
Algorithms for Lattice Basis Reduction

Curtis Bright

December 15, 2008

Abstract

This report contains an exposition of the theory behind the Lenstra-
Lenstra-Lovász lattice basis reduction algorithm [2] and its precursors.

1 Introduction

The primary mathematical object studied in this report is the lattice. Given
d linearly independent vectors b1, . . . ,bd ∈ Rn, a lattice L ⊂ Rn generated by
B = {b1, . . . ,bd} is defined as

L(B) =

{
d∑
i=1

xibi : xi ∈ Z

}
.

That is, the “integer span” of vectors in B (abbreviated
∑
i Zbi). This report

deals with the case when the bi are integer vectors.
The set of vectors B is a basis of L. When |B| > 1 the lattice L(B) has an

infinite number of bases, but most are cumbersome to work with: the goal of
LLL is to find nice or reduced bases. For example, the row vectors in the matrix

B =

b1

b2

b3

 =

109983 38030 97734
330030 114118 293274
277753 124767 173357


generate a lattice in R3. However, the row vectors in

B′ =

b′1b′2
b′3

 =

−15 6 −42
−47 25 11

4 65 −1


define the same lattice, and in general is a much easier basis to work with.

The fact that B and B′ generate the same lattice may be seen by the exis-
tence of the change-of-basis matrix

C =

−2715 −1358 1358
−8147 −4075 4075
−5243 −3904 3905

 ,
1

and it follows
B = CB′. (1)

The entries in the change-of-basis from B to B′ (and vice versa) must be
integers: if b ∈ L(B), then b =

∑
i xibi for some x ∈ Rd. Using the change-of-

basis matrix we get b =
∑
i

∑
j xjcijb

′
i, requiring

∑
j xjcij ∈ Z, which is only

true when cij ∈ Z for arbitrary x ∈ Zd.
Therefore, both C and C−1 must have integer entries: such matrices are

known as unimodular and they have determinant ±1. Then (1) yields

|det(B)| = |det(B′)| ,

so all bases of a lattice have the same absolute determinant, denoted vol(L)
after the volume of the d-dimensional parallelotope formed by the [0, 1)-span of
the basis vectors:

vol(L) = |det(B)| = volume

{
d∑
i=1

xibi : xi ∈ [0, 1)

}
.

Although the basis used is mathematically irrelevant, shorter vectors are
easier to work with. Taking this view, the best possible basis would have b1

as the shortest nonzero vector in the lattice1 and in general bi as the shortest
nonzero vector such that b1, . . . ,bi is linearly independent. Such a basis is
called minimal.

2 Gram-Schmidt Orthogonalization

Given a basis b1, . . . ,bd for a subspace of Rn, the Gram-Schmidt process finds
an orthogonal basis b∗1, . . . ,b

∗
d of that subspace. Since a lattice is not a subspace,

it cannot be directly used to find a new lattice basis, but will nevertheless be an
important part of the algorithms we will see. The orthogonal basis is computed
as follows:

b∗1 = b1

b∗2 = b2 − projb∗1 b2

b∗3 = b3 − projb∗1 b3 − projb∗2 b3

...

b∗d = bd −
d−1∑
j=1

projb∗j bd

Intuitively, b∗i is the component of bi which is orthogonal to b1, . . . ,bi−1, i.e.,

b∗i = projspan(b1,...,bi−1)⊥ bi.

1There will always be at least two nonzero vectors of shortest norm, but ties can be broken
arbitrarily.

2

Let µi,j be the coefficient used in projb∗j bi, i.e.,

µi,j =
bi · b∗j
b∗j · b∗j

=
bi · b∗j∥∥b∗j∥∥2 .

In matrix form, Gram-Schmidt reads:

b1

...
bd

 =


1
µ2,1 1
µ3,1 µ3,2 1

...
. . .

µd,1 µd,2 · · · µd,d−1 1


b
∗
1
...
b∗d


Since the b∗i are orthogonal, taking the determinant:

vol(L(B)) =

d∏
i=1

‖b∗i ‖ ≤
d∏
i=1

‖bi‖

since
∥∥b∗i ∥∥2 ≤ ∥∥b∗i ∥∥2 +

∥∥∑i−1
j=1 µi,jb

∗
j

∥∥2
=
∥∥b∗i +

∑i−1
j=1 µi,jb

∗
j

∥∥2 (b∗i · b∗j = 0)

=
∥∥bi∥∥2

Intuitively,
∏d
i=1 ‖bi‖ measures the “nonorthogonality” in a basis. If it is ap-

proximately vol(L(B)) then b1, . . . ,bd are almost orthogonal. The reductions
we’ll see will bound the permitted amount of nonorthogonality in a basis.

