
Complex Golay Pairs up to Length 28: A Search via
Computer Algebra and Programmatic SAT

Curtis Brighta, Ilias Kotsireasb, Albert Heinlea, Vijay Ganesha

aUniversity of Waterloo
bWilfrid Laurier University

Abstract

We use techniques from the fields of computer algebra and satisfiability checking
to develop a new algorithm to search for complex Golay pairs. We implement this
algorithm and use it to perform a complete search for complex Golay pairs of lengths
up to 28. In doing so, we find that complex Golay pairs exist in the lengths 24 and 26
but do not exist in the lengths 23, 25, 27, and 28. This independently verifies work
done by F. Fiedler in 2013 and confirms the 2002 conjecture of Craigen, Holzmann, and
Kharaghani that complex Golay pairs of length 23 don’t exist. Our algorithm is based
on the recently proposed SAT+CAS paradigm of combining SAT solvers with computer
algebra systems to efficiently search large spaces specified by both algebraic and logical
constraints. The algorithm has two stages: first, a fine-tuned computer program uses
functionality from computer algebra systems and numerical libraries to construct a list
containing every sequence that could appear as the first sequence in a complex Golay
pair up to equivalence. Second, a programmatic SAT solver constructs every sequence
(if any) that pair off with the sequences constructed in the first stage to form a complex
Golay pair. This extends work originally presented at the International Symposium
on Symbolic and Algebraic Computation (ISSAC) in 2018; we discuss and implement
several improvements to our algorithm that enabled us to improve the efficiency of the
search and increase the maximum length we search from length 25 to 28.

Keywords: Complex Golay pairs; Boolean satisfiability; SAT solvers; Exhaustive
search; Autocorrelation

1. Introduction

The sequences that are now referred to Golay sequences or Golay pairs were first
introduced by Golay (1949) in a groundbreaking paper on multislit spectrometry. Later,
Golay (1961) made a detailed study of their elegant mathematical properties and in this
paper he referred to them as complementary series:

Regardless of past or possible future applications, the writer has found
these complementary series mathematically appealing. . .

Since then, Golay pairs and their generalizations have been widely studied and applied
to a huge and surprisingly varied number of problems in engineering. For example, they

To appear in the Journal of Symbolic Computation July 27, 2019

have been applied to encoding acoustic surface waves (Tseng, 1971), spread-spectrum
systems (Krone and Sarwate, 1984), optical time domain reflectometry (Nazarathy
et al., 1989), CDMA networks (Seberry et al., 2002), medical ultrasounds (Nowicki
et al., 2003), train wheel detection (Donato et al., 2004), radar systems (Li et al., 2008),
and wireless networks (Lomayev et al., 2017). Golay pairs consist of two sequences
and the property that defines them (roughly speaking) is the fact that one sequence’s
“correlation” with itself is the inverse of the other sequence’s “correlation” with itself;
see Definition 2 in Section 2 for the formal definition.

Although Golay defined his complementary series over an alphabet of {±1}, later
authors have generalized the alphabet to include nonreal roots of unity such as the fourth
root of unity i B

√
−1. In this paper, we focus on the case where the alphabet is {±1,±i}.

In this case the resulting sequence pairs are sometimes referred to as quadriphase,
4-phase, or quaternary Golay pairs though we will simply refer to them as complex
Golay pairs. If a complex Golay pair of length n exists then we say that n is a complex
Golay number.

Complex Golay pairs have been extensively studied by many authors in several
different contexts. Initially they were studied in the context of signal processing where
some researchers ran searches for “polyphase complementary codes” in the process of
studying signal encoding methods. In particular, Sivaswamy (1978) found a complex
Golay pair of length 3 and Frank (1980) found complex Golay pairs of length 5 and 13
and stated that 7, 9, 11, 15, and 17 were not complex Golay numbers. Complex Golay
pairs were also introduced by Craigen (1994) (independently of the above works) in
order to expand the orders of Hadamard matrices attainable via ordinary Golay pairs—
that are only known to exist in the lengths 2a+b+c ·5b ·13c for integers a, b, c ≥ 0. Craigen
also proved that if m and n are complex Golay numbers then 2mn is a complex Golay
number.

