
Passing Arguments
A comparison among programming languages

Curtis Bright

April 20, 2011

Abstract

This report describes and compares the argument passing styles used
in contemporary programming languages, such as call-by-value, call-by-
reference, and call-by-name.

1 Introduction

The concept of passing arguments to functions with parameters is ubiquitous
among programming languages. During the function definition, a list of formal
parameters may be specified and appear in the function’s body as placeholders
for the actual arguments supplied during a function call. However, the specific
manner in which the arguments are bound to the function’s parameters varies
from one language to another. These specifics are important to keep in mind, as
they can have a large effect on program execution.

The most common argument evaluation strategies that have been applied
in programming languages are known by call-by-value, call-by-reference, and
call-by-name. As a simple example to distinguish between them, we will consider
the following pseduocode:

swap(a, b)

{ define temp;

temp = a;

a = b;

b = temp;

}

Superficially, this point of this function is to switch the values of the two
parameters it accepts. Whether it works as intended will depend on the evaluation
strategy.

1.1 Call-by-value

In the call-by-value evaluation strategy, when a function is called the arguments
passed to it are all evaluated beforehand, and copies of the values are placed

1

into newly allocated memory. During execution of the function body, the formal
parameters now refer to their associated copied values in this new memory. At
the function’s conclusion this memory may simply be deallocated.

The advantages of call-by-value include its simplicity and the fact that
the caller’s local variables are protected from modification during the function
execution. On the other hand, it may be the case that we do in fact want such
changes to be seen by the caller, as in the swap function above. However, it is
often convenient to modify the parameters during the function execution as if
they were local variables, and call-by-value allows us to do this with impunity.

For disadvantages, call-by-value requires extra time and memory to initialize
the argument copies; this could be significant overhead if the argument types
include complex data structures. Additionally, arguments which include expres-
sions will always be evaluated when the function is called, regardless of whether
the values are actually ever used during the function. This behaviour is known
as eager evaluation and can be needlessly inefficient.

As for our swap function, as it stands now it will be useless if used with
call-by-value evaluation, since the switching of the parameters internally will not
propagate up to the calling arguments.

1.2 Call-by-reference

In the call-by-reference evaluation strategy, when a function is called it receives
the memory locations of the arguments passed to it. Therefore, during execution
of the function, its formal parameters may refer to and modify local variables
of the caller of the function. In this case, no extra memory need be allocated:
the formal parameters of the function simply use the same memory used by the
passed arguments.

Notice call-by-reference is only interesting when the argument is an lvalue1,
for example a variable name; an arbitrary expression does not even necessarily
have a memory location that can be referred to. Thus when using call-by-
reference we must either forbid general expressions or ensure that all expressions
are evaluated and stored in some memory location which can then be bound
to the formal parameters. In the latter case, the end result is executing as if
call-by-value was used.

Thus, call-by-reference has the advantage that no extra memory is required,
but only when the actual parameter is an lvalue. In addition, multiple return
values can be simulated with call-by-reference by including extra input param-
eters and storing in them the additional return values. On the other hand, a
consequence of this freedom is that extra caution must be applied when handling
variables before and during a function call.

The passing method of choice for the swap function is call-by-reference, which
gets the job done correctly with minimal overhead.

1The ‘lvalue’ term refers to something which may occur on the left of an assignment
statement [6].

2

1.3 Call-by-name

In the call-by-name evaluation strategy, the argument expressions are directly
substituted in place of the formal parameters in the function body. Of course,
the scope of all variables which appear in the argument expressions must be
extended to include the function body, if necessary. Additionally, any variables
locally defined within the function body must be renamed if the names happen
to clash with any of the variables in the argument expressions, or the intended
meaning of the expression will be lost.

For example, calling swap on the variables a and temp leads to the following
statements:

define temp;

temp = a;

a = temp;

temp = temp;

Assuming the local definition of temp takes precedence within the swap function,
there is now no way to refer to the variable temp which we want to swap with
the variable a, and in this case the swap function has no effect. To overcome this
problem requires the renaming of the local variable, leading to the statements:

define temp’;

temp’ = a;

a = temp;

temp = temp’;

And here the swap function still works as intended. However, in general when
using call-by-name the swap function will not work. For example, consider calling
it with i and A[i], leading to the statements:

define temp;

temp = i;

i = A[i];

A[i] = temp;

Which leads to A[A[i]] being set to i, which is not correct when A[i] 6= i.
The problem in this case is that changing the value of i changes the memory
location that A[i] refers to. In fact, it has been shown [4] that there can be no
swap procedure utilizing call-by-name which works for all inputs.

Complications such as these seem to have limited the use of call-by-name
in practice, although the strategy may be aesthetically pleasing. It can be
considered a generalization of call-by-reference in that the behavior of both
strategies is identical when the arguments consist only of single variables.

