
NSERC Discovery Grant Proposal
This is the NSERC Discovery Grant Proposal submitted by Curtis Bright in 2020. It is
being released publicly in the hope that it can help other researchers who are preparing
grant proposals.

Notice of Intent
Fast search algorithms are at the heart of effective solutions to a huge number of industrial
and theoretical problems—from search engines to resource allocation to mathematical
conjecture verification. Some of the most effective general-purpose search techniques come
from the field of satisfiability (SAT) checking. Indeed, programs called SAT solvers that
search for solutions to logic problems are extremely effective at solving many kinds of
search and optimization problems that arise in practice—though they tend to struggle with
mathematically complex problems. In these kinds of problems it is typical to either use
a computer algebra system (CAS) or a “SAT modulo theories” (SMT) solver which offer
support for more complex mathematics. However, there are many problems that require
both sophisticated mathematics (beyond what SAT or SMT solvers offer) and fast search
routines (beyond what CASs offer).

This project aims to advance a new mathematical search paradigm that exploits both the
search power of SAT solvers and the mathematical capabilities of CASs—thereby achieving
the best in both the worlds of satisfiability checking and computer algebra. This “SAT+CAS”
method is still in its infancy but has shown great promise in a number of preliminary results
over the last few years. For example, the prototype SAT+CAS tool MathCheck has resolved
several problems from combinatorics, number theory, and geometry that were not solvable
using either SAT solvers or CASs alone. Thus, I am applying for an NSERC Discovery
Grant in order to fully realize the potential of the SAT+CAS method. The funds will support
extending MathCheck to new domains as well as applying the upgraded MathCheck to a
wider variety of problems—such as searching for pooling schemes to more efficiently test a
population for a virus. The ultimate goal of this research is to make the SAT+CAS method
one of the most effective methods—if not the most effective method—for tackling general
mathematical search problems.

To date, the SAT+CAS method has verified or improved the best bounds in several
mathematical conjectures and in particular has resulted in significant increases to our un-
derstanding of Williamson matrices. In the 1960s, these matrices were used for developing
codes to communicate with spacecraft and it was conjectured that Williamson matrices
exist in all orders. This was disproven in 1993, but the smallest counterexample was
unknown until it was determined by the SAT+CAS method as a part of my research in
2016. Moreover, we were able to search for Williamson matrices in even orders far higher
than previously possible. Previous exhaustive searches had only completed up to order
18, while our SAT+CAS approach completed exhaustive searches up to order 70. This
uncovered more than 100,000 new sets of Williamson matrices—whereas fewer than 200



sets of Williamson matrices were previously known.
We have also used the SAT+CAS method to show the nonexistence of combinatorial

objects by generating nonexistence certificates that can be verified by a third party. For
example, we recently solved Lam’s problem from discrete geometry—the problem of
proving the nonexistence of a finite projective plane of order ten. Projective planes have
been widely studied since the 1600s and the first order for which it is theoretically uncertain
if finite projective planes exist is ten. A massive computer search culminating in the 1980s
determined that such planes do not exist. The SAT+CAS method solved Lam’s problem
significantly faster than previous searches (one particularly challenging subcase was solved
over 500 times faster when compared with a recent 2011 verification) and produced the
first nonexistence certificates for Lam’s problem.

These initial successes speak to the potential of the SAT+CAS method for solving hard
mathematical search problems that cannot feasibly be solved using existing tools. This
research grant will support extending the SAT+CAS method to new kinds of problems,
including those from new kinds of domains. As one example, consider the problem of
testing samples for the presence of a virus. The most basic method is simply to test each
sample individually, but this is costly. A more efficient strategy is to employ “pooled testing”
where multiple samples are tested together. By judiciously choosing which samples to
combine together one can develop testing schemes which are essentially as quick and
accurate as the basic method but require significantly fewer tests. For example, disjunct
matrices are combinatorial matrices that give rise to good pooling schemes. Disjunct
matrices are known to exist once the size of the matrices are large enough, but these
can be too large for many applications. However, by extending MathCheck into the
domain of combinatorial group testing we can use the SAT+CAS method to search for new
disjunct matrices—and therefore new pooling schemes. These could be useful to facilitate
continuous testing for viruses like COVID-19, especially in regions where the medical
system is being pushed to its limits.

This is just one of many new domains where progress is possible—other domains
include physics (e.g., searching for Kochen–Specker systems), cryptography (e.g., searching
for almost perfect nonlinear permutations), circuit complexity (e.g., searching for minimal
circuits that compute certain functions), computational geometry (e.g., searching for optimal
tripod packings), as well as additional problems in combinatorics (e.g., searching for
mutually orthogonal Latin squares). The SAT+CAS method is perfectly positioned to
attack such problems and the time is ripe to exploit the advances made by SAT solvers and
CASs in order to solve problems previously considered infeasible.



Suggested Applicant Category: Early Career Researcher (ECR)
I have only held independent academic positions since July 2020 and am therefore an early
career researcher. I joined the School of Computer Science at the University of Windsor as
an adjunct professor in July 2020 and officially start as a tenure-track assistant professor in
January 2021—with the authority to supervise undergraduate students, graduate students,
and postdoctoral fellows.



Summary of Proposal
Fast search algorithms are at the heart of effective solutions to a huge number of industrial
and theoretical problems—from search engines to resource allocation to mathematical
conjecture verification. Some of the most effective general-purpose search techniques come
from the field of satisfiability (SAT) checking. Indeed, programs called SAT solvers that
search for solutions to logic problems are extremely effective at solving many kinds of
search and optimization problems that arise in practice—though they tend to struggle with
mathematically complex problems. In these kinds of problems it is typical to either use
a computer algebra system (CAS) or a “SAT modulo theories” (SMT) solver which offer
support for more complex mathematics. However, there are many problems that require
both sophisticated mathematics (beyond what SAT or SMT solvers offer) and fast search
routines (beyond what CASs offer).