3 Lagrange’s 2D Algorithm

To motivate the reductions in general dimension, we first describe an algorithm
which finds a minimal basis in two dimensions. It was known to Lagrange in
1773, though it is also sometimes called Gauss’ Algorithm. It is similar in style
to Euclid’s famous gcd algorithm: the vector norms are continually decreased
by subtracting multiples of one vector from the other.

Algorithm 1 LagrangeReduce(b1, b2)

Input: A basis b1,b2 ∈ R2 for a lattice L.
Output: A minimal basis b1,b2 ∈ R2 of L.
1. repeat
2. if ‖b1‖ > ‖b2‖ then
3. swap b1 and b2

4. end if
5. µ2,1 := (b1 · b2) / ‖b1‖2
6. b2 := b2 − bµ2,1eb1

7. until ‖b1‖ ≤ ‖b2‖

3

After line 6 we could perform the update µ2,1 := µ2,1 − bµ2,1e, which shows
at the end of the loop we have |µ2,1| ≤ 1

2 . Along with ‖b1‖ ≤ ‖b2‖, this is
enough to show b1,b2 is a minimal basis. Let b = αb1 + βb2 be an arbitrary
nonzero element of L.

First, we will show ‖b1‖ ≤ ‖b‖, i.e., b1 is the smallest nonzero vector.

‖b‖2 = ‖αb1 + βb2‖2

= α2 ‖b1‖2 + 2αβ (b1 · b2) + β2 ‖b2‖2

≥ α2 ‖b1‖2 − αβ ‖b1‖2 + β2 ‖b2‖2 (− 1
2 ≤ µ2,1)

≥
(
α2 − αβ + β2

)
‖b1‖2 (‖b1‖ ≤ ‖b2‖)

≥ ‖b1‖2 (α 6= 0 or β 6= 0)

Next, we will show ‖b2‖ ≤ ‖b‖ when β 6= 0, i.e., b2 is the smallest nonzero
vector not a multiple of b1.

‖b‖2 = ‖αb1 + βb2‖2

= α2 ‖b1‖2 + 2αβ (b1 · b2) + β2 ‖b2‖2 +
(
β2 ‖b1‖2 − β2 ‖b1‖2

)
= β2

(
‖b2‖2 − ‖b1‖2

)
+
(
α2 + β2

)
‖b1‖2 + 2αβ (b1 · b2)

≥ β2
(
‖b2‖2 − ‖b1‖2

)
+
(
α2 − αβ + β2

)
‖b1‖2

≥ β2
(
‖b2‖2 − ‖b1‖2

)
+ ‖b1‖2 +

(
‖b2‖2 − ‖b2‖2

)
=
(
β2 − 1

) (
‖b2‖2 − ‖b1‖2

)
+ ‖b2‖2

≥ ‖b2‖2 (β 6= 0)

Also, min{‖b1‖ , ‖b2‖} strictly decreases on every iteration except the last, and
there are only finitely many lattice vectors shorter than any constant, so the al-
gorithm must terminate. See the attached figure for an example of the algorithm
running on the lattice with basis

B =

[
b1

b2

]
=

[
1
√

3

1 −
√

3

]
. (2)

Lastly, we give an upper bound on ‖b1‖ ‖b2‖ in terms of vol(L(B)):

‖b2‖2 = ‖b∗2 + µ2,1b
∗
1‖

2

= ‖b∗2‖
2

+ 2µ2,1 (b∗2 · b∗1) + µ2
2,1 ‖b∗1‖

2

= ‖b∗2‖
2

+ µ2
2,1 ‖b1‖2

≤ ‖b∗2‖
2

+ 1
4 ‖b2‖2

3
4 ‖b2‖2 ≤ ‖b∗2‖

2

‖b2‖ ≤ 2√
3
‖b∗2‖

‖b1‖ ‖b2‖ ≤ 2√
3

vol(L(B))

4

Note that the basis (2) has ‖b1‖ ‖b2‖ = 2√
3

vol(L(B)), showing that γ2 = 2√
3

is

the best possible upper bound in dimension 2.

4 Hermite’s Algorithm

In the 1840s Hermite described two slightly different lattice reduction algo-
rithms in letters to Jacobi. Here we discuss his second algorithm, which is a
generalization of Lagrange’s Algorithm to n dimensions.