An exhaustive search for complex Golay pairs up to length 13 was performed by
Holzmann and Kharaghani (1994). This search verified the remark of Frank (1980) that
7 and 9 are not complex Golay numbers but found that 11 is in fact a complex Golay
number (the cause of the mistaken claim is unknown since it was based on computer
programs that were never published). Later, an exhaustive search up to length 19 was
performed by Craigen, Holzmann, and Kharaghani (2002), showing that 14, 15, 17,
and 19 are not complex Golay numbers. In addition, they reported that 21 was not a
complex Golay number and conjectured that 23 was not a complex Golay number based
on a partial search for complex Golay pairs of length 23.

Another line of research is to provide explicit constructions for complex Golay pairs
and a number of results of this form have been published as well. Fiedler, Jedwab, and
Parker (2008a,b) provide a construction that explains the existence of all known complex
Golay pairs whose lengths are a power of 2, including complex Golay pairs of length 16
discovered by Li and Chu (2005) to not fit into a construction given by Davis and Jedwab
(1999). Gibson and Jedwab (2011) provide a construction that explains the existence of
all complex Golay pairs up to length 26 and give a table that lists the total number of
complex Golay pairs up to length 26. This table was produced by the mathematician
Frank Fiedler, who describes his enumeration method in a subsequent paper (Fiedler,
2013) where he also reports that 27 and 28 are not complex Golay numbers.

In this paper we give an enumeration method that can be used to verify Fiedler’s

2

table giving the total number of complex Golay pairs up to length 28. We implemented
our method and obtained counts up to length 28 after about 8.5 months of CPU time. The
counts we obtain match those in Fiedler’s table in each case, increasing the confidence
that the enumeration was performed without error. In addition, we also provide counts
for the total number of complex Golay pairs up to well-known equivalence operations
and explicitly publish the sequences on our website uwaterloo.ca/mathcheck. To
our knowledge, this is the first time that explicit complex Golay pairs (and their counts
up to equivalence) have been published for lengths larger than 19. Lastly, we publicly
release our code for enumerating complex Golay pairs so that others may verify and
reproduce our work; we were not able to find any other code for enumerating complex
Golay pairs that was publicly available.

Our result is of interest not only because of the verification we provide but also
because of the method we use to perform the verification. The method proceeds in two
stages. In the first stage, a fine-tuned computer program performs an exhaustive search
among all sequences that could possibly appear as the first sequence in a complex Golay
pair of a given length (up to the equivalence defined in Proposition 8 of Section 2).
Several filtering theorems that we describe in Section 2 allow us to discard almost all
sequences from consideration. To apply these filtering theorems we use functionality
from the computer algebra system MAPLE (Monagan et al., 2005) and the mathematical
library FFTW (Frigo and Johnson, 2005) as we describe in Section 3. After this filtering
is completed we have a list of sequences of a manageable size such that the first sequence
of every complex Golay pair of a given length (up to equivalence) appears in the list.

In the second stage, we use the programmatic SAT solver MAPLESAT developed by
Liang et al. (2017) to determine the sequences from the first stage (if any) that can be
paired up with another sequence to form a complex Golay pair. A programmatic SAT
instance is constructed from each sequence found in the first stage such that the instance
is satisfiable if and only if the sequence is part of a complex Golay pair. Furthermore,
when the instance is satisfiable the assignment produced by the SAT solver determines
the second sequence of a complex Golay pair.

The “SAT+CAS” method that we use is of interest in its own right because it
links the two previously separated fields of symbolic computation and satisfiability
checking. Recently there has been interest in combining methods from both fields to
solve computational problems as outlined in the invited talk at ISSAC by Ábrahám
(2015) and demonstrated by the SC2 (satisfiability checking + symbolic computation)
project initiated by Ábrahám et al. (2016). Our work fits into this paradigm and to
our knowledge is the first application of a SAT solver to search for complex Golay
pairs, though previous work exists that uses a SAT solver to search for other types of
complementary sequences like those defining Williamson matrices (Bright et al., 2016;
Zulkoski et al., 2017; Bright, 2017).

