
A SAT Solver + Computer Algebra Attack on the
Minimum Kochen–Specker Problem

Zhengyu Li1?, Curtis Bright2, and Vijay Ganesh3

1 University of Waterloo, Canada, brian.li@uwaterloo.ca
2 University of Windsor, Canada, cbright@uwindsor.ca

3 University of Waterloo, Canada, vganesh@uwaterloo.ca

Abstract. One of the most fundamental results in the foundations of
quantum mechanics is the Kochen–Specker (KS) theorem (also known
as the Bell–Kochen–Specker theorem), which essentially states that con-
textuality is an inevitable feature of any hidden-variable theory whose
predictions agree with quantum mechanics. The theorem hinges on the
existence of a mathematical object called a KS vector system. Although
the existence of a KS vector system was first established by Kochen and
Specker, the problem of the minimum size of such a system has stubbornly
remained open for over 55 years. In this paper, we present a new method
based on a combination of a SAT solver and a computer algebra system
(CAS) to address this problem. Our SAT+CAS approach improves the
lower bound on the minimum number of vectors in a KS system from 22
to 23, and, more importantly, is three orders of magnitude more efficient
when compared to the previous best computational methods. Finding a
minimum KS system would simplify experimental tests of the KS the-
orem and have direct applications in quantum information processing,
specifically in the security of quantum cryptographic protocols based
on complementarity, zero-error classical communication, and dimension
witnessing.

Keywords: Satisfiability (SAT) solving · symbolic computation · sym-
metry breaking · isomorph-free generation · Kochen–Specker systems

1 Introduction

Quantum Mechanics (QM) is often described as one of the most successful physical
theories of all time, and yet many questions regarding the foundations of QM
continue to be hotly contested. Many interpretations of QM, i.e., mappings from
mathematical formalisms of QM to physical phenomena, have been proposed
in order to resolve these foundational questions. Perhaps the most well-studied
among them are the Copenhagen interpretation, hidden-variable, many-worlds,
and quantum information theories [52]. Of these, hidden-variable theories are
attempts to understand counterintuitive QM phenomena through a realist and
deterministic lens by positing the existence of unobservable entities or hidden
? Corresponding author

2 Zhengyu Li, Curtis Bright, and Vijay Ganesh

X

−2.0
−1.5

−1.0
−0.5

0.0
0.5

1.0
1.5

2.0

Y

−2.0

−1.5

−1.0
−0.5

0.0
0.5

1.0
1.5

2.0

Z

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Fig. 1: The 31 vectors of the smallest known KS system (discovered by John
Conway and Simon Kochen around 1990).

variables [31] that the standard QM theory does not account for (and hence is
deemed incomplete).

Over the years, many constraints have been imposed on hidden-variable
theories, e.g., Bell’s inequalities that rule out the possibility of local hidden-
variable theories that are also in agreement with the predictions of QM [8]. In a
similar vein, in 1967, Kochen and Specker [45] (and independently, Bell [7] in
1966) proved their famous theorem that essentially asserts that non-contextual
hidden variable theories cannot reproduce the empirical predictions of quantum
mechanics—thus severely limiting the kind of hidden-variable theories one can
posit. Contextuality refers to a peculiar feature of QM observables, wherein any
value assignment to all observables must depend on the measurement context
and how those observables are measured.

A SAT+CAS Attack on the Minimum Kochen–Specker Problem 3

Authors Year KS

Kochen, Specker 1967 ≤ 117
Jost 1976 ≤ 109
Conway, Kochen 1990 ≤ 31
Arends, Ouaknine, Wampler 2009 ≥ 18
Uijlen, Westerbaan 2016 ≥ 22
Li, Bright, Ganesh 2022 ≥ 23

Table 1: A chronology of the bounds on the size of the minimum KS system.

1.1 Motivation for Finding The Minimum Kochen–Specker System

As stated above, the Kochen–Specker (KS) theorem rules out noncontextual
hidden-variable theories by establishing the existence of a set of three-dimensional
vectors (simply referred to as a KS system) that witnesses a contradiction between
the assumption of non-contextuality (i.e., observables can be assigned values
even prior to measurement and independent of measurement context) and the
SPIN axiom of QM. The KS vector system found by Kochen and Specker in 1967
contains 117 vectors [45].

Since the publication of Kochen and Specker’s theorem in 1967, physicists
and mathematicians have wondered how many vectors the smallest-sized KS
vector system contains (see Table 1). This problem of finding the minimum-sized
set of three-dimensional4 KS vectors is often referred to as the (minimum) KS
problem. Around 1990, Kochen and Conway found a KS vector system of order 31
via purely mathematical means (see Figure 1) and this is currently the smallest
known KS vector system.

Subsequently, many mathematicians and computer scientists have worked on
lower bounds to the minimum KS problem via a combination of mathematical
and computational approaches. In 2009, Arends et al. provided a computer-aided
proof that the smallest KS system must have at least 18 vectors via a reduction of
the minimum KS problem to a graph colouring problem [5]. This lower bound was
improved to 22 by Uijlen and Westerbaan, who used a combination of analytical
results and several graph software packages [61] and this is remains the best
known lower bound until our result presented in this paper.

Finding the minimum KS system is not only of scientific and historical interest,
but also has direct applications in quantum information processing [20]. So far,
the large size of all known KS systems has prevented physicists from using them
for applications, including empirical tests of the KS theorem. Finding a minimum
KS system could enable applications in the security of quantum cryptographic
protocols based on complementarity [18], zero-error classical communication [24],
and dimension witnessing [29].

4 For readability and brevity, we shall leave out the term “3-dimensional” in the rest of
the paper.

4 Zhengyu Li, Curtis Bright, and Vijay Ganesh

1.2 SAT Solvers and Combinatorial Problems

In recent years, Boolean satisfiability (SAT) solvers have been widely used to
solve a variety of combinatorial mathematical problems [10,34]. Given that the
minimum KS problem is fundamentally combinatorial in nature, and given that
there is a reduction from the KS problem to graph colouring—an NP-complete
problem for which SAT solvers have been shown to be effective [12]—it is only
natural to consider a reduction from the KS problem to the SAT problem. Such
an approach enables a SAT solver to aid in the determination of the cardinality
of the minimum-sized KS system.

SAT is one of the most influential problems in computer science and mathe-
matics, and it has been studied extensively since it was shown to be NP-complete
by Stephen Cook in 1971 [23]. Over the last two decades, thanks to highly ef-
ficient conflict-driven clause-learning (CDCL) SAT solving algorithms, we are
now able to solve Boolean formulas, derived from real-world applications or
combinatorial problems, with tens or even hundreds of millions of variables and
clauses efficiently [27]. Even more surprisingly, SAT solvers frequently outperform
special-purpose algorithms designed for software engineering [19], verification [21],
AI planning [43], and combinatorial mathematics [15].

1.3 The SAT+CAS Paradigm for Combinatorial Mathematics

Despite these fantastic achievements, SAT solvers struggle on certain problems
such as those containing many symmetries [12] or those requiring the usage
of more advanced mathematical theories than propositional logic [2,64]. Much
work has been done to remedy these drawbacks, including the development of
sophisticated symmetry breaking techniques [3,4] and the development of solvers
that support richer logic [6] (“SAT modulo theories” or SMT solvers). However,
the mathematical support of SMT solvers is quite primitive when compared
with the vast mathematical functionality available in a modern computer algebra
system (CAS).

In response to this need for a solver that combines the efficient search ca-
pabilities of SAT solvers with the mathematical knowledge available in CAS, a
new kind of solving methodology was developed in 2015 by Zulkoski, Ganesh
and others [63, 64] and independently by Abraham [1], and has been further
expanded since then by Bright et al. [13, 15]. This “SAT+CAS” solving method-
ology has been successfully applied to many diverse problems, including circuit
verification [42,49], automatic debugging [48], finding circuits for matrix multipli-
cation [33], computing directed Ramsey numbers [51], and finding special kinds
of sequences and matrices [14,16].

In this paper, we use the SAT+CAS solving methodology to dramatically
improve the performance of searching for KS systems compared to an out-of-the-
box SAT solver and all previous approaches developed to prove lower bounds in the
minimum KS problem. More precisely, our SAT+CAS approach is over 1000 times
more efficient than the previous best approach by Uijlen and Westerbaan [61]
for the minimum KS problem. This is made possible by combining the powerful

A SAT+CAS Attack on the Minimum Kochen–Specker Problem 5

search and learning algorithms used in modern SAT solvers with an “isomorph-free
exhaustive generation” approach preventing duplicate exploration of isomorphic
parts of the search space. Such an approach was recently used to resolve Lam’s
problem from projective geometry of confirming the nonexistence of a projective
plane of order ten [10, 15]. Although isomorph-free exhaustive generation has
been extensively used in combinatorial enumeration, it has only recently been
combined with SAT-based methods [41,58].

