000000000000000000000000010000001000100000000000000000100000010

lines 000000000100000000000000100000010010000000001000000000000000000000010001000000010001000000000000000001000010000
22-42 000000000100000000000000010000000000100001000000010000000000000000100000001000100010000000000000000010000100000

000000000100000001000000001000000000000000100000100000000000100000001000000001000100000000000000000100000001000
000000000000001000000010000100000100000000000000000000000000000001000001001000001100000100000000001000000000000
000000000000001000000100000010000000000100000000000000000000101000000000100000010010000000010000010000000000000
000000000000001000000000000001000001000000100001000001100000000000000000000000100001000000100000100000000000000
000000000000001000000000000000100000001001000000000000000001010000010000000001000000100010000001000000000000000
000000000000001000000000010000010000000000000000000000010000000000001010010010000000010000001010000000000000000
000000000000001000000000001000001000100010001000000000000000000000000100000100000000001001000100000000000000000
000000000010000000100000000000010100000100000010000000001000000000000000000001000000001000000000100000000100000
000000000010000100000000000001000010000001000000000000000000000100000100000010000100000000000000010000000000100

< 000000000010000000010000000000000001000000000000100010000000000000000011000100000010000000000001000000000000001

Figure 2: An assignment to rows 22–42 of M that produces a partial projective plane of order ten containing 42 rows.



By an examination of Figure 1 we see that in each of the
remaining cases there are exactly six possible points k with
16 ≤ k ≤ 111 where this could happen. In other words, the
set

S(i, j) := { k : Mi,k = 1 and Mj,k not initialized to 0 }

has exactly six elements. Then the conjunctive normal form
clause ∨

k∈S(i,j)

pj,k

specifies that line i and j intersect.

3.3 Optional clauses
Although not strictly necessary there are some additional
clauses that can be used to improve the performance of the
SAT solver. In particular, we describe clauses that encode the
property that says that for any two points there must be some
line that they both lie on. Since we only are using the first 43
rows of M we only encode the cases where we can show this
line is one of the first 43.

For example, consider point 1 and point k with 16 ≤ k ≤
111. In certain cases both of these points lie on a line in the
known part of M so we can ignore these cases. In particular,
M22,k is initialized to zero exactly when there is a line in the
first 21 rows that point 1 and k are both on.

If M22,k is not initialized to 0 there is no line in the first 21
rows that point 1 and k are both on and an examination of M
shows that the only remaining lines that could contain both
points 1 and k are the lines 22–27. Thus, we can include the
clauses ∨

22≤j≤27

pj,k

where 16 ≤ k ≤ 111 is any index such that M22,k is not
initialized to 0. Similar reasoning can be applied to point 10
(with lines 28–33) and point 15 (with lines 34–39) as well.
Note that this reasoning does not work with point 11 (with
lines 40–45) unless you extend M to row 45.

4 Implementation and results
A Python script1 of about 100 lines was written to generate
a SAT instance containing the clauses described in Section 3.
After preprocessing the instance contains 844 variables and
24,127 clauses and could be solved in around 9 minutes us-
ing MapleSAT [Liang et al., 2018] on a single core running
at 2.7GHz. A DRUP certificate of unsatisfiability was also
produced. The certificate is approximately 2.5 gigabytes in
size and will be made available on an open data repository so
that it may be publicly verified. Without the optional clauses
described in Section 3.3 the SAT instance generated required
a running time of about 25% longer to solve.

Also note that the SAT instance generated using the first 42
rows of M was found to be satisfiable after 8 seconds of
computation time (see Figure 2). The satisfying assignment
was then manually verified to satisfy the axioms of a partial
projective plane (i.e., every row has exactly eleven 1s and
every two distinct rows have exactly a single 1 in common).

1Available at https://pastebin.com/ZmEysihg.

Note that this contradicts the search of Casiello, Indaco, and
Nagy [2010]. They provided some GAP code that searched
for ways to fill in M up to the 39th row and 75th column
and found no solutions. A closer examination of their code
revealed incorrect indices were used in a block compatibility
check. With the correct indices their program does produce
correct results though given the complexity of the program we
are still not entirely sure it is bug-free.