A preliminary version of our algorithm and results was presented at the conference
ISSAC (Bright et al., 2018b). We have since made several improvements to our algorithm
that allow us to extend our exhaustive search from all lengths n ≤ 25 to all lengths
n ≤ 28. We describe our implementation, give timings for our searches, and compare the
timings with those of our previous algorithm in Section 4. The new timings are about
an order of magnitude faster on the same hardware, demonstrating the effectiveness of
our improvements. In particular, our new algorithm incorporates the following updates:

3

https://uwaterloo.ca/mathcheck

More efficient filtering. The preprocessing stage of our algorithm uses a filtering con-
dition (Corollary 14 of Section 2) to remove a large number of sequences from con-
sideration. In our original algorithm we applied this condition using a large number
of equally-spaced points z along the unit circle. In our new algorithm we apply this
condition significantly less often but filter approximately the same number of sequences
(and sometimes even more) by showing how to only use the condition for the z that are
the most likely to work.

More efficient joining. The first stage of our algorithm requires searching through two
lists and finding elements of the first that can be joined with elements of the second. In
our previous algorithm this was done in a totally brute-force manner, i.e., every item in
the first list was paired with every item of the second list to see if they could be joined.
In our new algorithm we sort the lists using a custom ordering and show how to find the
elements that can be joined via a number of linear scans through the sorted lists (see
Section 3.2), thereby eliminating the need to consider all possible pairs.

Increased filtering. Because the improved filtering method outlined above is so much
faster than the previous filtering method we were able to add another round of filtering
just before generating the SAT instances (see Section 3.5). The result is that approxi-
mately 40% of the SAT instances generated by our previous algorithm are now quickly
filtered before even calling a SAT solver.

Additionally we include more background details in this version of the paper. For
example, we add Section 2.1 that gives an alternative definition of complex Golay pairs
that is often useful and we show that this definition is equivalent with the first definition.

2. Background on Complex Golay Pairs

In this section we present the background necessary to describe our method for
enumerating complex Golay pairs. First, we require some preliminary definitions to
define what complex Golay pairs are. We let z denote the complex conjugate of z (which
is just the multiplicative inverse of z for z on the unit circle) and if A is a sequence we
let A denote the sequence containing the conjugates of A.

Definition 1 (cf. Kotsireas (2013)). The nonperiodic autocorrelation function of a
sequence A = [a0, . . . , an−1] of length n is

NA(s) B
n−s−1∑

k=0

akak+s for s = 0, . . . , n − 1.

Definition 2. A pair of sequences (A, B) with A and B in {±1,±i}n are called a complex
Golay pair if the sum of their nonperiodic autocorrelations is a constant zero for s , 0,
i.e.,

NA(s) + NB(s) = 0 for s = 1, . . . , n − 1.

Note that if A and B are in {±1,±i}n (as we assume throughout this paper) then
NA(0) + NB(0) = 2n by the definition of the nonperiodic autocorrelation function and
the fact that zz = 1 if z is ±1 or ±i, explaining why s , 0 in Definition 2.

4

Example 3. ([1, 1,−1], [1, i, 1]) is a complex Golay pair of length 3 since the first
sequence A has autocorrelations NA(1) = 0 and NA(2) = −1 and the second sequence B
has autocorrelations NB(1) = 0 and NB(2) = 1.

2.1. Alternative definition
Instead of viewing complex Golay pairs as pairs of sequences it is also possible

to view them as pairs of polynomials. If A is the sequence [a0, . . . , an−1] we let A(z)
denote the Hall polynomial a0 + a1z + . . . + an−1zn−1 which can be viewed as the finite
generating function of A. This leads to the following alternative definition of complex
Golay pairs.

Definition 4. A pair of polynomials (A(z), B(z)) that have degrees n− 1 and coefficients
in {±1,±i} are called a complex Golay pair if |A(z)|2 + |B(z)|2 = 2n for all z on the unit
circle.

Example 5. (1 + z − z2, 1 + iz + z2) is a complex Golay pair of length 3 since∣∣∣1 + z − z2
∣∣∣2 +

∣∣∣1 + iz + z2
∣∣∣2 = 6

for all z on the unit circle.

These two definitions can be seen to be equivalent using the following lemma that
expresses the squared absolute values of a polynomial evaluated on the unit circle in
terms of the autocorrelations of the sequence formed by the polynomial’s coefficients.