1.4 Our Contributions

In this paper, we leverage and refine the SAT+CAS paradigm [1,64] to incorporate
the isomorph-free generation method of orderly generation (as part of a new
SAT+CAS tool, called PhysicsCheck), to obtain tighter lower bounds on the
minimum KS problem with three orders of magnitude speedup over previous
computational methods developed for this problem.5

Specifically, we implement a robust push-and-run pipeline that incorporates
a parallel version of MapleSAT [46] coupled with an SMT solver (Z3 [25]) to
solve nonlinear real systems and a computer algebraic isomorph-free generation
method. We also describe new encoding techniques that enabled an efficient
reduction of the minimum KS problem into the Boolean satisfiability problem.

Our new approach establishes that the lower bound for the minimum KS
system is 23, as opposed to the previous best of 22. Moreover, we discover missing
candidates from Uijlen and Westerbaan’s search [61] in order 20, solidifying
previous search results (see Section 7). In addition, our approach is over 1000
times more efficient than the previous best approach by Uijlen and Westerbaan.

In order to make the paper relatively self-contained, we provide a thorough
background on the KS problem (Section 2) and previous work (Section 3). We
motivate our SAT encoding of the KS problem in Section 4, describe our usage of
an SMT solver in Section 5, and provided a detailed explanation of our orderly
generation technique in the context of the SAT+CAS method in Section 6. We
also provide extensive comparison of our results and runtime with previous work
(Section 7).

2 Background

In this section we introduce the SPIN axiom, 010-colourability, the KS theorem,
and the KS vector system. For a deeper dive into these topics, please refer
to the Stanford Encyclopedia of Philosophy [31], and the article “Quantum
Contextuality” [17] by Budroni, Cabello, Gühne, Kleinman, and Larsson on the
current status, proofs, experimental testings, and applications of contextuality.

5 We provide an easy-to-use open source repository (https://github.com/
BrianLi009/PhysicsCheck) for readers to reproduce our results.

https://github.com/BrianLi009/PhysicsCheck
https://github.com/BrianLi009/PhysicsCheck

6 Zhengyu Li, Curtis Bright, and Vijay Ganesh

2.1 The KS Theorem

Informally, the KS theorem states that there is a contradiction between standard
quantum mechanics and certain hidden variable interpretations of quantum
phenomena. That is, no non-contextual hidden-variable model can reproduce the
predictions of quantum theory in three or more dimensions. Formally, the KS
theorem states that by accepting the theory of QM and rules of logical deduction,
one of the two premises must be renounced:

– All observables of QM have definite values at all times (Value Definiteness)
– The value of an observable of a QM system are independent of any measure-

ment context and how those properties are measured (Non-contextuality)

Spin of an Elementary Particle: In QM, spin is an intrinsic and discrete
form of angular momentum carried by elementary particles. Its existence can
be inferred from the Stern–Gerlach experiment [28]. In the context of this
paper, a spin-1 particle is shot through a fixed inhomogeneous magnetic field
and remains non-deflected, deflects up, or deflects down, corresponding to 3
possible angular momentum states, namely 0, 1, and −1. Thus, the squared
result of such measurements along any direction is always 0 or 1. The SPIN
axiom states that given three pairwise orthogonal directions of measurement, the
squared spin components of a spin-1 particle are 1, 0, 1 in these three directions.
Thus, the observable corresponding to the question “is the squared spin 0?”
measured in three mutually orthogonal directions will always produce yes (or 1)
in exactly one direction and no (or 0) in the other two orthogonal directions in
3-dimensional Euclidean space. The SPIN axiom follows from the postulates of
quantum mechanics and is experimentally verifiable [37].

KS Vector System: A KS vector system can be represented in multiple
ways—we describe it as a finite set of points on a sphere. As a consequence
of the SPIN axiom, the squared-spin measurements along opposite directions
must yield the same outcome, therefore we can restrict the domain to the closed
northern hemisphere. To define a KS vector system, we first formally define a
vector system and the notion of 010-colourability. For the purposes of this paper,
we limit ourselves to the 3-dimensional version of the KS problem as the size
of the minimum Kochen–Specker system in dimension 4 and higher has already
been found [53], while the three dimensional case is still open despite extensive
attempts as stated in section 1.

Definition 1. A vector system is a finite subset of the closed northern hemi-
sphere.

Definition 2. A vector system is 010-colourable if there exists an assignment
of 0 and 1 to each vector such that:

1. No two orthogonal vectors are assigned to 1.
2. Three mutually orthogonal vectors are not all assigned to 0.

Definition 3. The term Kochen–Specker (KS) vector system refers to a vector
system that is not 010-colourable.

A SAT+CAS Attack on the Minimum Kochen–Specker Problem 7

Exhibiting the existence of a KS vector system proves the KS theorem, which
states that the closed northern hemisphere is not 010-colourable.

Definition 4. For a vector system K, define its orthogonality graph GK =
(V,E), where V = K, E = { (v1, v2) : v1, v2 ∈ K and v1 · v2 = 0 }.

Essentially, the vertices of GK are the vectors in K, and there exists an edge
between two vertices if and only if their corresponding vectors are orthogonal.
Then similarly, we can reduce the notion of 010-colourability from a vector system
to an orthogonality graph.

Definition 5. A graph G is 010-colourable if there is a {0, 1}-colouring of the
vertices such that the following two conditions are satisfied simultaneously:

1. No two adjacent vertices are coloured 1.
2. For each triangle in G, the vertices are not all coloured 0.

Given an arbitrary graph, it is not guaranteed that there exists a corresponding
vector system. If a graph has a corresponding vector system, we say that the
graph is embeddable.

Definition 6. A graph G = (V,E) is embeddable if it is a subgraph of an
orthogonality graph GK for some vector system K.

Essentially, being embeddable implies the existence of a vector system K
whose vectors have a one-to-one correspondence with the vertices of G in such
a way that the adjacent vertices are assigned to orthogonal vectors. For an
embeddable graph G, it is not necessary for non-adjacent vertices of G to go to
non-orthogonal vectors, since G could be a subgraph of an orthogonality graph
with some edges removed (by Definition 6). However, it is necessary for distinct
vertices to be mapped to distinct vectors. An example of an unembeddable graph
would be the cycle graph of order 4, as the orthogonality constraints would force
a pair of opposite vertices of C4 to be mapped to two collinear vectors.

Definition 7. An embeddable and non-010-colourable graph is called a KS
graph. Note that every KS vector system can be reduced to a KS graph.

2.2 Minimum KS Problem

Definition 8. The cardinality or size of a KS vector system (respectively, a KS
graph) is the number of vectors (respectively, the number of nodes) in it.

The minimum KS problem is defined as the problem of finding the minimum
cardinality KS system (respectively, KS graph). That is, with the fewest number
of vectors in 3-dimensional space (respectively, with the fewest number of vertices).
Every KS system has a KS graph, so if a KS graph with cardinality n does not
exist then the lower bound on the minimum KS problem is at least n+ 1.

8 Zhengyu Li, Curtis Bright, and Vijay Ganesh

2.3 Conjunctive Normal Form

We assume that the reader is familiar with Boolean logic [38] and SAT solvers [36].
We provide a brief description here of Conjunctive Normal Form (CNF) for
Boolean formulas. A literal is a propositional variable or its negation. A clause is
a disjunction of literals. A formula in CNF is a conjunction of clauses. A formula
is said to be satisfiable if there is a variable assignment such that every clause
has at least one literal assigned true. Modern SAT solvers only accept Boolean
formulas in CNF.

2.4 Cube-and-conquer

The cube-and-conquer satisfiability solving paradigm was developed [35] to solve
hard combinatorial problems. The method applies two types of SAT solvers in two
stages: First, a “cubing solver” splits a SAT instance into a large number of distinct
subproblems specified by cubes—formulas of the form x1 ∧ · · · ∧ xn where xi are
literals. Second, for each cube a “conquering solver” solves the original instance
under the assumption that the cube is true. The cube-and-conquer method tends
to be effective at quickly solving large satisfiability instances when the cubing
solver can generate many cubes encoding subproblems of similar difficulty and
solving time. It has since been applied to solve huge combinatorial problems
such as the Boolean Pythagorean triples problem [34], the computation of Schur
number five [32], and a SAT-based resolution of Lam’s problem [10].