This proposal aims to advance a new mathematical search paradigm that exploits both
the search power of SAT solvers and the mathematical capabilities of CASs—thereby
achieving the best in both the worlds of satisfiability checking and computer algebra. This
“SAT+CAS” method is still in its infancy but has shown great promise in a number of
preliminary results over the last few years. This research grant will support extending
the SAT+CAS method to a wider variety of problems, including those from new kinds
of domains. The ultimate goal of this research is to make the SAT+CAS method one
of the most effective methods—if not the most effective method—for tackling general
mathematical search problems.

As one example, consider the problem of testing samples for the presence of a virus.
The most basic method is simply to test each sample individually, but this is costly. A
more efficient strategy is to employ “pooled testing” where multiple samples are tested
together. By judiciously choosing which samples to combine together one can develop
testing schemes which are essentially as quick and accurate as the basic method but require
significantly fewer tests. For example, disjunct matrices are combinatorial matrices that give
rise to good pooling schemes. Optimal disjunct matrices are known to exist once the size of
the matrices are large enough, but these can be too large for many applications. However,
by extending the SAT+CAS method into the domain of combinatorial group testing we
can search for new disjunct matrices—and therefore new pooling schemes. These could
be useful to facilitate continuous testing for viruses like COVID-19, especially in regions
where the medical system is being pushed to its limits. The SAT+CAS method is perfectly
positioned to attack such problems and the time is ripe to exploit the advances made by
SAT solvers and CASs in order to solve problems previously considered infeasible.



Qty Amount/year Qty Amount/year Qty Amount/year Qty Amount/year Qty Amount/year
Salaries and benefits
Undergraduate 1 $3,000 1 $3,000 1 $3,000 1 $3,000 1 $3,000
Master’s 1 $6,000 1 $6,000 1 $6,000 1 $6,000 1 $6,000
Doctoral 2 $24,000 2 $24,000 3 $36,000 3 $36,000 3 $36,000
Subtotal $33,000 $33,000
Postdoctoral 1 $40,000 1 $40,000 1 $30,000 1 $30,000 1 $30,000
Subtotal $40,000 $40,000 $30,000 $30,000 $30,000
Equipment or facility
Purchase or rental $7,500 $0 $9,000 $0 $0
User fees $2,500 $2,500 $2,500 $2,500 $2,500
Subtotal $10,000 $2,500 $11,500 $2,500 $2,500
Materials and supplies

$0 $0 $0 $0 $0
Subtotal $0 $0 $0 $0 $0
Travel
Conferences $12,000 $12,000 $14,000 $14,000 $14,000
Subtotal $12,000 $12,000 $14,000 $14,000 $14,000
Dissemination Costs

$0 $0 $0 $0 $0
Subtotal $0 $0 $0 $0 $0
Other (specify)

$0 $0 $0 $0 $0
Subtotal $0 $0 $0 $0 $0
TOTAL PROPOSED EXPENDITURES $90,000 $97,000 $102,500 $93,500 $93,500
Total Cash Contribution from industry (if applicable) $0 $0 $0 $0 $0
Total Cash Contribution from university (if applicable) $14,000 $14,000 $14,000 $14,000 $14,000
Total Cash Contribution from other sources (if applicable) $0 $0 $0 $0 $0
Total amount requested from NSERC $76,000 $83,000 $88,500 $79,500 $79,500



Relationship to Other Research Support
I have no other sources of research support other than those accounted for in the proposed
expenditures. In particular, as a part of my start-up grant the University of Windsor has
agreed to support my research program at $14,000/year for the next five years. As outlined
in the proposed expenditures this money will support the salary and travel of a single PhD
student for five years. From NSERC I am requesting the funds necessary to hire additional
students and postdoctoral researchers for five years (as outlined in the budget justification).



HQP Training Plan

Training Philosophy

My philosophy for training highly qualified personnel is based around the fact that individ-
uals are diverse in their interests, strengths, and preferences. Accordingly, I strive to treat
each researcher as an individual with unique qualities. In practice, this requires getting to
personally know students in order to most effectively tailor the advice and projects provided
to them. Fortunately, the flexibility of my research program supports this: as described in
the proposal, there are plenty of branches of science and mathematics to which my research
can effectively be applied—ensuring that each student can work in a domain of interest to
them and thereby produce their best work.

My approach to training students is that I guide and mentor my students, offering
projects and directions for their research. I also encourage students to set their own
direction, especially as they become more acquainted with research. One skill that I
strongly emphasize and look to bring out in to all my students is clarity of writing. This
has innumerable benefits, both to disseminating research and producing quality research.
Moreover, it is a skill that will serve them well in their future, regardless of their career
path.

My philosophy also encourages interdisciplinary research and interactions with col-
laborators outside of computer science—in my past research I’ve collaborated with math-
ematicians, engineers, and research scientists in industry. Most of the projects in my
research program involve applications (including industrial applications) to other fields and
I encourage my students to take advantage of these synergies to improve their own “box of
tools”.

Equity, Diversity, and Inclusion

I strongly support increasing equity, diversity and inclusion in the sciences and this informs
my training philosophy in order to promote these ideals. Firstly, I am conscious about being
inclusive and eliminating stereotyping and biases in my training, research, and in the field
at large. For example, I take care to use inclusive and unbiased language in my work and
when appropriate have raised the issue with others. For example, there was a passage in
Knuth’s the Art of Computer Programming that used a masculine pronoun to refer to a
generic individual. Knuth invites suggestions to improve his work, and I brought this to his
attention. He decided to update the passage.