Lemma 6. Let A be a complex sequence of length n. Then

|A(z)|2 = NA(0) + 2 Re
(n−1∑

s=1

NA(s)z−s
)
.

for all z on the unit circle.

Proof. Since z is on the unit circle we have z = z−1, so |A(z)|2 = A(z)A(z) = A(z)A(z−1).
Expanding this, we obtain that |A(z)|2 is equal to

n−1∑
k=0

n−1∑
l=0

akalzk−l.

Collecting terms of zs together for s from −n + 1 to n − 1 this becomes

n−1∑
s=0

(n−1∑
j=s

a ja j−s

)
zs +

n−1∑
s=1

(n−1∑
j=s

a j−sa j

)
z−s

so the coefficient of zs for positive s is NA(s) and for negative s is NA(s). Using the fact
that NA(s)zs = NA(s)z−s this becomes

NA(0) +

n−1∑
s=1

(
NA(s)z−s + NA(s)z−s

)
.

The desired result now follows from the fact that z + z = 2 Re(z) for all complex z.

5

For completeness we now demonstrate the equivalence of Definitions 2 and 4.

Theorem 7. A pair (A, B) is a complex Golay pair in the sense of Definition 2 if and
only if (A(z), B(z)) is a complex Golay pair in the sense of Definition 4.

Proof. If (A, B) is a complex Golay pair in the sense of Definition 2 then by Lemma 6

|A(z)|2 + |B(z)|2 = NA(0) + NB(0) + 2 Re
(n−1∑

s=1

(NA(s) + NB(z))z−s
)

= 2n

for all z on the unit circle, as required.
Conversely, if (A(z), B(z)) is a complex Golay pair in the sense of Definition 4 then

by Lemma 6 and subtracting off NA(0) + NB(0) = 2n we have

n−1∑
s=1

(
NA(s)z−s + NA(s)zs + NB(z)z−s + NB(s)zs

)
= 0

for all z on the unit circle. Since any nonzero rational function has a finite number of
zeros in C the function given on the left hand side must be identically zero. In particular,
the coefficients of z−s for s = 1, . . . , n− 1 must be zero and we derive NA(s) + NB(s) = 0
for s = 1, . . . , n − 1 as required.

2.2. Equivalence operations

There are certain invertible operations that preserve the property of being a complex
Golay pair when applied to a sequence pair (A, B). These are summarized in the
following proposition.

Proposition 8 (cf. Craigen et al. (2002)). Let ([a0, . . . , an−1], [b0, . . . , bn−1]) be a com-
plex Golay pair. Then the following are also complex Golay pairs:

E1. (Reversal) ([an−1, . . . , a0], [bn−1, . . . , b0]).
E2. (Conjugate Reverse A) ([an−1, . . . , a0], [b0, . . . , bn−1]).
E3. (Swap) ([b0, . . . , bn−1], [a0, . . . , an−1]).
E4. (Scale A) ([ia0, . . . , ian−1], [b0, . . . , bn−1]).
E5. (Positional Scaling) (i? A, i? B) where c? A denotes the sequence of coefficients

of the polynomial A(cz), i.e., [a0, ca1, c2a2, . . . , cn−1an−1].

Proof. Suppose (A, B) is a complex Golay pair and let z be on the unit circle.

E1. Note that the reverse of A(z) is zn−1A(z−1) and |zn−1| = 1. Then

|zn−1A(z−1)|2 + |zn−1B(z−1)|2 = |A(z−1)|2 + |B(z−1)|2 = 2n

since (A, B) is a complex Golay pair and z−1 is on the unit circle.
E2. The conjugate reverse of A(z) is zn−1A(z−1) and |zn−1A(z−1)| = |A(z)| = |A(z)|.
E3. |B(z)|2 + |A(z)|2 = |A(z)|2 + |B(z)|2 = 2n.
E4. A(z) scaled by i is iA(z) and |iA(z)| = |A(z)|.

6

E5. |A(iz)|2 + |B(iz)|2 = 2n since (A, B) is a complex Golay pair and iz is on the unit
circle.