3 Related Work

Over the last 50+ years, many mathematicians and physicists such as Roger
Penrose, Asher Peres, and John Conway have attempted to find a minimum
three-dimensional KS system (see Table 1). Kochen and Specker [45] found the
first KS system in 1967 that contained 117 vectors. A KS system with 109
vectors was found by Jost [39] in 1976. The current smallest known KS system
contains 31 vectors and was discovered by John Conway and Simon Kochen
around 1990. They did not publish their discovery, but they communicated it
to Peres [55], who found a more symmetric system of 33 vectors [56]. Shortly
thereafter, Penrose [54,62] found another system of 33 vectors.

In 2011, Arends, Ouaknine, and Wampler [5] proved several interesting proper-
ties of KS graphs and leveraged them to computationally prove that a KS system
must contain at least 18 vectors. Seven years later, Uijlen and Westerbaan [61]
showed that a KS system must have at least 22 vectors. This computational
effort used around 300 CPU cores for three months and relied on the nauty
software package [50] to exhaustively search for KS vector systems. Uijlen and
Westerbaan’s approach takes some properties of the KS system into consideration
during computation, and marks the beginning of computation-intensive resolution
to the KS problem. Pavičić, Merlet, McKay, and Megill [53] have improved a
slight variation of the KS problem, proving that a KS system in which each vector

A SAT+CAS Attack on the Minimum Kochen–Specker Problem 9

is part of a mutually orthogonal triple must have at least 30 vectors. They also
studied higher-dimensional generalisations of the KS problem. However, despite
these extensive searches, the gap between the lower and upper bounds remains
significant and the minimum size of a 3-dimensional KS system remains unknown.

4 SAT Encoding of the Minimum KS Problem

A KS vector system K can be converted into a KS graph GK. Each vector in K
is assigned to a vertex in GK, so that if two vectors are orthogonal, then their
corresponding vertices are connected. Therefore, to find a KS vector system, it
is sufficient to find a Kochen–Specker graph. A KS graph is minimal if the only
subgraph that is a KS graph is itself. Arends, Ouaknine, and Wampler [5] proved
that a three-dimensional minimal KS graph must satisfy the following properties:

1. The graph must not contain a subgraph isomorphic to C4.
2. Each vertex of the graph must have minimum degree 3.
3. Every vertex is part of a triangle graph C3.

We encode these three properties above and the non-010-colourability of the KS
graph in conjunctive normal form (CNF). If a SAT solver run on this encoding
produces solutions, then these solutions are equivalent to graphs that satisfy all
four properties.

A simple undirected graph of order n has
(
n
2

)
potential edges, and we represent

each edge as a Boolean variable. The edge variable eij is true exactly when the
vertices i and j are connected, where 1 ≤ i < j ≤ n. For convenience, we let both
eij and eji denote the same variable. We also use the

(
n
3

)
triangle variables tijk

denoting that distinct vertices i, j, and k are mutually connected. In Boolean
logic this is expressed as tijk ↔ (eij ∧ eik ∧ ejk) which in conjunctive normal
form is expressed via the four clauses ¬tijk ∨ eij , ¬tijk ∨ eik, ¬tijk ∨ ejk, and
¬eij ∨ ¬eik ∨ ¬ejk ∨ tijk. Again, the indices i, j, and k of the variable tijk may
be reordered arbitrarily for notational convenience.

4.1 Encoding the Squarefree Constraint

To encode the property that a Kochen–Specker graph must be squarefree, we
construct encodings that prevent the existence of any squares in the graph. Three
squares can be formed on four vertices. Therefore, for each choice of four vertices
i, j, k, l, we use the three clauses

¬eij ∨¬ejk ∨¬ekl ∨¬eli, ¬eij ∨¬ejl ∨¬elk ∨¬eki, ¬eil ∨¬elj ∨¬ejk ∨¬eki.

By enumerating over all possible choices of four vertices and constructing the
above CNF formula, we force the graph to be squarefree.

10 Zhengyu Li, Curtis Bright, and Vijay Ganesh

4.2 Encoding the Minimum Degree Constraint

For each vertex i, to ensure that i is connected to at least three other vertices,
we take each subset S of {1, . . . , i − 1, i+ 1, . . . , n} with cardinality n − 3 and
construct the clause

∨
j∈S eij . By enumerating over all such subsets we enforce

a minimum degree of 3 on vertex i. Thus, constructing similar formulae for all
vertices 1 ≤ i ≤ n, enforces that any vertex in the graph has a degree of at least
3.

4.3 Encoding the Triangle Constraint

Now we encode the property that every vertex is part of a triangle. For each
vertex i, we require 2 other distinct vertices to form a triangle, and there
are

(
n−1
2

)
possible triangles containing i. At least one of those triangles must

be present in the graph—this is ensured by the clause
∨

j,k∈S tijk where S is
{1, . . . , i− 1, i+1, . . . , n} and j < k. Using this clause for each 1 ≤ i ≤ n ensures
that every vertex is part of a triangle.

4.4 Encoding the Noncolourability Constraint

We generate clauses to block as many 010-colourable graphs as possible (ideally
all of them, leaving only the non-010-colourable graphs). A graph is non-010-
colourable if and only if for all {0, 1}-colourings of the graph a pair of colour-1
vertices is connected or a set of three colour-0 vertices are mutually connected.
The idea is to consider many {0, 1}-colourings and construct clauses that block
the graphs for which those colourings form a 010-colouring.

For each {0, 1}-colouring, we have a set of colour-0 vertices V0 and a set of
colour-1 vertices V1. Given a specific such colouring, the clause∨

i,j∈V1
i<j

eij ∨
∨

i,j,k∈V0
i<j<k

tijk

enforces that the colouring is not a 010-colouring of the graph since either a pair
of colour-1 vertices is connected or a set of three colour-0 vertices is mutually
connected.

Due to the large number of possible {0, 1}-colourings, we only consider
colourings with less than or equal to dn2 e colour-1 vertices. Colourings with
more than dn2 e colour-1 vertices are unlikely to be 010-colourings and in practice
were not useful in blocking 010-colourable graphs.

4.5 Encoding Isomorphism Blocking Clauses

We want to block as many isomorphic graphs using a small number of clauses
before passing the instance to the SAT solver. Following Codish et al. [22] we
use symmetry breaking constraints that enforce a certain lexicographical order
between rows of the graph’s adjacency matrix. We denote this as the cubic

A SAT+CAS Attack on the Minimum Kochen–Specker Problem 11

method as it adds O(n3) clauses for graphs of order n. Given an adjacency
matrix A of a graph, we define Ai,j as the ith row of A without columns i and j.
Codish et al. prove that up to isomorphism every graph can be represented by an
adjacency matrix A for which Ai,j is lexicographically equal or smaller than Aj,i

for all 1 ≤ i < j ≤ n.
We express that Ai,j = [x1, x2, . . . , xn] is lexicographically equal or less than

Aj,i = [y1, y2, . . . , yn] using 3n−2 clauses and auxiliary variables a1, . . . , an−1 [44].
The clauses are ¬xk ∨ yk ∨ ¬ak−1, ¬xk ∨ ak ∨ ¬ak−1, and yk ∨ ak ∨ ¬ak−1 for
k = 1, . . . , n− 1. The literal ¬a0 is omitted and the clause ¬xn ∨ yn ∨ ¬an−1 is
also included.

5 Embeddability Checking

We refer to the solutions generated by the SAT solver as KS candidates and we
check the embeddability of a KS candidate using an SMT solver. A KS candidate
that is embeddable is a KS graph and its embedding is a KS system. Our
embeddability checking algorithm consists of two parts. The first part is a direct
integration of Uijlen and Westerbaan’s vector assignment algorithm [61], which
finds all possible interpretations to describe the orthogonal relations between the
vectors. We define free vectors as vectors that have not been fixed as the cross
product of two vectors. Of all possible interpretations, we first choose the one
with the least number of free vectors, since such an assignment is likely to be
solved in the least amount of time. The second part of the algorithm applies an
SMT solver to determine the satisfiability of an interpretation. An interpretation
generated by Uijlen and Westerbaan’s algorithm is converted into a set of cross
and dot product equations, and these equations are passed to the theorem prover
Z3 [25]. Denoting each vertex in a KS candidate as vi and its corresponding
vector representation as Vi, we form the following constraints:

1. Vector Vi = (xi, yi, zi) ∈ R3 has nonnegative zi.
2. If vi is connected to vj and vk, then Vi = (Vj × Vk) or Vi = (Vk × Vj).
3. If vi are vj are not connected, then Vi is not collinear to Vj , and Vi × Vj 6= ~0.
4. If vi and vj are connected, then Vi and Vj are orthogonal, and Vi · Vj = 0.