A potential advantage of call-by-name is that no effort is spent evaluating
arguments which are never used in the function. On the other hand, it generally
has to evaluate the same argument expression multiple times. This inefficiency is
addressed by a variant of call-by-name known as call-by-need. In that optimiza-
tion, each argument expression is only evaluated once, the first time it is used,

3

and the result is remembered for future instances. This is called lazy evaluation
and in general this will lead to different results.

2 Language Comparison

In this section we give an overview of the evaluation strategies used in various real-
world programming languages. Each subsection will examine a specific language,
though we may also mention languages with similar evaluation strategies.

2.1 C

As described in [6], all function arguments are passed with call-by-value in C. In
the case where struct objects are passed, a bit-for-bit copy is made of the entire
object and this is what the called function sees; it has no way of interacting with
the original object.

Then it would seem that the swap function is not possible to write directly in
C. However, call-by-reference may be simulated in C by employing the concept of
a pointer. This is done with the dereference operator * which ‘follows’ a pointer,
for example if a is a pointer then *a is the actual memory location pointed to.

For simplicity, we will assume the swap function accepts integer arguments,
though the same principle could be used for any type. Then the swap function
in C looks like:

void swap(int* a, int* b)

{ int temp = *a;

*a = *b;

*b = temp;

}

This function accepts two pointers to the data to be swapped, so must not be
called with the data itself but instead the memory addresses of the data. In C this
done using the address-of operator &, so an example call would be swap(&a, &b).
The pointers themselves are passed by value, but this is irrelevant except that
technically unnecessary copies are made of the pointers before the swapping
occurs.

Finally, note that the passing of arrays in C is actually done by passing a
pointer to the first element of the array, so arrays act as if passed by reference.

2.1.1 C preprocessor

It is also interesting to consider the behaviour of the function-like macros offered
by the C preprocessor. They act like call-by-name except that they do not
rename variables to ensure there are no clashes. That is, they perform simple
textual substitution, so could perhaps be labeled call-by-macro-expansion.

This swap function looks like:

#define swap(a,b) {int temp = a; a = b; b = temp;}

4

With the previously mentioned caveats that it only correctly works in the case of
single variables and does not work if one of the variables to be swapped happens
to be named temp.

The typesetting system TEX is another programming language which also
behaves in this manner, evaluating functions by macro expansion. In this system
a swap macro can be written as:

\def\swap#1#2{\let\temp#1\let#1#2\let#2\temp}

2.2 C++

C++ was developed [11] to “be a better C” and address some issues with C
that were seen to be deficiencies. Among them was the lack of a convenient way
to pass arguments by reference; this is particularly important for passing large
objects as is often done in C++.

Consequently, C++ allows one to declare reference types, for example
int& b = a; defines an integer reference b, which simply acts as an alias for the
integer a. Using references allows one to write a straightforward swap function:

void swap(int& a, int& b)

{ int temp = a;

a = b;

b = temp;

}

The result of the call swap(a, b) is the swapping of a and b.
Additionally, C++ offers a const keyword if one would like the performance

benefits of call-by-reference but still wants assurance that the arguments are
never modified as in call-by-value.

Finally, we note that several other languages allow the user to change between
call-by-value and call-by-reference as required, including Pascal, PHP, and Visual
Basic. In that order, we present an example swap function for each:

procedure swap(var a, b: integer);

var

temp : integer;

begin

temp := a;

a := b;

b := temp;

end;

function swap(&$a, &$b)

{ $temp = $a;

$a = $b;

$b = $temp;

}

5

Function swap(a As Integer, b As Integer)

Dim temp As Integer

temp = a

a = b

b = temp

End Function

Visual Basic is unique in that it employs call-by-reference by default, and requires
a keyword ByVal if call-by-value is desired. Also, Visual Basic is the only language
mentioned in this section which does not throw an error when something other
than a variable name is passed by reference.

2.3 Java

Java is fairly similar to C++, but does not support the pointer manipulation
and reference types offered in C++ which we used in our implementation of the
swap function. As stated in the Java specification [5], variables are passed by
value.

However, consider the following function where the IntegerWrapper class
contains a public integer variable value:

static void swap(IntegerWrapper a, IntegerWrapper b)

{ int temp = a.value;

a.value = b.value;

b.value = temp;

}

The swaps performed by this method will be visible to the caller, leading some
to claim that Java passes objects by reference. However, this is not true as can
be seen by attempting to swap objects using the straightforward implementation
of swap.

The truth is that the definition IntegerWrapper a is really defining a to be a
pointer to an object, but this is obscured by the Java syntax. Java does not offer
a dereferencing operator like in C, but pointers are automatically dereferenced
when necessary, for example the statement a.value in Java is equivalent to
(*a).value when using C pointers.