Additionally, my philosophy for evaluating candidates recognizes that many traditional
methods of evaluation may unintentionally disadvantage individuals whose backgrounds are
under-represented in the sciences. For example, I strive to only evaluate candidates based
on how their interests align with the project and in their ability to see a research project
to successful completion—as demonstrated by previous work (if available) or a concrete
demonstration of their ability to complete work such as through a writing sample. I believe
this provides a more accurate assessment of the likelihood of research success instead



of the crude metrics that are too often used—such as the most number of publications,
awards, years of experience, or highest marks. I would rather select an applicant who can
provide demonstrations of clear and well-written work (regardless of if the work has been
formally published) over a candidate that has impressive credentials on paper. I believe
that in addition to selecting the most likely candidates to succeed this also helps to level
the playing field with respect to equity, diversity, and inclusion—since many qualified
individuals from less advantaged positions may not have had the opportunities that would
enable them to achieve the impressive credentials as measured “on paper”.

In the same vein, I avoid selecting candidates based on their “fit” with my research
group and environment—I recognize that there are good researchers from all backgrounds
and those with the best “fit” are more likely from similar backgrounds. Rather than merely
selecting candidates who naturally fit in, I instead strive to foster an environment where
all individuals—regardless of their background—will feel like they fit in. To this end, I
plan to proactively get to know all of the members in my research group along with their
aspirations and struggles. I also have an open-door policy—I am always available to lend
an ear and (when requested) provide guidance or assistance.

Challenges Related to Equity, Diversity, and Inclusion

Unfortunately, there are a number of challenges related to equity, diversity, and inclusion
in computer science and at UWindsor. For example, the gender breakdown of students in
the field of computer science skews towards male. The University of Windsor Office of
Institutional Analysis reports that in the Winter 2020 term only 15% of the undergraduate
students—and 40% of the graduate students—enrolled in a computer science program
identified as women. Moreover, several studies of North American institutions have found
that these numbers are fairly typical for the field of computer science.

A second challenge related to equity, diversity, and inclusion concerns the demographic
breakdown of the University of Windsor and in computer science as a whole. Certain
demographic populations—such as Indigenous populations—are not well represented at
either UWindsor or in computer science. In the Winter 2020 term, the Office of Institutional
Analysis at UWindsor reported that (of the students who chose to self-identify) about 85%
of computer science graduate students were international students. Moreover, they have also
reported an uneven distribution in the represented nationalities—with just three countries
accounting for 87% of the international student body.

These numbers speak to the challenge of recruiting women and people from under-
represented demographics but also to the great opportunity that we have. Changing these
numbers is not something that can not change overnight, but there are encouraging signs.
For example, the fact that UWindsor’s graduate program has a much higher proportion of
women than the undergraduate program makes it clear that there are a significant number
of women interested pursuing research in this field. One potential way to help improve the
demographic parity is to support early outreach efforts. For example, I would like to get
even high school students interested in the field for example by giving presentations that



are accessible to those with no background in the field—avoiding the minutiae overload
that is all-to-common among research presentations.

Research Training Plan

My research training plan is tailored to produce significant research as well as to impart
research skills to my trainees at each stage of their careers. As detailed in the proposal,
my research plan supports numerous projects that are appropriate to individuals of varying
skills and for varying amounts of commitment.

Undergraduate projects are chosen from an area (recreational mathematics and discrete
tomography) that is accessible and has many projects that are feasible in a short amount of
time. Master’s projects are chosen from an area (circuit minimization) that is less accessible
but does not require advanced mathematical knowledge. PhD projects are chosen from areas
that require deeper analytic or algebraic knowledge (such as physics and combinatorial
matrix theory)—but once that knowledge is acquired can be applied to other similar projects,
resulting in projects leading to multiple papers. Postdoctoral projects require the most
amount of mathematical background and programming ability.

The projects are also chosen to impart valuable skills to the highly qualified personnel.
For example, how to organize, execute, and optimize combinatorial searches—skills which
generalize to a great many other kinds of problems. Additionally, the projects have also
been chosen to have direct applications and value beyond mathematics. For example, the
combinatorial matrices project has applications to pooled testing and therefore increasing
the efficiency of testing for viruses like COVID-19.

In addition, the training plan has been chosen to be feasible for myself to have an active
role in each project. Some students may be co-supervised, but I plan to have two PhD
students and a Master’s student for the first two years and I will start supervising a third
PhD student after two years. Additionally, I plan to work with undergraduates on summer
projects as well as supporting one postdoctoral researcher. The postdoctoral researcher
will also assist with student supervision. Not only do the students receive the benefit of
having an additional source of guidance, this is also of significant benefit to the postdoctoral
researcher—giving them valuable supervisory experience that will be useful to them in
their future career.



Past Contributions to HQP Training
Because I am an early career researcher (starting as a tenure-track professor in January
2021) my past contributions to HQP training have been in a mentorship or unofficial
advisory role.

Firstly, as a PhD student I had the opportunity to co-supervise the student Abhinav
Baid in a summer project funded by Google as a part of their Summer of Code program.
Abhinav was a Bachelor of Engineering student from the Birla Institute of Technology and
Science (India) and was co-supervised by myself and professor William Hart from Warwick
University (United Kingdom). The project was to implement and optimize a lattice basis
reduction algorithm as a part of the FLINT (Fast Library for Number Theory) research
project.