Each orthogonal relation of the graph is expressed either by constraint 2 or
constraint 4, depending on the orthogonality interpretation used. Constraint 3
requires two vectors to be noncollinear rather than only being nonequal, since
we do not enforce vectors to have unit length (for reasons of efficiency). This is a
harmless optimization, since vectors can be projected onto the unit sphere without
disturbing these constraints. To check whether a graph is embeddable, we use Z3
to determine whether these nonlinear arithmetic constraints are satisfiable over
the real numbers. Z3 applies a CDCL-style algorithm to decide the satisfiability
of such equations [40].

Without loss of generality, to accelerate this process we fix two orthogonal
vectors to be the standard vectors (1, 0, 0) and (0, 1, 0). Given a system of
equations, Z3 attempts to find a solution for all variables. If a solution is found,

12 Zhengyu Li, Curtis Bright, and Vijay Ganesh

(a) (b)

Fig. 2: The only two minimal nonembeddable graphs of order 10. These are the
smallest squarefree graphs that are not embeddable.

it is an assignment of vertices to vectors satisfying all orthogonality constraints—
therefore proving the embeddability of the graph. Embeddability checking of
large graphs can be further optimized by precomputing minimal unembeddable
graphs, as defined below.

Definition 9. A proper subgraph is a subgraph that removes at least one vertex
or edge relative to the whole graph.

Definition 10. A graph G is said to be a minimal unembeddable graph if
any proper subgraph of G is embeddable.

A graph is unembeddable if it contains a minimal unembeddable subgraph.
Therefore, to optimize embeddability checking, we precomputed all minimal
unembeddable squarefree graphs up to order 12. To find all minimal unembeddable
subgraphs of size n, we use the PhysicsCheck pipeline with only the squarefree
constraints to generate all graphs of order n that are squarefree. We then perform
an embeddability check on each graph to determine if it is embeddable. After
completing the embeddability check on all smaller orders, we were able to complete
the check on order n quickly using the following proposition.

Proposition 1. A graph is not minimally unembeddable if it has a vertex of
degree less than 2.

We provide the following justification for Proposition 1: If a graph has a
vertex of degree less than 2, it either has a vertex of degree 1 or 0. In either case,
assuming that it is minimally unembeddable generates a contradiction since its
subgraph without the degree-1 or degree-0 vertex must also be unembeddable.
We generate all squarefree graphs up to order 12 that have minimum vertex
degree 2 and decide their embeddability. The embeddability of most graphs can
be determined on the first assignment in less than 1 second. If the satisfiability of
an interpretation is not determined within 10 seconds, we move on to a different
orthogonality interpretation and attempt the satisfiability check again. This

A SAT+CAS Attack on the Minimum Kochen–Specker Problem 13

Fig. 3: A flowchart of our method, PhysicsCheck, for solving the KS problem. The
instance generator generates the SAT instance, encoding the KS problem, based
on the encodings given in Section 4. The formula is then simplified using the
CaDiCaL [9] SAT solver. The simplified instance is then passed to the SAT+CAS
tool (i.e., MapleSAT with orderly generation) either sequentially or in parallel
using the cube-and-conquer technique. Finally, an embeddability checker applies
the SMT solver Z3 to determine whether the candidate KS systems found are
indeed embeddable.

process continues until we determine the embeddability of a graph. Given a KS
candidate, if the candidate contains a minimal unembeddable subgraph, then the
candidate must be unembeddable. Using this property significantly speeds up the
embeddability checking process for KS candidates, since most candidates contain
an unembeddable subgraph of order 10, 11, or 12. We provide the two minimal
nonembeddable graphs of order 10 which appears frequently as subgraphs of KS
candidates in Figure 2. The result of the embeddability check will be further
discussed in Section 7.

6 Implementation

Directly solving the SAT instances with the encoding from Section 4 is feasible
only for smaller orders, since the number of graphs in the search increases
exponentially with the order. We implement two effective techniques to reduce
runtime. One is an orderly generation technique, which generates graphs in the
search space up to isomorphism, and the other is a parallelization technique. The
integration of these techniques is shown in Figure 3.

14 Zhengyu Li, Curtis Bright, and Vijay Ganesh

Order Speedup

16 6.5
17 13.6
18 37.8
19 104.5

Table 2: The implementation of SAT+CAS orderly generation provides the above
speedup. As the search space increases, orderly generation becomes more effective
since the number of isomorphic graphs in the search space is also increasing. We
did not provide the speedup factor for order greater than 19, since solving these
instances without the orderly generation technique would take too long.

Fig. 4: A flowchart of the orderly generation algorithm implemented as part of
PhysicsCheck’s SAT+CAS architecture.

6.1 Orderly Generation

Since the cubic isomorphism blocking constraints does not block all isomorphic
copies of the graph, the SAT solver still generates many copies of the same graph
up to isomorphism. Thus, we use a hybrid SAT and isomorphic-free generation
approach. The orderly isomorphic-free generation approach was developed inde-
pendently by Igor Faradžev [26] and Ronald Read [57] in 1978. To describe it,
we first define the following canonical representation of a graph.

Definition 11. An adjacency matrix M is canonical if every permutation of its
rows produces a matrix lexicographically greater than or equal to M , where the
lexicographical order is defined by concatenating the above-diagonal entries of the
columns of the adjacency matrix in order.

The parent of an n×n matrix A is the upper-left (n− 1)× (n− 1) submatrix
of A. Similarly, the children of an n×n matrix A is any extensions of A with size
(n+1)× (n+1) by adding an additional row and column. The orderly generation
method is based on the following two consequences of Definition 11:

1. Every isomorphic class of graphs only has one canonical representative.
2. If a matrix is canonical, then its parent is also canonical.

Note that the second property implies that if a matrix is not canonical, then
all of its children and grandchildren are not canonical. Therefore, we can reject

A SAT+CAS Attack on the Minimum Kochen–Specker Problem 15

all intermediate noncanonical matrices, as they cannot lead to a canonical matrix
in the search tree. Orderly generation works by recording intermediate canonical
objects and iteratively extending them by a row/column at a time until the
matrices have been extended to a full canonical matrix.

As described in Figure 4, in our SAT+CAS implementation, when the SAT
solver finds an intermediate matrix the canonicity of this matrix is determined
by a canonicity-checking routine implemented using the MathCheck system [11].
If the matrix is noncanonical, then a “blocking” clause is learned which removes
this matrix (and all of its children and grandchildren) from the search. Otherwise,
the matrix is canonical and the SAT solver proceeds as normal. We combine
this process with the symmetry breaking clauses of Codish et al. that canonical
matrices can be shown to satisfy [22, Def. 8]. The orderly generation technique
provides a speedup which experimentally increases exponentially as the order
increases, as demonstrated in Table 2.

As described in Figure 3, we simplify the SAT instance using the SAT solver
CaDiCaL [9] before solving the instance using MapleSAT [47]. As a preprocessing
step, we also run the orderly generation process on graphs with up to 12 vertices
and add the generated blocking clauses directly into the instance provided to
CaDiCaL—this allows the simplification to incorporate some of the knowledge
derived from the orderly generation process.

6.2 Parallelization

For orders greater than 20, parallelization is applied by dividing the instance into
smaller subproblems using the cube-and-conquer approach [35]. The approach
applies a lookahead solver [36] to partition a hard problem into many cubes and
offers very efficient solving time for some combinatorial problems.

During the partitioning step, a lookahead solver attempts to find the variables
that split the search space the most evenly. In our work, March_cu is used as the
lookahead solver [59]. The SAT instance is then solved under the assumption that
each cube is true, generating many subproblems that can be solved in parallel. We
terminate the splitting process once the number of undetermined edge variables
in each subproblem drops below a bound specified in advance.

7 Results

Given the CNF file with the encoded constraints, we use the aforementioned
techniques combined with the SAT+CAS approach to verify all previous results on
KS systems up to order 21 with an orders-of-magnitude speedup factor. Moreover,
we improve on the best known lower bound for a minimum KS system (see Table 3).
All computations were done on Intel E5-2683 CPUs @ 2.1GHz administrated by
Canada’s national advanced research computing (ARC) platform, and measured
in total CPU time. Our search in order 21 is over 1000 times faster than the
previous computational search of Uijlen and Westerbaan which was distributed
on approximately 300 CPU cores and took roughly three months [61].

16 Zhengyu Li, Curtis Bright, and Vijay Ganesh

Order Candidates Simplification Cubing Cube Simplification Solving

17 1 0.02 hrs N/A N/A 0.02 hrs
18 0 0.02 hrs N/A N/A 0.13 hrs
19 8 0.31 hrs N/A N/A 2.46 hrs
20 147 0.54 hrs N/A N/A 39.71 hrs
21 2,497 1.50 hrs 38 hrs 19.4 hrs 1,019 hrs
22 88,282 2.54 hrs 953.7 hrs 253.3 hrs 46,079 hrs

Table 3: A summary of our results in the Kochen–Specker problem on orders
17 ≤ n ≤ 22.