Definition 9. We call two complex Golay pairs (A, B) and (A′, B′) equivalent if (A′, B′)
can be obtained from (A, B) using the transformations described in Proposition 8.

The next lemma provides some normalization conditions that can be used when
searching for complex Golay pairs up to equivalence. Since all complex Golay pairs
(A′, B′) which are equivalent to a complex Golay pair (A, B) can easily be generated
from (A, B), it suffices to search for complex Golay pairs up to equivalence.

Lemma 10 (cf. Fiedler (2013)). Let (A′, B′) be a complex Golay pair. Then (A′, B′) is
equivalent to a complex Golay pair (A, B) with a0 = a1 = b0 = 1 and a2 ∈ {±1, i}.

Proof. We will transform a given complex Golay sequence pair (A′, B′) into an equiva-
lent normalized one using the equivalence operations of Proposition 8. To start with, let
A B A′ and B B B′.

First, we ensure that a0 = 1. To do this, we apply operation E4 (scale A) enough
times until a0 = 1.

Second, we ensure that a1 = 1. To do this, we apply operation E5 (positional scaling)
enough times until a1 = 1; note that E5 does not change a0.

Third, we ensure that a2 , −i. If it is, we apply operation E1 (reversal) and E2
(conjugate reverse A) which has the effect of keeping a0 = a1 = 1 and setting a2 = i.

Last, we ensure that b0 = 1. To do this, we apply operation E3 (swap) and then
operation E4 (scale A) enough times so that a0 = 1 and then operation E3 (swap) again.
This has the effect of not changing A but setting b0 = 1.

2.3. Filtering properties
We now prove some useful properties that all complex Golay pairs satisfy and that

will be exploited by our algorithm for enumerating complex Golay pairs. The properties
will be used as filtering criteria: if a sequence does not satisfy them then we know it
cannot possibly be part of a complex Golay pair and may therefore be filtered away.
The next well-known lemma is one of the most powerful results of this form.

Lemma 11 (cf. Popović (1991)). Let A be a complex sequence of length n. If |A(z)|2 >
2n for some z on the unit circle then A is not a member of a complex Golay pair.

Proof. Suppose the sequence A was a member of a complex Golay pair whose other
member was the sequence B. Since |B(z)|2 ≥ 0, we must have |A(z)|2 + |B(z)|2 > 2n, in
contradiction to Definition 4.

Example 12. The sequence A B [1, 1, 1] cannot be a member of a complex Golay pair
since |A(1)|2 = 9 is larger than 2n = 6.

Fiedler (2013) derives a variation of Lemma 11 that is useful because it can be
applied knowing only around half of the entries of A. It is derived using the following
variation of Lemma 6. Let Aeven be identical to A with the entries of odd index replaced
by zeros and let Aodd be identical to A with the entries of even index replaced by zeros.

7

Lemma 13 (cf. Fiedler (2013)). Let A be a complex sequence of length n. Then

|Aeven(z)|2 + |Aodd(z)|2 = NA(0) + 2 Re
(n−1∑

s=1
s even

NA(s)z−s
)
.

Proof. The proof proceeds like in the proof of Lemma 6 and we derive

|Aeven(z)|2 + |Aodd(z)|2 =

n−1∑
k,l=0

k, l even

akalzk−l +

n−1∑
k,l=0

k, l odd

akalzk−l =

n−1∑
k,l=0

k−l even

akalzk−l.

From this we see that the coefficient on zs for odd s is zero and the coefficient on zs for
even s is the same as in Lemma 6 from which the result follows.

Corollary 14. Let A be a complex sequence of length n. If |Aeven(z)|2 or |Aodd(z)|2 is
strictly larger than 2n for some z on the unit circle then A is not a member of a complex
Golay pair.

Proof. If (A, B) is a complex Golay pair then by Lemma 13 we have

|Aeven(z)|2 + |Aodd(z)|2 + |Beven(z)|2 + |Bodd(z)|2 = 2n

but if either |Aeven(z)|2 > 2n or |Aodd(z)|2 > 2n then this cannot hold.

Example 15. The sequence A B [1, x, 1, y, 1, z, 1] cannot be a member of a complex
Golay pair (regardless of the values of x, y, and z) since |Aeven(1)|2 = 16 is larger than
2n = 14.