The project was successful, and produced an optimized lattice basis reduction imple-
mentation that is available in FLINT from version 2.5 onwards—this also includes a novel
variant proposed in my Master’s work. As lattice basis reduction has an amazing wealth of
mathematical applications it is of significant benefit to researchers worldwide to have a free,
open-source, and publicly-available optimized lattice basis reduction algorithm available.
In particular, the novel variant in FLINT allows solving linear systems (one of the most
fundamental computations pervasive in science and engineering) more efficiently.

I provided most of Abhinav’s supervision by answering questions about the algorithm
and lattice theory, providing direction of what tasks to prioritize, and giving advice about
implementation issues. I also made a point to encourage precise documentation and clear
writing. William Hart, as the director of the FLINT project provided advice about how the
implementation should fit into the rest of the FLINT library.

Abhinav said that the experience was “a tremendous learning experience” and has since
thanked me for imparting coding skills—such as how to document code—that have been
useful in his career. The next year he successfully participated in the Summer of Code
program again and implemented an algorithm for factoring linear ordinary differential
operators. In the next two years he was a software engineering intern with Google and a
research intern with the Indian Institute of Science. He then graduated from his program
and took his current position as a software engineer with Bloomberg LP in London (United
Kingdom).

Secondly, as a postdoctoral fellow I mentored several graduate students at the University
of Waterloo, including Saeed Nejati, Chunxiao Li, and Sebastian Verschoor. I helped
them edit drafts of their papers, provided feedback on their work, and helped them use
satisfiability (SAT) solvers in their research. I also prepared benchmarks that could be used
in order to test a SAT solver’s performance—resulting in a report in the 2020 Proceedings of
the SAT Competition (co-written by Saeed Nejati, Vijay Ganesh, and myself). Additionally,
Chunxiao published a paper in the 2020 SAT conference, Saeed published three SAT-related
papers since 2018, and Sebastian has written two papers in the area of SAT solving—one
of which was published in Nature’s Scientific Reports in 2020.

Thirdly, as a postdoctoral fellow at Carleton University I have been unofficially co-



supervising the undergraduate student Noah Rubin along with professors Kevin Cheung and
Brett Stevens. The project is still in the early stages but he has already implemented a hybrid
integer and constraint programming technique for searching for mathematical objects. I
have been providing direction to Noah as the project unfolds in addition to advice about
how to successfully devise and structure efficient mathematical searches. More research is
necessary to see if this approach can scale and beat more conventional approaches, but has
already produced promising results. Moreover, the background in integer and constraint
programming that Noah has now developed should serve him well in his future endeavours.

Lastly, I recently started supervising the Waterloo undergraduate student Madhur
Sharma. Madhur is interested in extending my PhD work in order to search for other
kinds of combinatorial sequences. This supervision is currently informal though there is
the potential of him officially becoming a graduate student of mine at a later date.

[All students mentioned here have given their consent to be named.]



Most Significant Contributions
Over the past six years I have made a number of important practical and theoretical
contributions in my research. Most notably, I helped spearhead a new paradigm for
solving mathematical search problems through combining two previously separate areas
of computer science—satisfiability checking and computer algebra. My work has clearly
demonstrated the power and flexibility of this paradigm by effectively employing it to solve
a number of problems in combinatorics [C8–9], geometry [C1–3], graph theory [C4], and
number theory [C7]. In each case, my research has shown that problems can be solved more
quickly, rigorously, and verifiably when compared to previous approaches. The paradigm
has already received significant interest from both academia and industry: the “SC-square”
(satisfiability checking and symbolic computation) project was started in 2016 order to
advance the paradigm and now has associates from over 40 universities and 15 companies.

As the lead developer of MathCheck—the first system to combine satisfiability (SAT)
solvers and computer algebra systems (CAS)—I have been at the forefront of this emerging
area. My work on MathCheck has resulted in three invited talks at conferences and
workshops: at Applications of Computer Algebra in 2018, at the SC-square workshop in
2019, and at the upcoming Canadian Mathematics Society meeting in 2020. I also presented
MathCheck in the “sister conference best paper track” of the International Joint Conference
on Artificial Intelligence in 2016. My work on MathCheck also appears in two invited
papers: in the SC-square track of Computer Algebra in Scientific Computing in 2016 [C9]
and in the Journal of Automated Reasoning in 2017 [J8].

1. Williamson Matrices

First defined in 1944, Williamson matrices have been extensively studied for both their
theoretical and practical properties and my work has led to a number of new discoveries
concerning them. In the 1960s, researchers at NASA studied Williamson matrices in the
process of developing codes for communicating with spacecraft and they conjectured that
Williamson matrices exist in all orders. This was disproven in 1993, but the smallest
counterexample was unknown until I determined it through extensive searches performed
by MathCheck in 2016 [C9]. Fewer than 200 Williamson matrices had previously been
discovered but MathCheck uncovered over 100,000 new Williamson matrices [C8,J3]. We
were able to run searches in much higher orders than had ever previously been accomplished:
for example, the even orders had only previously been exhaustively searched up to order
18 while we exhaustively searched the orders up to 70. Moreover, these searches revealed
unexpected patterns that led to the discovery of new infinite classes of Williamson matrices
that had eluded researchers for over 75 years. For example, in Williamson’s original paper
on the subject he found Williamson matrices exist in orders that are powers of two up to
32. Nothing more was known until MathCheck discovered examples in order 64 and I
generalized the patterns appearing in these matrices to prove that Williamson matrices exist
for all orders that are powers of two [J4].