We apply cube-and-conquer and naive parallel SAT solving on order 21 and
22 due to the combinatorial explosion caused by the large order. We eliminate 75
edge variables from subproblems in order 21 and 90 edge variables in order 22
during the cubing process.

We simplify the SAT instance of each order by eliminating variables to speed
up solving. While simplifying the SAT instance, we aim to eliminate 60% of
the variables; otherwise, CaDiCaL stops simplifying after being called 100 times.
For order 21 and 22, additional simplification is applied on each subproblem
after the cubing process. Specifically, if more than 50% of the variables have
been eliminated from the instance already, we only call CaDiCaL once more on
each subproblem with a conflict limit of 200,000 since the instance is sufficiently
simplified. Otherwise, we decrease the amount of variables to eliminate to 50%,
or the simplification terminates if CaDiCaL is called 100 times once again. Some
cubes of order 22 with 90 edge variables eliminated define instances that are not
solved within 72 hours, so we perform additional cubing on these instances until
at least 125 edge variables have been eliminated.

As discussed in Section 5, we precompute all minimal nonembeddable sub-
graphs with less than 12 vertices. Uijlen and Westerbaan were unable to determine
the embeddability of one particular graph of order 14. Using our embeddability
checking approach along with the Z3 SMT solver, this graph is quickly shown to
be unembeddable. By comparing our sets of minimal unembeddable subgraphs
with Uijlen and Westerbaan’s online dataset of small graphs6, we find our minimal
unembeddable subgraphs from order 10 to 12 to be identical to theirs up to
isomorphism. This provides us with high confidence in the robustness of our
embeddability checking pipeline.

We compared our Kochen–Specker candidates with Uijlen and Westerbaan’s
findings, and have verified their conclusion that there is no KS system with less
than 22 vectors. It is natural that we obtained fewer candidates for each order
because Uijlen and Westerbaan did not require every vertex of a candidate to
be part of a triangle. In order 20, we found four additional KS candidates that
were not present in the collection of Uijlen and Westerbaan, indicating their

6 https://kochen-specker.info/smallGraphs/

A SAT+CAS Attack on the Minimum Kochen–Specker Problem 17

Fig. 5: One of the four graphs with 20 vertices that was not present in Uijlen and
Westerbaan’s enumeration. The four graphs satisfy all constraints mentioned in
Section 4, but are not embeddable, and therefore do not constitute a KS system.

search was incomplete. We present one of the missing graphs in Figure 5. We
have verified that these four additional graphs satisfy the constraints of a KS
candidate and therefore would be KS systems were they embeddable. Note that
not all KS candidates are minimal; some KS candidates contain a KS candidate
of smaller order as a subgraph.

All 90,935 KS candidates of order less than 23 are not embeddable.7 The
embeddability check is done quickly since all candidates (with the exception of
a single candidate in order 22) contain a minimal nonembeddable subgraph of
orders 10–12 (summarized in Table 4). Therefore, we conclude that the minimum
size of the KS system is at least 23.

7.1 Correctness of Results

It is natural to ask how confident we are that our pipeline and results are correct.
Whenever a complex set of encoders, solvers, CAS, and provers are used to prove
a mathematical result, it is important to have reasonable verification procedures
in place to ensure the correctness of said result. A complete verifiable (machine-
checkable) proof of our result is infeasible at this stage given the complexity
7 We provide another open source repository (https://github.com/BrianLi009/
PhysicsCheck_log) for log files, results, and additional scripts used to run Physic-
sCheck on Canada’s national advanced research computing (ARC) platform.

https://github.com/BrianLi009/PhysicsCheck_log
https://github.com/BrianLi009/PhysicsCheck_log

18 Zhengyu Li, Curtis Bright, and Vijay Ganesh

Order Canonical squarefree Minimal unembeddable Runtime

10 5,069 2 2.39 hrs
11 25,181 5 9.07 hrs
12 152,045 10 78.8 hrs

Table 4: Counts for the number of canonical squarefree graphs, the number of
minimal unembeddable graphs in order 10–12, and the computation time to
conduct embeddability check on canonical squarefree graphs.

of the CAS and solvers used and the difficulty of proving their correctness via
existing theorem provers or proof assistants. Further, while solvers are known
to produce verifiable proofs of UNSAT results, that by itself is not sufficient to
provide a high degree of confidence in a pipeline such as ours. We need a different
way to approach this problem.

Our approach is built on three ideas: first, extensive testing of all parts of our
systems; second, extensive end-to-end tests; and finally, and most importantly,
cross-verification of our pipeline against previously known results by Uijlen and
Westerbaan. These significant measures that we have taken considerably improve
our confidence in the results presented here.

Providing more context, we used our entire pipeline to cross-verify all KS
candidates from order 17 to 21 (except for the four new candidates that we
discovered) are isomorphic to the ones discovered by Uijlen and Westerbaan using
SageMath [60] and the NetworkX [30] graph theory package, a very different set
of systems from the ones we used.

We also conducted extensive cross-verification on the results (KS candidates)
produced by the SAT solver. For example, each solver-generated candidate is
passed into a verification script implemented using the NetworkX [30] graph
package to verify that they satisfy all encoded constraints (see Section 4), namely
the squarefree constraint, the minimum degree constraint, the triangle constraint,
and the noncolourability constraint. Moreover, we test the embeddability pipeline
by conducting verification on all embeddable subgraphs found in orders 10 to 12.
Specifically, if a graph is embeddable and corresponds to a set of vectors, we check
that no pair of vectors in the set are collinear, and a pair of vectors are orthogonal
if their corresponding vertices are connected. These extensive cross-verification
steps provide us with high confidence in the robustness of the PhysicsCheck
pipeline.

8 Conclusion

In this paper, we improve the lower bound of the minimum KS problem from 22
to 23, and provide a computational speedup by three orders of magnitude over
the previous best approach by Uijlen and Westerbaan (see Section 7). Moreover,
we leverage the new SAT+CAS paradigm along with orderly isomorph-free

A SAT+CAS Attack on the Minimum Kochen–Specker Problem 19

generation to provide a robust pipeline for the minimum KS problem. Compared
to previous work, our approach is less error-prone as it reduces the need for
custom-purpose search algorithms. Instead, we use heavily-tested SAT solvers
such as MapleSAT. Moreover, our method has extensive cross-verification in
place (see Section 7.1).

Finding the minimum KS system is not only a problem of great importance to
the foundations of quantum mechanics, but has direct applications to various fields
of quantum information processing, such as quantum cryptographic protocols [18],
zero-error classical communication [24], and dimension witnessing [29]. As a
consequence, a wide variety of techniques have been developed to address this
question over the past several decades. We add a novel class of techniques to this
body of work.

As previously mentioned, the SAT+CAS paradigm has been successfully used
to resolve a number of mathematical problems in combinatorics, number theory,
and geometry that had previously remained unsolved for many decades. With
this work we extend the reach of the SAT+CAS paradigm, for the first time,
to resolving combinatorial questions in the realm of foundations of quantum
mechanics.

9 Methods

9.1 Exhaustive Generation of KS Candidates.

Generating KS candidates of order n is an exhaustive task, meaning that we
want the SAT solver to output all possible solutions of the SAT instance. To
accomplish that, when we find a solution to the instance, we add a “blocking”
clause blocking this solution from the instance. We repeat such a procedure until
the instance is not satisfiable (UNSAT), which means that we have generated all
solutions exhaustively.

9.2 Cube-and-conquer and Parallelization.

We use March_cu as the cubing solver on the instance while specifying a certain
number of edge variables to eliminate. This procedure splits the instance into
subproblems by generating a set of cubes. To formulate each subproblem, we adjoin
the previously simplified instance with an individual cube, in other words, the cube
is being added as unit clauses in the instance. In our paper, each subproblem is
run on an individual core, though readers can customize parallelization strategies
based on the computational resources available.

9.3 Uijlen and Westerbaan’s Vector Assignment Algorithm

As described in Section 5, we use Uijlen and Westerbaan’s vector assignment
algorithm in our embeddability checking pipeline. The algorithm first fixes some
vectors, then derives cross-product relations for the remaining vectors, and finally,

20 Zhengyu Li, Curtis Bright, and Vijay Ganesh

it creates dot-product equations to relate pairs of cross-product expressions.
Depending on the choices of vectors in each step, different interpretations are
generated. The pseudocode is provided in Uijlen and Westerbaan’s paper, and
Python code is made available by them as well.