2.4. Sum-of-squares decomposition types

The next lemma is useful because it allows us to write 2n as the sum of four integer
squares. It is stated by Holzmann and Kharaghani (1994) using a different notation; we
use the notation resum(A) and imsum(A) to represent the real and imaginary parts of the
sum of the entries of A. For example, if A B [1, i,−i, i] then resum(A) = imsum(A) = 1.

Lemma 16 (cf. Holzmann and Kharaghani (1994)). If (A, B) is a complex Golay pair
then

resum(A)2 + imsum(A)2 + resum(B)2 + imsum(B)2 = 2n.

Proof. Using Definition 4 with z = 1 we have

|resum(A) + imsum(A)i|2 + |resum(B) + imsum(B)i|2 = 2n.

Since |resum(X) + imsum(X)i|2 = resum(X)2 + imsum(X)2 the result follows.

A consequence of Lemma 16 is that every complex Golay pair generates a decom-
position of 2n into a sum of four integer squares. In fact, it typically generates several
decompositions of 2n into a sum of four squares. Recall that i ? A denotes positional
scaling by i (operation E5) on the sequence A. If (A, B) is a complex Golay pair then

8

applying operation E5 to this pair k times shows that (ik ? A, ik ? B) is also a complex
Golay pair. By using Lemma 16 on these complex Golay pairs one obtains the fact that
2n can be decomposed as the sum of four integer squares as

resum(ik ? A)2 + imsum(ik ? A)2 + resum(ik ? B)2 + imsum(ik ? B)2.

For k > 3 this produces no new decompositions but in general for k = 0, 1, 2, and 3 this
produces four distinct decompositions of 2n into a sum of four squares.

With the help of a computer algebra system (CAS) one can enumerate every possible
way that 2n may be written as a sum of four integer squares. For example, when n = 23
one has 02 + 12 + 32 + 62 = 2 ·23 and 12 + 22 + 42 + 52 = 2 ·23 as well as all permutations
of the squares and negations of the integers being squared. During the first stage of our
enumeration method only the first sequence of a complex Golay pair is known, so at
that stage we cannot compute its whole sums-of-squares decomposition. However, it is
still possible to filter some sequences from consideration based on analyzing the two
known terms in the sums-of-squares decomposition.

For example, say that A is the first sequence in a potential complex Golay pair of
length 23 with resum(A) = 0 and imsum(A) = 5. We can immediately discard A from
consideration because there is no way to chose the resum and imsum of B to complete
the sums-of-squares decomposition of 2n, i.e., there are no integer solutions (x, y) of
02 + 52 + x2 + y2 = 2n.

3. Enumeration Method

In this section we describe in detail the method we used to perform a complete
enumeration of all complex Golay pairs up to length 28. Given a length n our goal is to
find all {±1,±i} sequences A and B of length n such that (A, B) is a complex Golay pair.

3.1. Preprocessing: Enumerate possibilities for Aeven and Aodd

The first step of our method uses Fiedler’s trick of considering the entries of A of
even index separately from the entries of A of odd index. There are approximately n/2
nonzero entries in each of Aeven and Aodd and there are four possible values for each
nonzero entry. Therefore there are approximately 2 · 4n/2 = 2n+1 possible sequences to
check in this step. Additionally, by Lemma 10 we may assume the first nonzero entry of
both Aeven and Aodd is 1 and that the second nonzero entry of Aeven is not −i, decreasing
the number of sequences to check in this step by more than a factor of 4. It is quite
feasible to perform a brute-force search through all such sequences when n ≈ 30.

We apply Corollary 14 to every possibility for Aeven and Aodd. There are an infinite
number of z on the unit circle so it is not possible to apply Corollary 14 using all
such z. One simple approach is to try a sufficiently large number of points z so that
when a point exists with |A′(z)|2 > 2n (where A′ is either Aeven or Aodd) such a point
is usually discovered. For example, Bright et al. (2018b) tested Corollary 14 for 214

equally-spaced points z around the unit circle.
Instead, in our implementation we use a nonlinear programming method to estimate

the maximum of |A′(z)|2 for z on the unit circle. This can be done with the NLPSOLVE
command of the computer algebra system MAPLE though for efficiency we use a custom

9

C implementation of a variant of the quadratic interpolation method described by Sun
and Yuan (2006).