2. Projective Geometry

Projective geometry was developed in the 1600s in order to formalize the techniques of
drawing a three dimensional scene onto a two dimensional canvas. My work on projective
geometry has produced the fastest and most rigorous solution of Lam’s problem, one
of the most celebrated and long-standing problems in the field [C1,J2]. All projective
geometries that have a finite number of points are completely classified—with the exception
of projective planes, i.e., those having exactly two dimensions. The smallest projective
plane whose existence is theoretically uncertain is known as a “projective plane of order
ten” and Lam’s problem is to determine if such a plane exists or not. Open since the 1800s,
Lam’s problem was resolved in the 1980s by a massive search requiring months on the
fastest supercomputers of the era.

All previous approaches to solving Lam’s problem relied on special-purpose ad-hoc
computer code that is difficult to write and almost impossible to verify. In contrast, my
work on Lam’s problem provides certificates of nonexistence that a third party can use to
convince themselves of the result [C2,C3]. Not only does this resolve Lam’s problem to a
more rigorous standard, it is also a much simpler solution, requiring no error-prone special-
purpose search code. Indeed, my work uncovered previously undetected mistakes in not only
the original search results from 1989 but also in the results of an independent verification
from 2011 [C1,J2,J5]. In addition to these benefits, my solution of Lam’s problem required
less computing time than the previous solutions—one particularly challenging subcase was
solved over 500 times faster when compared with the 2011 verification [C2].

3. Graph Theory

My work has led to dramatic improvements in industrial solvers of graph theoretic problems.
Maplesoft funded my research in order to improve the efficiency of commands in Maple, the
computer algebra system that they develop. In particular, I significantly sped up a number of
commands in Maple’s graph theory package by using SAT-based techniques. A number of
problems that previously required hours to solve can now be solved in seconds in the latest
version of Maple [C4]. For example, Maple can now solve much larger examples of the
clique finding and graph colouring problems—problems that have important applications
to bioinformatics, computational chemistry, map drawing, and resource scheduling.

4. Complementary Sequences

Complementary sequences are widely studied for their use in fields such as signal processing
and number theory. My work has discovered new examples of such sequences and confirmed
or refuted previous conjectures. For example, my work confirmed a 2002 conjecture that
length 23 complex Golay sequences do not exist [C7,J1]. Moreover, I have published the
only freely available code and data in the search for complex Golay sequences. This allows
other researchers to use our technology and results in their own work.

I have also successfully applied MathCheck to several classes of matrices defined by



complementary sequences [C6,J6]. For example, I discovered three new counterexamples
to the conjecture that good matrices always exist in odd orders, discovered two new sets of
good matrices (including one that was overlooked by at least two previous searches), found
the largest currently known best matrices, and showed that a conjecture about best matrices
is true for larger orders than was previously known.

5. Minimal Primes

My work has also resolved some open problems in the area of minimal primes [J9]. A
prime number is minimal if removing digits from its decimal representation cannot yield
any smaller prime number. Surprisingly, it can be shown that there are only finitely many
minimal primes—not only in decimal (base 10) but in any base. However, there is no
known algorithm that can find all minimal primes in a given base and solving this problem
in bases other than 10 was open since 2000. Despite the fact that the problem is not
known to be decidable in general bases, I devised a heuristic approach that was able to
resolve the question in all bases up to 16, and in all bases up to 30 with a possibly a small
number of missed minimal primes. The results were simply astonishing: certain bases
have some enormous minimal primes. The largest minimal prime in base 23 has over a
million digits when represented in decimal. This number was checked using a probabilistic
prime test and at the time of its discovery in 2016 was the tenth largest probable prime ever
discovered. This research was only intended to be recreationally interesting, but it turns
out that computing the “minimal strings” of DNA strings (by generalizing the minimality
concept to strings in an arbitrary language) has applications to DNA strand design [ref 4].



Additional Information on Contributions
All of the research described in my most significant contributions was implemented and
written by myself while taking into account feedback from my collaborators. In all of my
papers the author order reflects the contribution amount and I have been listed as the first
author in all of my papers with a single exception.

The open-source MathCheck project was started by professor Vijay Ganesh. As a
PhD student under his supervision I became its lead developer and I implemented the
routines used to search for combinatorial and number theoretic matrices and sequences.
We joined with professor Ilias Kotsireas and he provided domain-specific knowledge that I
incorporated into the system in order to make it more effective.

Because the research on MathCheck combined both the fields of satisfiability (SAT) and
computer algebra we chose to publish these results in some of the top venues in these fields,
such as ISSAC [C7] and CASC [C9] (two of the top conferences in computer algebra), as
well as twice at the top-tier artificial intelligence (AI) conference AAAI [C6,C8]. As the
authors of the first hybrid SAT and computer algebra system we also chose to publish in the
first SC-square workshop [C10] (a workshop devoted to combinations of SAT solving and
computer algebra) and were invited to publish our work in a special “SC-square” issue of
the Journal of Symbolic Computation [J3] (the top journal in the field) and a special “best
papers at CADE 2015” issue of the Journal of Automated Reasoning [J8].

After finishing my PhD, I further developed MathCheck in order to handle problems
from other domains of mathematics. I started collaborating with the mathematicians
Dragomir Djokovic, Kevin Cheung, and Brett Stevens. We decided to publish our work
in some well-known mathematical journals that focus on applications of AI or computer
algebra, such as AMAI [J6] and AAECC [J5], as well as in the top-tier AI conference IJCAI
[C2]. We also published a construction for Williamson matrices in the IEEE Transactions
of Information Theory [J4]—chosen because it is a prestigious journal that has published
many other constructions for matrices and sequences over its long history.