We also cannot be 100% sure our code is bug-free. How-
ever, our code is much less complex than any previous code
available that solves this problem because we only need to gen-
erate some simple SAT constraints as described in Section 3.
Furthermore, the certificate of unsatisfiability that we produce
can be checked in a formally verified proof checker [Lammich,
2017]. We also wrote a program to generate and solve the SAT
clauses using the Logic package of the computer algebra sys-
tem Maple. The same results were derived, further increasing
the confidence in our result.

We also tried various methods of symmetry breaking; for
example, by using clauses that lexicographically order the
light lines or clauses that lexicographically order the columns
76–81, 82–87, etc. The symmetry breaking described in Theo-
rem 1 was experimentally found to give the best performance
for the SAT solver. Our initial SAT instances using lexico-
graphic constraints (instead of preassigning 1s in the lower-
right 22× 96 submatrix of Figure 1) required several hours to
solve.

5 Related work
As recounted in the introduction SAT solvers have been used
to perform searches in many different combinatorial problems.
Some of the first successes were computing van der Waerden
numbers by Kouril and Paul [2008] and Ahmed, Kullmann,
and Snevily [2014], computing Green–Tao numbers by Kull-
mann [2010], as well as solving a special case of the Erdős dis-
crepancy conjecture by Konev and Lisitsa [2015]. Other more
recent combinatorial applications include proving the Boolean
Pythagorean triples conjecture [Heule et al., 2016] and a new
case of the Ruskey–Savage conjecture [Zulkoski et al., 2017],
as well as computing Ramsey numbers [Codish et al., 2016],
Williamson matrices [Bright et al., 2018a], complex Golay
sequences [Bright et al., 2018b], and Schur numbers [Heule,
2018].

We are not aware of any previous work searching for projec-
tive planes using SAT solvers. However, there has been work
formalizing the axioms of projective planes in the theorem
prover Coq by Magaud, Narboux, and Schreck [2008] and
Braun, Magaud, and Schreck [2018].

6 Conclusion
In this paper we have performed a verification of one of the
first nonexistence results that was crucial in the renowned
proof that a projective plane of order ten does not exist. In
particular, we showed that a projective plane of order ten does
not generate codewords of weight fifteen. There have been
a number of exhaustive searches for such a codeword but all
previous searches are difficult to verify.

https://pastebin.com/ZmEysihg


In particular, the works [Denniston, 1969; MacWilliams
et al., 1973; Roy, 2011] provide no source code. The pa-
per [Casiello et al., 2010] provides source code but as de-
scribed in Section 4 their code has a bug that caused them to
assert the nonexistence of a partial projective plane that we
found actually exists. The paper [Perrott, 2016] verifies the
same result that we verified in this paper but does so using
about ten pages of sophisticated Mathematica code.

In contrast, we have given a simple translation of properties
of a weight fifteen codeword into Boolean logic and have
shown that these properties are sufficient to prove that such
a codeword cannot exist. This was done by a simple Python
script that generates a SAT instance that encodes the necessary
properties in conjunctive normal form. Lastly, we solved the
resulting SAT instance and provide a 2.5GB formally verifiable
certificate that the SAT instance indeed has no solution.

Our work shows for the first time that SAT solvers can
effectively be used in the search for finite projective planes—
our code is some of the fastest available that can verify the
weight 15 nonexistence result. We generated our SAT in-
stance in a second and solved it in nine minutes and this
time can be improved using more sophisticated SAT solving
techniques. Using the cube-and-conquer method [Heule et
al., 2017] we finished the cubing in about two minutes using
March cu [Heule et al., 2011] and finished the conquering in
about five minutes using Glucose 3.0 [Audemard and Simon,
2009]. Conversely, the code of [Perrott, 2016] runs in about
an hour and the corrected code of [Casiello et al., 2010] runs
in about seven minutes.

Although we do not provide a machine-checkable formal
proof directly from the axioms of a projective plane we have
performed the most rigorous verification of this nonexistence
result to date. In particular, our code is much simpler than the
code used in any previous approach to this problem. We were
able to simplify the code by relying on a SAT solver to do the
hard exhaustive search work. As a bonus this also produces
a nonexistence certificate that can be formally independently
verified.
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