Since Java is entirely call-by-value and does not offer the necessary pointer
operations that could be used to simulate call-by-reference, writing a general
swap function is not possible. For specific mutable objects, it is possible to write
a function which swaps all data fields individually. For primitive types, it is
possible to use an object wrapper as in the example.

The CLU Reference Manual [8] calls such behaviour call-by-sharing. Other
languages which also employ call-by-sharing include JavaScript and Python.

2.4 Fortran

Unlike most programming languages, the default method of parameter passing
in Fortran is call-by-reference. This makes the swap function easy to write:

6

SUBROUTINE SWAP(A, B)

TEMP = A

A = B

B = TEMP

END

There was no option to pass by value until Fortran 2003 [9], when a VALUE

attribute was added. However, call-by-value could sometimes be simulated by
forcing the compiler make a spurious evaluation and pass a copy of the argument.
For example, CALL SWAP(A+0, (B)) does not affect the variables A and B.

2.5 ALGOL

ALGOL is an ancestor of many of the languages commonly used today. The last
major specification [13] is known as ALGOL 68, and supports both call-by-value
and call-by-reference. The swap procedure can be implemented as:

PROC swap = (REF INT a, b)VOID:

(INT temp := a;

a := b;

b := temp

)

Interestingly, the ALGOL 60 specification [1] supported call-by-value and call-
by-name, but the latter was dropped in favor of call-by-reference for ALGOL 68.

2.6 Haskell

Haskell employs the call-by-need variant of call-by-name, meaning that an
argument expression is only evaluated at most once and not at all if it is not
required. As mentioned, in general the optimization of storing and remembering
the expression value will lead to different results. However, Haskell is a purely
functional programming language, so generally functions do not have side effects
and expressions do not change value over time, making call-by-need a safe
optimization.

Another consequence of Haskell’s purely functional nature is that it does not
make sense to talk about implementing a swap function as we have been, as
expressions to do not change in value.

2.7 Scheme

Scheme is another functional language, but one that allows side effects, and
therefore allows an implementation of the swap function:

(define (swap a b)

(begin (define temp a) (set! a b) (set! b temp))

)

7

In contrast to Haskell’s lazy evaluation, Scheme evaluates expressions eagerly,
i.e., using call-by-value. In a purely functional setting this is equivalent to
call-by-reference, since there is no possibility of an argument being modified
anyway. Therefore, if it is known during execution that no side effects are present
the more efficient call-by-reference can be employed.

ML is another functional programming language which uses the same call-
by-value behaviour as Scheme. Its swap function looks like:

fun swap(a, b) =

let val temp = ref 0

in temp := !a;

a := !b;

b := !temp

end;

Here swap should be called with reference types, for example:

val (a, b) = (ref 1, ref 2);

swap(a, b);

3 Summary Table

Finally, we present a summary of the languages we have considered and how
they fit into the three general evaluation strategy families we have considered.

call-by-value call-by-reference call-by-name
ALGOL 60 X X
ALGOL 68 X X
C X
C preprocessor X
C++ X X
Fortran 95 X
Fortran 2003 X X
Haskell X
Java X
JavaScript X
ML X
Pascal X X
PHP X X
Python X
Scheme X
TEX X
Visual Basic X X

8

References

[1] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijn-
gaarden, and M. Woodger. Revised report on the algorithm language algol
60. Commun. ACM, 6:1–17, January 1963.

[2] A. Bloss and J. A. N. Lee. Parameter passing. In Encyclopedia of Computer
Science, pages 1365–1367. John Wiley and Sons Ltd., Chichester, UK.

[3] R. K. Dybvig. The Scheme Programming Language: ANSI Scheme. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2nd edition, 1996.

[4] A. C. Fleck. On the impossibility of content exchange through the by-name
parameter transmission mechanism. SIGPLAN Not., 11:38–41, November
1976.

[5] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java Language Specification,
Second Edition: The Java Series. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2nd edition, 2000.

[6] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice
Hall Professional Technical Reference, 2nd edition, 1988.

[7] D. E. Knuth. The TEXbook. Addison-Wesley Professional, 1986.

[8] B. Liskov, R. R. Atkinson, T. Bloom, E. B. Moss, R. Schaffert, and A. Snyder.
CLU reference manual. Technical report, Cambridge, MA, USA, 1979.

[9] J. Reid. The new features of fortran 2003. SIGPLAN Fortran Forum,
26:10–33, April 2007.

[10] H. Richards, Jr. Haskell: The craft of functional programming by simon
thompson, addison-wesley, 1996. J. Funct. Program., 8:633–637, November
1998.

[11] B. Stroustrup. An overview of C++. SIGPLAN Not., 21:7–18, June 1986.

[12] B. Stroustrup. The C++ Programming Language. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 3rd edition, 2000.

[13] A. van Wijngaarden. Revised report of the algorithmic language algol 68.
ALGOL Bull., pages 1–119, August 1981.

9