I have also worked with industry—I met with Jürgen Gerhard (Maplesoft director of
research) and pitched to him the idea of applying my research in SAT solvers to speed up
some commands in the computer algebra system Maple. He agreed to fund this research and
over the period of about two months I greatly improved the efficiency of several satisfiability
and graph theory commands in Maple—functionality that is now being used by engineers
and scientists around the world to complete their own work more effectively. This research
was published at the Maple conference in 2020 [C4]—chosen because this venue would be
able to reach a large number of educators and researchers in mathematics and computer
algebra.



Satisfiability Checking and Computer Algebra: Proposal
Efficient search methods are essential to solve a huge number of problems like searching
the internet, allocating resources, and finding the most efficient route when travelling. Some
of the best general-purpose search methods come from the field of satisfiability (SAT)
solving, but these struggle with complicated mathematical constraints. Conversely, some
of the best methods for solving mathematical problems come from the field of computer
algebra. However, there are many problems that require both sophisticated mathematics
and powerful general-purpose search. My research program will combine both satisfiability
and computer algebra techniques in order to advance a search method achieving the best of
both worlds—for fast and mathematically powerful searches.

Recent Progress. Since 2016, I have been the lead developer of the MathCheck
prototype toolC9—the first tool that performs mathematical searches by combining the
functionality of SAT solvers with computer algebra systems (CAS). Using MathCheck
I have resolved and made progress on problems from combinatorics,J3 number theory,J1

geometry,C3 and graph theoryC4—described in detail under my “most significant contribu-
tions”.

Objectives. The long-term vision of my research program is to make the SAT+CAS
method one of the most effective—if not the most effective—methods for solving math-
ematical search problems. The short-term objectives are to work towards making this
vision a reality—by extending MathCheck to new domains in order to apply its unique
capabilities to problems that cannot be solved by any existing methods. Using MathCheck
we can implement more efficient, verifiable, and rigorous searches. Unlike most traditional
search techniques, MathCheck provides certificates that can be used to rigorously show
nonexistence when a solution to a problem doesn’t exist.C2

Literature Review. The SAT+CAS paradigm was proposed by Ábrahám1 and inde-
pendently by Zulkoski et al.27 in 2015. They pointed out that while “SAT modulo theories”
solvers offer more mathematical functionality than SAT solvers they lack the kind of ex-
pressive mathematical functionality available in CASs. Since 2015, a small but budding
community known as “SC-square” (for satisfiability checking and symbolic computation7)
has started to organize around applications of this paradigm—such as solving polynomial
systems over real numbers,19 cryptanalysis,13 program synthesis,15 combinatorial object
construction,14 and circuit verification.17, 20 Despite the impressive variety of applications
discovered so far, the potential of the paradigm has yet to be fully realized—there are a
number of branches of science, engineering, and mathematics ripe with problems for which
the SAT+CAS paradigm has not yet been applied. My research program will remedy this
situation by extending the paradigm to a number of new domains of interest.

Methodology. The majority of my research will be accomplished by the highly qual-
ified personnel who will be trained by myself (and other professors who have indicated



their interest) in satisfiability and computer algebraic methodologies—and how they can be
judiciously combined. The professors involved include Ahmad Biniaz (Windsor), Vijay
Ganesh (Waterloo), Kevin Cheung and Brett Stevens (Carleton), Ilias Kotsireas (Wilfrid
Laurier), Supratik Chakraborty (IIT Bombay, India), and Oliver Kullman (Swansea, UK).
The students will be graduates or undergraduates from the University of Windsor (or will
be co-supervised students at Carleton, where I will hold an adjunct professorship).

The personnel will be matched to projects based on their interests, background, and
qualifications. There is no shortage of problems that mathematicians, scientists, and
engineers care about where SAT+CAS methods can be impactful—I describe five new
application domains below. In each case I provide details of an important problem in the
area, how SAT+CAS methods will be used to make progress on the problem, a plan of how
the research will be conducted by my research team, and a description of the benefits that
will result once this research has been completed.

Application to Problems in Physics

Research in quantum physics relies on various combinatorial objects like Kochen–Specker
(KS) systems—a set of three-dimensional vectors satisfying properties based on the laws
of quantum physics. For example, using KS systems the mathematicians John Conway
and Simon Kochen proved the “Free Will Theorem” that roughly says that if entities in the
universe have free will then it follows that the fundamental particles that make up those
entities also have free will.5 Conway stressed the importance of finding smaller examples
as the systems are important in devising experimental setups3 and examples of small KS
systems could provide insight into quantum theory and designing quantum computers.21

Opportunity. Despite extensive searches, we still don’t know the minimal size of a KS
system. The best known previous search relied on ad-hoc exhaustive search code utilizing
the computer algebra library nauty to perform filtering.24 We are now perfectly positioned
to improve on this search by combining satisfiability checking and symbolic computation—
exploiting the search power of a SAT solver while tailoring the search to incorporate the
important filtering information provided by nauty.

Plan. This project will be worked on by a PhD student and will be directed by myself
along with my collaborator Vijay Ganesh who has expensive experience using solvers
to resolve problems in physics and mathematics. The project will result in searches for
small KS systems—potentially leading to a smaller KS system or an improvement in the
best known lower bound on the size of a KS system. This project marks the beginning
of exploring the untapped potential of applying the SAT+CAS methods to problems in
physics. Moreover, the skills and code developed by the student will be applied to further
problems in quantum physics such as the nearest neighbor compliance problem which is
important in designing quantum circuits.25



Application to Combinatorial Matrices and Pooled Testing

Consider the problem of testing for the presence of a virus in a set of samples. You can
test each sample individually, but this is costly. To save resources one can pool together
multiple samples and test them simultaneously, though this requires the development of
efficient pooling schemes. Disjunct matrices from combinatorics give rise to one source
of efficient pooling schemes.23 Methods are known for constructing disjunct matrices that
asymptotically provide the optimal possible number of tests9—however, these methods
tend to produce pools which are too large for many applications.