9.4 Running PhysicsCheck for the KS Problem

We provide a detailed overview of the methodology of our work. To find all KS
systems of order n, we first generate constraints in Section 4 for order n and
adjoin them together to form a SAT instance. Then we add the blocking clauses
generated by running orderly generation on graphs with up to 12 vertices to the
instance. The instance is then simplified using CaDiCaL until more than 60% of
the edge variables are eliminated, or until CaDiCaL is called 100 times. If cube-
and-conquer is enabled, we proceed with the cubing process on the instance by
specifying the number of variables to eliminate in every cube, then further simplify
and solve each subproblem. Otherwise, we pass the instance directly to MapleSAT.
Assuming that MapleSAT outputs some KS candidates, we proceed to check the
embeddability of each candidate. If a candidate contains one of the precomputed
minimal unembeddable subgraphs, we immediately conclude that this candidate
is unembeddable and not a KS system. If no minimal unembeddable subgraph
is found in a candidate, we then call the script to generate an orthogonality
assignment and use Z3 to determine the satisfiability of the corresponding system
of equations.

Our repository provides a driver script connecting all components mentioned
above. Each component of PhysicsCheck can be run independently; specifically,
users can call the instance generator, instance simplifier, MapleSAT solver (with
orderly generation), cube-and-conquer, and the embeddability checker. Users
can also customize the parameters of PhysicsCheck to optimize the runtime.
Some key parameters include the amount of simplification, when to simplify, and
the number of edge variables to eliminate during cubing. We discuss the exact
parameters used in the KS problem in Subsection 9.5. If the instances associated
with some cubes time out, those cubes can be adjoined into a single file and
‘cube.sh’ can be used to split those cubes deeper by increasing the number of
edge variables to remove.

9.5 Parameters Used for PhysicsCheck

Here we describe the exact parameters used to generate the results in Section 7.
While running the driver script ‘main.sh’, we set the order of KS systems to solve
for (using parameter n) and simplify until 60% of the edge variables are eliminated
(using parameter o). We call CaDiCaL after adding the noncanonical blocking
clauses (using parameter s). We also generate these noncanonical blocking clauses
in real-time (using parameter b). For order 21 and 22, cube-and-conquer is
enabled before calling MapleSAT. We eliminate 75 variables for order 21 and
90 variables for order 22 (using parameter r). Finally, we set parameter p to
1 to enable parallel cubing. All KS candidates of order n are generated to the

A SAT+CAS Attack on the Minimum Kochen–Specker Problem 21

file n.exhaust by MapleSAT, and running the check_embedability.sh script will
call the embeddability check on every candidate in n.exhaust. Since all minimal
unembeddable subgraph of order 10 to 12 have been pre-generated, the script will
first check whether each candidate contains any of the minimal unembeddable
subgraph. While calling check_embedability.sh, we set parameter n to be the
order, then enable minimal nonembeddable subgraph (using parameter s).

Author declarations

The authors declare no competing interests.

References

1. Ábrahám, E.: Building bridges between symbolic computation and satisfiability
checking. In: Proceedings of the 2015 ACM on International Symposium on Symbolic
and Algebraic Computation. pp. 1–6 (2015). https://doi.org/10.1145/2755996.
2756636

2. Ábrahám, E., Kremer, G.: Satisfiability checking: Theory and applications. In:
International Conference on Software Engineering and Formal Methods. pp. 9–23.
Springer (2016). https://doi.org/10.1007/978-3-319-41591-8_2

3. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult SAT
instances in the presence of symmetry. In: Proceedings 2002 Design Automa-
tion Conference (IEEE Cat. No. 02CH37324). pp. 731–736. IEEE (2002). https:
//doi.org/10.1109/DAC.2002.1012719

4. Aloul, F.A., Sakallah, K.A., Markov, I.L.: Efficient symmetry breaking for Boolean
satisfiability. IEEE Transactions on Computers 55(5), 549–558 (2006). https:
//doi.org/10.1109/TC.2006.75

5. Arends, F., Ouaknine, J., Wampler, C.W.: On searching for small Kochen-
Specker vector systems. In: International Workshop on Graph-Theoretic Con-
cepts in Computer Science. pp. 23–34. Springer (2011). https://doi.org/10.1007/
978-3-642-25870-1_4

6. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

7. BELL, J.S.: On the problem of hidden variables in quantum mechanics. Rev.
Mod. Phys. 38, 447–452 (Jul 1966). https://doi.org/10.1103/RevModPhys.38.
447, https://link.aps.org/doi/10.1103/RevModPhys.38.447

8. Bell, J.S., Bell, J.S.: Speakable and unspeakable in quantum mechanics: Collected
papers on quantum philosophy. Cambridge university press (2004). https://doi.
org/10.1017/CBO9780511815676

9. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M.J.H., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of SAT
Competition 2020 – Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

10. Bright, C., Cheung, K.K.H., Stevens, B., Kotsireas, I., Ganesh, V.: A SAT-based
resolution of Lam’s problem. In: Proceedings of the Thirty-Fifth AAAI Conference
on Artificial Intelligence. pp. 3669–3676 (2021), https://ojs.aaai.org/index.
php/AAAI/article/view/16483

https://doi.org/10.1145/2755996.2756636
https://doi.org/10.1145/2755996.2756636
https://doi.org/10.1145/2755996.2756636
https://doi.org/10.1145/2755996.2756636
https://doi.org/10.1007/978-3-319-41591-8_2
https://doi.org/10.1007/978-3-319-41591-8_2
https://doi.org/10.1109/DAC.2002.1012719
https://doi.org/10.1109/DAC.2002.1012719
https://doi.org/10.1109/DAC.2002.1012719
https://doi.org/10.1109/DAC.2002.1012719
https://doi.org/10.1109/TC.2006.75
https://doi.org/10.1109/TC.2006.75
https://doi.org/10.1109/TC.2006.75
https://doi.org/10.1109/TC.2006.75
https://doi.org/10.1007/978-3-642-25870-1_4
https://doi.org/10.1007/978-3-642-25870-1_4
https://doi.org/10.1007/978-3-642-25870-1_4
https://doi.org/10.1007/978-3-642-25870-1_4
www.SMT-LIB.org
https://doi.org/10.1103/RevModPhys.38.447
https://doi.org/10.1103/RevModPhys.38.447
https://doi.org/10.1103/RevModPhys.38.447
https://doi.org/10.1103/RevModPhys.38.447
https://link.aps.org/doi/10.1103/RevModPhys.38.447
https://doi.org/10.1017/CBO9780511815676
https://doi.org/10.1017/CBO9780511815676
https://doi.org/10.1017/CBO9780511815676
https://doi.org/10.1017/CBO9780511815676
https://ojs.aaai.org/index.php/AAAI/article/view/16483
https://ojs.aaai.org/index.php/AAAI/article/view/16483

22 Zhengyu Li, Curtis Bright, and Vijay Ganesh

11. Bright, C., Ganesh, V., Heinle, A., Kotsireas, I., Nejati, S., Czarnecki, K.: Math-
Check2: A SAT+CAS verifier for combinatorial conjectures. In: International
Workshop on Computer Algebra in Scientific Computing. pp. 117–133. Springer
(2016). https://doi.org/10.1007/978-3-319-45641-6_9

12. Bright, C., Gerhard, J., Kotsireas, I., Ganesh, V.: Effective problem solving using
SAT solvers. In: Maple in Mathematics Education and Research, Communications
in Computer and Information Science, vol. 1125, pp. 205–219. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-41258-6_15

13. Bright, C., Kotsireas, I., Ganesh, V.: SAT solvers and computer algebra systems: A
powerful combination for mathematics. In: Proceedings of the 29th International
Conference on Computer Science and Software Engineering. pp. 323–328 (2019),
https://dl.acm.org/doi/abs/10.5555/3370272.3370309

14. Bright, C., Kotsireas, I., Ganesh, V.: Applying computer algebra systems with
SAT solvers to the Williamson conjecture. Journal of Symbolic Computation 100,
187–209 (2020). https://doi.org/10.1016/j.jsc.2019.07.024

15. Bright, C., Kotsireas, I., Ganesh, V.: When satisfiability solving meets symbolic
computation. Communications of the ACM 65(7), 64–72 (Jul 2022). https://doi.
org/10.1145/3500921

16. Bright, C., Kotsireas, I.S., Heinle, A., Ganesh, V.: Enumeration of complex Golay
pairs via programmatic SAT. In: Proceedings of the 2018 ACM on International
Symposium on Symbolic and Algebraic Computation, ISSAC 2018, New York, NY,
USA, July 16–19, 2018. pp. 111–118 (2018). https://doi.org/10.1145/3208976.
3209006

17. Budroni, C., Cabello, A., Gühne, O., Kleinmann, M., Larsson, J.Å.: Quantum con-
textuality. arXiv preprint arXiv:2102.13036 (2021). https://doi.org/10.48550/
arXiv.2102.13036