Algorithm 2 HermiteReduce(d,b1, . . . ,bd)

Input: A basis b1, . . . ,bd ∈ Rn for a lattice L.
Output: A Hermite-reduced basis b1, . . . ,bd ∈ Rn of L.
1. repeat
2. if ‖b1‖ > ‖bi‖ for some i = 2, . . . , d then
3. swap b1 and bi, where bi has minimal norm
4. end if
5. for i = 2 to d do
6. µi,1 := (b1 · bi) / ‖b1‖2
7. end for
8. if d > 2 then
9. HermiteReduce(d− 1,b2 − µ2,1b1, . . . ,bd − µd,1bd)

10. apply reduction operations from above to (b2, . . . ,bd)
11. end if
12. for i = 2 to d do
13. µi,1 := (b1 · bi) / ‖b1‖2
14. bi := bi − bµi,1eb1

15. end for
16. until ‖b1‖ ≤ ‖bi‖ for all i = 2, . . . , d

By induction on d Hermite was able to prove that this algorithm always
terminates and the output basis satisfies

d∏
i=1

‖bi‖ ≤
√
γ2d−1

d
vol(L).

So there exists a constant γd such that every lattice L of dimension d has some
basis b1, . . . ,bd with

∏d
i=1 ‖bi‖ ≤

√
γd
d vol(L), and Hermite’s Algorithm shows

γd ≤ γd−12 . In fact, γd = Θ(d): for large d, d
2πe < γd <

d
πe .

5 LLL Algorithm

Introduced in 1982 in the context of factoring polynomials, though has since
found wider use. It is actually a relaxed version of Hermite’s Algorithm: the

5

condition on line 12 that ‖b1‖ ≤ ‖bi‖ for all i = 2, . . . , d is replaced by the
Lovász condition ∥∥b∗k + µk,k−1b

∗
k−1
∥∥2 ≥ 3

4

∥∥b∗k−1∥∥2 .
If S = span(b1, . . . ,bk−2)⊥ then the Lovász condition is just

‖projS bk‖
2 ≥ 3

4 ‖projS bk−1‖
2
,

so this roughly checks that ‖bk‖ ≥ ‖bk−1‖, except only with respect to the
vector’s S-components and with the inequality ‘relaxation’ coefficient δ which
was chosen to be 3

4 in the original LLL paper. Increasing δ may improve the
returned basis at the expense of runtime, though LLL is known to run in poly-
nomial time for all δ ∈ (1

4 , 1). Specifically, if ‖bi‖ ≤ B for all i then LLL takes
O(d3n logB) arithmetic operations on integers of size O(d logB).

Algorithm 3 LLLReduce(b1, . . . ,bd)

Input: A basis b1, . . . ,bd ∈ Rn for a lattice L.
Output: An LLL-reduced basis b1, . . . ,bd ∈ Rn of L.
1. k = 2, compute GSO (b∗i and µi,j)
2. while k ≤ n do
3. for i = 1 to k − 1 do
4. bi := bi − bµk,iebi, update GSO
5. end for
6. if

∥∥b∗k + µk,k−1b
∗
k−1
∥∥2 ≥ 3

4

∥∥b∗k−1∥∥2 or k = 1 then
7. k := k + 1
8. else
9. swap bk and bk−1, update GSO

10. k := k − 1
11. end if
12. end while

This presentation of LLL avoids recursion and computes the GSO compo-
nents b∗i and µi,j once at the start of the algorithm and updates them whenever
needed.

6 Problems

There are still many open questions concerning lattice reduction:

• Unknown if Hermite’s reduction algorithms run in polynomial time, or if
LLL runs in polynomial time with δ = 1.

• Is finding the shortest nonzero vector of a lattice NP-hard? Can it be
approximated up to a polynomial factor?

• The exact value of Hermite’s constant γn only known for n ≤ 8 and n = 24.

6

References

[1] H. Cohen, Number Theory. Vol. I: Tools and Diophantine equations. Grad-
uate Texts in Mathematics, Vol. 239. Springer, Heidelberg (2007)

[2] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials
with rational coefficients. Mathematische Annalen, 261:513–534, 1982.

[3] P. Nguyen and D. Stehlé. Floating-point LLL revisited. In Proceedings of
Eurocrypt 2005, volume 3494 of Lecture Notes in Computer Science, pages
215–233. Springer-Verlag, 2005.

[4] P. Nguyen and D. Stehlé. An LLL algorithm with quadratic complexity. In
preparation, 2007.

[5] H. Yao and G. W. Womell. Lattice-Reduction-Aided Detectors for MIMO
Communication Systems, in Proceedings of IEEE Globecom 2002, Taipei,
Taiwan, November 2002.

7

Lagrange’s Algorithm finding a minimal basis

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