Opportunity. The SAT+CAS approach provides an ideal method to search for disjunct
matrices and therefore pooling schemes. Traditional brute-force search methods are not
powerful enough to find disjunct matrices of the size necessary to be useful in pooled testing,
but SAT search techniques and CAS filtering techniques such as isomorphism rejection
have been found to be useful in many similar searches for matrices.J6 However, SAT and
isomorphism rejection have not yet been used in the search for disjunct matrices—providing
a unique opportunity to make progress on this difficult problem.

Plan. This project will be worked on by a PhD student directed by myself in association
with my collaborators Kevin Cheung and Brett Stevens, who have expertise in disjunct
matrices. They believe it is likely that disjunct matrices exist in the sizes that would be
useful in high-frequency pooled testing for viruses like COVID-19. This project will
search for such matrices and will result in either a collection of matrices suitable for this
purpose or a nonexistence proof that such matrices do not exist. Additionally, the skills
and code developed by the student will form the basis of searches for other other classes of
combinatorial matrices such as those defined by strongly regular graphs.6

Application to Graph Colouring Problems

In 1950, the mathematician Ed Nelson asked how many colours are necessary to colour
every point on an infinite sheet of paper—supposing that points that are exactly separated by
some fixed distance are coloured differently. Within a year it was shown that it is possible
to colour all points up to this constraint using only seven colours and that at least four
colours are necessary.22 However, despite these early results the problem of determining
the minimal number of colours necessary remains an open problem. No progress was made
on improving the best known bounds until 2018, when Aubrey de Grey showed that it is
necessary to use at least five colours by improving our understanding of certain kinds of
graphs in graph theory.8

Opportunity. We now have a great opportunity to make further progress on Nelson’s
question by using modern SAT solvers combined with computer algebraic methods. SAT
solvers excel at search in colouring problems—however, by themselves they cannot be used
in this problem as they have no conception of distance or two-dimensional points. The



current best known result is a collection of 529 two-dimensional points that need at least
five colours to be consistently coloured—found by some ad-hoc construction methods and
using a SAT solver to verify the colouring.11 Because CASs excel at algebraically dealing
with points we now have an opportunity to incorporate CASs directly as a part of the SAT
solver’s search.

Plan. This project will be worked on by a postdoctoral fellow directed by myself in
collaboration with Ahmad Biniaz. The postdoctoral fellow will implement a SAT+CAS
method to search for collections of two-dimensional points that require at least five colours
to colour consistently. I will supply the direction in terms how the SAT solver can be
connected to a CAS, while Ahmad will supply the domain expertise in computational
geometry. The project will run searches for collections of two-dimensional points that
require five or more colours in order to consistently colour. The searches have the potential
to improve the lower bound in Nelson’s problem or find a collection of five-colourable
points that improves on the current record. Either way, these searches will provide insight
into developing and running searches for other kinds of colouring problems like those
derived from Latin squares—which have numerous practical and theoretical applications.26

Application to Circuit Minimization

A circuit is a piece of electronics that produces a “bit” (a high or low electronic signal)
as output when given a collection of bits of input. They are typically implemented by
combining together a number of simpler circuits known as gates. The circuit minimization
problem is to find another circuit that produces the same output as some given circuit—
but instead uses a minimal number of gates. The problem is important to the design
of computers, since they consist of a huge number of electronic circuits and would be
produced more efficiently if those circuits were minimized. Indeed, it has been estimated
that improved methods of minimizing circuits would be worth millions to the world’s
economy.16 Circuit minimization also applies to quantum circuits, which often need to be
specified so that gates only take adjacent signals as input.25 This can be achieved by using
“swap” gates—which then also have to be minimized.

Opportunity. This problem is very difficult in general and some traditional methods
involve algebraic simplifications. Progress has recently been made using SAT solvers to
minimize certain special types of circuits. For example, using off-the-shelf SAT solvers
new minimal modular arithmetic (MOD) circuits have been discovered18 as well as new
minimal quantum circuits.25 These SAT solvers do not take advantage of the algebraic
simplifications and isomorphism removal used by previous methods—thus for the first time
we have the opportunity to apply the algebraic simplifications which can be done by a CAS
in tandem with the search power of a SAT solver. Such an approach has not yet been used
though recently a number of small circuits for 3 × 3 matrix multiplication were discovered
by using a SAT solver to search for partial solutions which were then postprocessed to full
solutions using a CAS.12



Plan. This project will be worked on by two MSc students (one of whom, Abinaya
Venkatesan, has already agreed to work on the project) and later by a PhD student. The
MSc students will be directed by myself and my collaborators Vijay Ganesh and Supratik
Chakraborty. The students will work on finding minimal circuits for MOD circuits and
matrix multiplication circuits. This project will result in searches for small minimal circuits
of both types and thereby improve our knowledge of such circuits—either by exhibiting
new unknown minimal circuits or proofs that circuits using a certain number of gates
cannot exist. As the system becomes more tuned to such searches this project will also
incorporate new kinds of circuit types—in the third year of this project a PhD student will
begin working on minimizing quantum circuits using our SAT+CAS system.

Application to Recreational Mathematics and Discrete Tomography

Discrete tomography is the problem of reconstructing a two-dimensional image given a
number of its one-dimensional projections. It is of use in image processing and electron
microscopy but also forms the basis of some puzzles in recreational mathematics such as
nonograms.