18. Cabello, A., D’Ambrosio, V., Nagali, E., Sciarrino, F.: Hybrid ququart-encoded
quantum cryptography protected by Kochen-Specker contextuality. Physical Review
A 84(3), 030302 (2011). https://doi.org/10.1103/PhysRevA.84.030302

19. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: Automati-
cally generating inputs of death. ACM Transactions on Information and System Se-
curity (TISSEC) 12(2), 1–38 (2008). https://doi.org/10.1145/1455518.1455522

20. Canas, G., Arias, M., Etcheverry, S., Gómez, E.S., Cabello, A., Xavier, G.B.,
Lima, G.: Applying the simplest Kochen-Specker set for quantum information
processing. Physical review letters 113(9), 090404 (2014). https://doi.org/10.
1103/PhysRevLett.113.090404

21. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability
solving. Formal methods in system design 19(1), 7–34 (2001). https://doi.org/
10.1023/A:1011276507260

22. Codish, M., Miller, A., Prosser, P., Stuckey, P.J.: Constraints for symmetry breaking
in graph representation. Constraints 24(1), 1–24 (Aug 2019). https://doi.org/
10.1007/s10601-018-9294-5

23. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of
the third annual ACM symposium on Theory of computing. pp. 151–158 (1971).
https://doi.org/10.1145/800157.805047

24. Cubitt, T.S., Leung, D., Matthews, W., Winter, A.: Improving zero-error classical
communication with entanglement. Physical Review Letters 104(23), 230503 (2010).
https://doi.org/10.1103/PhysRevLett.104.230503

25. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: International conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–340.
Springer (2008). https://doi.org/10.1007/978-3-540-78800-3_24

https://doi.org/10.1007/978-3-319-45641-6_9
https://doi.org/10.1007/978-3-319-45641-6_9
https://doi.org/10.1007/978-3-030-41258-6_15
https://doi.org/10.1007/978-3-030-41258-6_15
https://dl.acm.org/doi/abs/10.5555/3370272.3370309
https://doi.org/10.1016/j.jsc.2019.07.024
https://doi.org/10.1016/j.jsc.2019.07.024
https://doi.org/10.1145/3500921
https://doi.org/10.1145/3500921
https://doi.org/10.1145/3500921
https://doi.org/10.1145/3500921
https://doi.org/10.1145/3208976.3209006
https://doi.org/10.1145/3208976.3209006
https://doi.org/10.1145/3208976.3209006
https://doi.org/10.1145/3208976.3209006
https://doi.org/10.48550/arXiv.2102.13036
https://doi.org/10.48550/arXiv.2102.13036
https://doi.org/10.48550/arXiv.2102.13036
https://doi.org/10.48550/arXiv.2102.13036
https://doi.org/10.1103/PhysRevA.84.030302
https://doi.org/10.1103/PhysRevA.84.030302
https://doi.org/10.1145/1455518.1455522
https://doi.org/10.1145/1455518.1455522
https://doi.org/10.1103/PhysRevLett.113.090404
https://doi.org/10.1103/PhysRevLett.113.090404
https://doi.org/10.1103/PhysRevLett.113.090404
https://doi.org/10.1103/PhysRevLett.113.090404
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1007/s10601-018-9294-5
https://doi.org/10.1007/s10601-018-9294-5
https://doi.org/10.1007/s10601-018-9294-5
https://doi.org/10.1007/s10601-018-9294-5
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1103/PhysRevLett.104.230503
https://doi.org/10.1103/PhysRevLett.104.230503
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24

A SAT+CAS Attack on the Minimum Kochen–Specker Problem 23

26. Faradžev, I.: Constructive enumeration of combinatorial objects. In: Problèmes
combinatoires et théorie des graphes. pp. 131–135 (1978)

27. Ganesh, V., Vardi, M.Y.: On the unreasonable effectiveness of SAT solvers (2020),
https://www.cs.rice.edu/~vardi/papers/SATSolvers21.pdf

28. Gerlāch, W., Stern, O.: Der experimentelle nachweis der richtungsquantelung im
magnetfeld. Zeitschrift für Physik 9, 349–352 (1922). https://doi.org/10.1007/
BF01326983

29. Gühne, O., Budroni, C., Cabello, A., Kleinmann, M., Larsson, J.Å.: Bounding the
quantum dimension with contextuality. Physical Review A 89(6), 062107 (2014).
https://doi.org/10.1103/PhysRevA.89.062107

30. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics,
and function using NetworkX. In: Varoquaux, G., Vaught, T., Millman, J. (eds.)
Proceedings of the 7th Python in Science Conference. pp. 11 – 15. Pasadena, CA
USA (2008)

31. Held, C.: The Kochen-Specker Theorem. In: Zalta, E.N. (ed.) The Stanford En-
cyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Spring
2018 edn. (2018)

32. Heule, M.: Schur number five. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 32 (2018). https://doi.org/10.1609/aaai.v32i1.12209

33. Heule, M.J.H., Kauers, M., Seidl, M.: New ways to multiply 3× 3-matrices. Journal
of Symbolic Computation 104, 899–916 (May 2021). https://doi.org/10.1016/
j.jsc.2020.10.003

34. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean
pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D.
(eds.) Theory and Applications of Satisfiability Testing – SAT 2016. pp. 228–245.
Springer International Publishing, Cham (2016)

35. Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: Guiding
CDCL SAT solvers by lookaheads. In: Haifa Verification Conference. pp. 50–65.
Springer (2011). https://doi.org/10.1007/978-3-642-34188-5_8

36. Heule, M.J.H., van Maaren, H.: Look-ahead based SAT solvers. Handbook of
satisfiability 185, 155–184 (2009). https://doi.org/10.3233/FAIA200988

37. Huang, Y.F., Li, C.F., Zhang, Y.S., Pan, J.W., Guo, G.C.: Experimental test of
the Kochen-Specker theorem with single photons. Physical Review Letters 90(25)
(Jun 2003). https://doi.org/10.1103/physrevlett.90.250401

38. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and reasoning
about systems. Cambridge university press (2004). https://doi.org/10.1017/
CBO9780511810275

39. Jost, R.: Measures on the finite dimensional subspaces of a Hilbert space: remarks
to a theorem by A. M. Gleason. Studies in Mathematical Physics: Essays in
Honour of Valentine Bergmann pp. 209–228 (1976). https://doi.org/10.1515/
9781400868940-011

40. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: International Joint
Conference on Automated Reasoning. pp. 339–354. Springer (2012). https://doi.
org/10.1007/978-3-642-31365-3_27

41. Junttila, T., Karppa, M., Kaski, P., Kohonen, J.: An adaptive prefix-assignment
technique for symmetry reduction. Journal of Symbolic Computation 99, 21–49
(Jul 2020). https://doi.org/10.1016/j.jsc.2019.03.002

42. Kaufmann, D., Biere, A., Kauers, M.: Verifying large multipliers by combining
SAT and computer algebra. In: 2019 Formal Methods in Computer Aided Design
(FMCAD). IEEE (Oct 2019). https://doi.org/10.23919/fmcad.2019.8894250

https://www.cs.rice.edu/~vardi/papers/SATSolvers21.pdf
https://doi.org/10.1007/BF01326983
https://doi.org/10.1007/BF01326983
https://doi.org/10.1007/BF01326983
https://doi.org/10.1007/BF01326983
https://doi.org/10.1103/PhysRevA.89.062107
https://doi.org/10.1103/PhysRevA.89.062107
https://doi.org/10.1609/aaai.v32i1.12209
https://doi.org/10.1609/aaai.v32i1.12209
https://doi.org/10.1016/j.jsc.2020.10.003
https://doi.org/10.1016/j.jsc.2020.10.003
https://doi.org/10.1016/j.jsc.2020.10.003
https://doi.org/10.1016/j.jsc.2020.10.003
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.3233/FAIA200988
https://doi.org/10.3233/FAIA200988
https://doi.org/10.1103/physrevlett.90.250401
https://doi.org/10.1103/physrevlett.90.250401
https://doi.org/10.1017/CBO9780511810275
https://doi.org/10.1017/CBO9780511810275
https://doi.org/10.1017/CBO9780511810275
https://doi.org/10.1017/CBO9780511810275
https://doi.org/10.1515/9781400868940-011
https://doi.org/10.1515/9781400868940-011
https://doi.org/10.1515/9781400868940-011
https://doi.org/10.1515/9781400868940-011
https://doi.org/10.1007/978-3-642-31365-3_27
https://doi.org/10.1007/978-3-642-31365-3_27
https://doi.org/10.1007/978-3-642-31365-3_27
https://doi.org/10.1007/978-3-642-31365-3_27
https://doi.org/10.1016/j.jsc.2019.03.002
https://doi.org/10.1016/j.jsc.2019.03.002
https://doi.org/10.23919/fmcad.2019.8894250
https://doi.org/10.23919/fmcad.2019.8894250

24 Zhengyu Li, Curtis Bright, and Vijay Ganesh

43. Kautz, H.A., Selman, B., et al.: Planning as satisfiability. In: ECAI. vol. 92, pp. 359–
363. Citeseer (1992), http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.35.9443&rep=rep1&type=pdf

44. Knuth, D.E.: The art of computer programming, Volume 4, Fascicle 6: Satisfiabil-
ity. Addison-Wesley Professional (2015), https://dl.acm.org/doi/abs/10.5555/
2898950

45. Kochen, S., Specker, E.P.: The Problem of Hidden Variables in Quantum Mechanics.
Journal of Mathematics and Mechanics 17, 59–87 (1967). https://doi.org/10.
1007/978-94-010-1795-4_17

46. Liang, J., Ganesh, V., Poupart, P., Czarnecki, K.: Exponential recency weighted
average branching heuristic for SAT solvers. In: Proceedings of the AAAI Conference
on Artificial Intelligence. vol. 30 (2016). https://doi.org/10.1609/aaai.v30i1.
10439

47. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching
heuristic for SAT solvers. In: Theory and Applications of Satisfiability Testing - SAT
2016 - 19th International Conference, Bordeaux, France, July 5–8, 2016, Proceedings.
pp. 123–140 (2016). https://doi.org/10.1007/978-3-319-40970-2_9

48. Mahzoon, A., Große, D., Drechsler, R.: Combining symbolic computer algebra and
Boolean satisfiability for automatic debugging and fixing of complex multipliers. In:
2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE (Jul
2018). https://doi.org/10.1109/isvlsi.2018.00071

49. Mahzoon, A., Große, D., Scholl, C., Konrad, A., Drechsler, R.: Formal
verification of modular multipliers using symbolic computer algebra and
Boolean satisfiability. In: 59th Design Automation Conference (DAC)
(2022), https://www.informatik.uni-bremen.de/agra/doc/konf/Formal_
Verification_of_Modular_Multipliers.pdf

50. McKay, B.D., Piperno, A.: Practical graph isomorphism, II. Journal of Symbolic
Computation 60, 94–112 (2014). https://doi.org/10.1016/j.jsc.2013.09.003

51. Neiman, D., Mackey, J., Heule, M.J.H.: Tighter bounds on directed Ramsey number
R(7) (2020). https://doi.org/10.48550/ARXIV.2011.00683

52. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002).
https://doi.org/10.1119/1.1463744

53. Pavičić, M., Merlet, J.P., McKay, B., Megill, N.D.: Kochen–Specker vectors. Journal
of Physics A: Mathematical and General 38(7), 1577–1592 (Feb 2005). https:
//doi.org/10.1088/0305-4470/38/7/013

54. Penrose, R.: On Bell non-locality without probabilities: some curious geometry.
Quantum Reflections, Cambridge University Press, Cambridge pp. 1–27 (2000),
https://people.maths.ox.ac.uk/lmason/Tn/34/TN34-09.pdf

55. Peres, A.: Two simple proofs of the Kochen–Specker theorem. Journal of Physics
A: Mathematical and General 24(4), L175–L178 (Feb 1991). https://doi.org/10.
1088/0305-4470/24/4/003

56. Peres, A.: Quantum theory: concepts and methods. Springer (2002). https://doi.
org/10.1007/0-306-47120-5

57. Read, R.C.: Every one a winner or how to avoid isomorphism search when catalogu-
ing combinatorial configurations. In: Annals of Discrete Mathematics, vol. 2, pp.
107–120. Elsevier (1978), https://doi.org/10.1016/S0167-5060(08)70325-X

58. Savela, J., Oikarinen, E., Järvisalo, M.: Finding periodic apartments via Boolean
satisfiability and orderly generation. In: EPiC Series in Computing. EasyChair
(2020). https://doi.org/10.29007/k8jd

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.35.9443&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.35.9443&rep=rep1&type=pdf
https://dl.acm.org/doi/abs/10.5555/2898950
https://dl.acm.org/doi/abs/10.5555/2898950
https://doi.org/10.1007/978-94-010-1795-4_17
https://doi.org/10.1007/978-94-010-1795-4_17
https://doi.org/10.1007/978-94-010-1795-4_17
https://doi.org/10.1007/978-94-010-1795-4_17
https://doi.org/10.1609/aaai.v30i1.10439
https://doi.org/10.1609/aaai.v30i1.10439
https://doi.org/10.1609/aaai.v30i1.10439
https://doi.org/10.1609/aaai.v30i1.10439
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1109/isvlsi.2018.00071
https://doi.org/10.1109/isvlsi.2018.00071
https://www.informatik.uni-bremen.de/agra/doc/konf/Formal_Verification_of_Modular_Multipliers.pdf
https://www.informatik.uni-bremen.de/agra/doc/konf/Formal_Verification_of_Modular_Multipliers.pdf
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.48550/ARXIV.2011.00683
https://doi.org/10.48550/ARXIV.2011.00683
https://doi.org/10.1119/1.1463744
https://doi.org/10.1119/1.1463744
https://doi.org/10.1088/0305-4470/38/7/013
https://doi.org/10.1088/0305-4470/38/7/013
https://doi.org/10.1088/0305-4470/38/7/013
https://doi.org/10.1088/0305-4470/38/7/013
https://people.maths.ox.ac.uk/lmason/Tn/34/TN34-09.pdf
https://doi.org/10.1088/0305-4470/24/4/003
https://doi.org/10.1088/0305-4470/24/4/003
https://doi.org/10.1088/0305-4470/24/4/003
https://doi.org/10.1088/0305-4470/24/4/003
https://doi.org/10.1007/0-306-47120-5
https://doi.org/10.1007/0-306-47120-5
https://doi.org/10.1007/0-306-47120-5
https://doi.org/10.1007/0-306-47120-5
https://doi.org/10.1016/S0167-5060(08)70325-X
https://doi.org/10.29007/k8jd
https://doi.org/10.29007/k8jd

A SAT+CAS Attack on the Minimum Kochen–Specker Problem 25

59. van der Tak, P., Heule, M.J.H., Biere, A.: Concurrent cube-and-conquer. In: Theory
and Applications of Satisfiability Testing – SAT 2012, pp. 475–476. Springer Berlin
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8_42

60. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
9.6) (2022), https://www.sagemath.org

61. Uijlen, S., Westerbaan, B.: A Kochen-Specker system has at least 22 vectors.
New Generation Computing 34(1), 3–23 (2016). https://doi.org/10.1007/
s00354-016-0202-5

62. Zimba, J., Penrose, R.: On bell non-locality without probabilities: More curious
geometry. Studies in History and Philosophy of Science Part A 24(5), 697–720 (Dec
1993). https://doi.org/10.1016/0039-3681(93)90061-n

63. Zulkoski, E., Bright, C., Heinle, A., Kotsireas, I., Czarnecki, K., Ganesh, V.:
Combining SAT solvers with computer algebra systems to verify combinatorial
conjectures. Journal of Automated Reasoning 58(3), 313–339 (2017). https://doi.
org/10.1007/s10817-016-9396-y

64. Zulkoski, E., Ganesh, V., Czarnecki, K.: Mathcheck: A math assistant via a com-
bination of computer algebra systems and SAT solvers. In: Felty, A.P., Middel-
dorp, A. (eds.) Automated Deduction - CADE-25 - 25th International Confer-
ence on Automated Deduction, Berlin, Germany, August 1–7, 2015, Proceed-
ings. Lecture Notes in Computer Science, vol. 9195, pp. 607–622. Springer (2015).
https://doi.org/10.1007/978-3-319-21401-6_41

https://doi.org/10.1007/978-3-642-31612-8_42
https://doi.org/10.1007/978-3-642-31612-8_42
https://doi.org/10.1007/s00354-016-0202-5
https://doi.org/10.1007/s00354-016-0202-5
https://doi.org/10.1007/s00354-016-0202-5
https://doi.org/10.1007/s00354-016-0202-5
https://doi.org/10.1016/0039-3681(93)90061-n
https://doi.org/10.1016/0039-3681(93)90061-n
https://doi.org/10.1007/s10817-016-9396-y
https://doi.org/10.1007/s10817-016-9396-y
https://doi.org/10.1007/s10817-016-9396-y
https://doi.org/10.1007/s10817-016-9396-y
https://doi.org/10.1007/978-3-319-21401-6_41
https://doi.org/10.1007/978-3-319-21401-6_41

	A SAT Solver + Computer Algebra Attack on the Minimum Kochen–Specker Problem