Opportunity. SAT solvers have been previously used to solve and generate puzzles like
SudokuC4 and nonograms.2 However, the algebraic aspects of discrete tomography have
yet to be employed in an automated reasoning solver.10

Plan. The types of problems that arise in this domain—such as developing more efficient
puzzle solvers and generators—will be worked on by one undergraduate student per summer
over the next five years. These problems are an ideal fit for undergraduates as they are
simple to understand, do not require extensive background knowledge, and are small enough
to make progress on over a couple of months. Additionally, they have been designed to
pique the interest of students to get started in research.

Impact. These problems just scratch the surface of the of the SAT+CAS method’s
potential and speak to its wide applicability. This research will be impactful in three major
ways: First, it will improve our understanding of a variety of problems—either by finding
new solutions of the problems that were out-of-reach of previous search algorithms or
by showing that such solutions do not exist. Second, it will allow us to develop more
rigorous and less ad-hoc searches—for example, by eliminating the reliance on ad-hoc code
and providing nonexistence certificates when searches come back negative. Third, it will
improve our understanding of how best to structure mathematical searches for problems
from a wide variety of domains. With a more through understanding of the issues involved
we can start to implement general-purpose search tools that automatically structure the
search in ways that lead to optimal performance. Such a general-purpose search tool would
be a dream come true for many scientists and engineers—and the SAT+CAS method has
potential to make this dream a reality.



Budget Justification
There are three main expenses necessary in order for this research proposal to be successful:
salary expenses for the highly qualified personnel who will complete the research, travel
expenses for presenting the research at conferences, and equipment expenses for the
computers necessary in the course of the research.

Salary Expenses

Salary of the highly qualified personnel is the biggest and most important expense that will
be required in order to ensure the success of this research program. The salary that will
be paid to each highly qualified personnel will be based on their qualifications and breaks
down into undergraduate (UG), Master’s (MSc), PhD, and postdoctoral fellows (PDF). The
timeline of hiring for these personnel is depicted in Table 1.

The undergraduates will be paid $3,000 for four months of work on a single project. I
will work with one undergraduate a year for the next five years—a total expense of $15,000.

The Master’s students will each be paid $6,000/year from this grant (with their remaining
salary covered by teaching and research assistantships offered through the school). I will
work with two Master’s students over the next five years and expect to work with them for
approximately 2.5 years each—a total expense of $30,000.

The PhD students will each be paid $12,000/year from this grant (with their remaining
salary covered by teaching and research assistantships offered through the school). I will
work with two PhD students at a time for the next two years and have a third PhD student
join my group after two years. One PhD student will be funded through my startup grant—a
total expense of $96,000 to be paid by NSERC.

A postdoctoral fellow will be paid $40,000/year from this grant in the first two years
during which time they will be able to work on research nearly full-time in order to help
establish the research program. After the first two years a postdoctoral fellow will be paid
$30,000/year from this grant with their remaining salary provided through alternative means

Topic Year 1 Year 2 Year 3 Year 4 Year 5
Physics PhD1 PhD1 PhD1 PhD1 PhD1

Pooled Testing PhD2 PhD2 PhD2 PhD2 PhD2
Graphs PDF1 PDF1

PDF2 PDF2 PDF2
Circuits MSc1 MSc1

MSc2 MSc2 MSc2
PhD3 PhD3 PhD3

Tomography UG1 UG2 UG3 UG4 UG5

Table 1: Timeline of the highly qualified personnel who will be trained as a part of this
research program. The personnel are organized by the five overarching topics presented in
the detailed proposal.



such as sessional teaching. I will work with a single postdoctoral fellow at a time for the
next five years—leaving a total expense of $170,000 to be paid by NSERC.

This salaries were chosen to be competitive with the salaries offered by other professors
for personnel of similar qualifications. They are necessary in order to attract the kind of
highly qualified personnel necessary in order to produce the high-quality research that this
grant will enable.

Travel Expenses

Travel is essential in order disseminate the research that will be produced into the research
community at large. In particular, attending conferences will be essential in order for the
graduate students and postdoctoral fellows to promote their work in the research community
as well as essential to their development as scholars who can effectively communicate their
work. Due to current travel restrictions some of this dissemination may occur online—
however, there is still no virtual equivalent of face-to-face contact and thus some form of
travel will still be necessary. On average, I have budgeted for each graduate student to travel
to one major conference every year, and for each postdoctoral fellow (as well as myself) to
travel to two major conferences every year. This works out to seven trips a year, with the
trips of one PhD student being covered by my startup grant. The remaining six trips are
budgeted at $2,000 each (including conference fees as well as food, flight, and hotel costs).
Altogether, these expenses total $12,000/year for the first two years (and $14,000/year for
years three to five) to be paid by NSERC.

Equipment Expenses

Although my research program does not require significant amount of specialized equip-
ment, each personnel involved will need a laptop or desktop machine in order to complete
their research. Each machine has been budgeted at a cost of $1,500 and it is assumed that
the that machines may need to be replaced once over the course of five years. With up to
six personnel working at any one time, this requires a total of expense of $16,500 over the
course of the next five years. An additional $2,500/year has been budgeted for the costs
associated with completing the computational component of the research. This will cover
the specialized software licenses (e.g., Maple), cloud computing fees (e.g., Amazon EC2)
and storage to save the data collected (e.g., Amazon Drive).

Total Expenses

In total, I have budgeted: $311,000 in salary costs to be paid by NSERC, $66,000 in travel
costs to be paid by NSERC, and $29,000 in equipment costs to be paid by NSERC.
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