We write |A′(z)|2 in terms of the real variable θ by using the substitution z = eiθ and
define f (θ) B |A′(eiθ)|2. The quadratic interpolation method to estimate the maximum
of f (θ) over 0 ≤ θ < 2π proceeds as follows:

1. Evaluate f at the 27 points θ0, . . . , θ127 where θk B
2πk
128 and let fk B f (θk). If

fk > 2n for some k we can immediately filter A′ by Corollary 14.
2. For every value of f that is larger than its neighbours (i.e., values of fk that satisfy

fk−1 ≤ fk and fk ≥ fk+1) we use interpolation to find the quadratic polynomial that
passes through the points (θk−1, fk−1), (θk, fk), and (θk+1, fk+1). Let θ∗ be the value
of θ that maximizes the quadratic polynomial; this can be computed to be exactly

1
2
·

fk−1(θ2
k − θ

2
k+1) + fk(θ2

k+1 − θ
2
k−1) + fk+1(θ2

k−1 − θ
2
k)

fk−1(θk − θk+1) + fk(θk+1 − θk−1) + fk+1(θk−1 − θk)

and let f ∗ B f (θ∗).
3. Note that f ∗ is often a better approximation to a local maximum of f than fk was,

and if f ∗ > 2n then we can filter A′ by Corollary 14. Otherwise we can use the
point (θ∗, f ∗) to derive a tighter interval in which a local maximum of f must lie.
For example, if θk < θ

∗ < θk+1 and f ∗ > fk then we can repeat the previous step
except using the points (θk, fk), (θ∗, f ∗), and (θk+1, fk+1).

One can use this method to derive more and more accurate approximations to the
local maxima of f though this is mostly unnecessary for our purposes as we only care
about finding a single value for θ with f (θ) > 2n. A good approximation to a local
maximum was usually found after a single interpolation step so in our implementation
we would move on to looking for another local maximum of f after repeating the
interpolation step three times. If all values of fk were examined and no points θ were
found with f (θ) > 2n then we save A′ as a sequence that could not be filtered.

At the conclusion of this step we have two lists: one list Leven of the Aeven that were
not discarded and one list Lodd of the Aodd that were not discarded.

3.2. Stage 1: Enumerate possibilities for A

We now enumerate all possibilities for A by joining all possibilities for Aeven with
all possibilities for Aodd. The most straightforward way of doing this would be to simply
try all A1 ∈ Lodd and A2 ∈ Leven; this was done by Bright et al. (2018b). However,
because both Leven and Lodd can contain millions of sequences it can be inefficient to try
all possible pairings (A1, A2). However, many pairings can be eliminated by using the
conditions implied by Lemma 16; we now show how to find all possible pairings that
satisfy these conditions without needing to try all A1 ∈ Lodd and A2 ∈ Leven.

Let (u0, u1, u2, u3) be an arbitrary quadruple of integers. We will describe how to
efficiently find all A whose entries of odd index are in Lodd, whose entries of even index
are in Leven, and that satisfy

resum(A) = u0, imsum(A) = u1, resum(i ? A) = u2, imsum(i ? A) = u3. (1)

10

For each A1 ∈ Lodd we form the vector

V1 B (resum(A1), imsum(A1), resum(i ? A1), imsum(i ? A1))

and for each A2 ∈ Leven we form the vector

V2 B (u0 − resum(A2), u1 − imsum(A2), u2 − resum(i ? A2), u3 − imsum(i ? A2)).

We now show that the A that satisfy relationship (1) are exactly those formed by the A1
and A2 with V1 = V2.

Lemma 17. Let A1 ∈ Lodd and A2 ∈ Leven and let A be the sequence that satisfies the
relationship A(z) = A1(z) + A2(z), i.e., A is a sequence of length n with {±1,±i} entries.
Then A satisfies (1) if and only if the vectors V1 and V2 defined as above satisfy V1 = V2.

Proof. Consider the first entry of V1 and V2. If they are equal, we have

resum(A1) = u0 − resum(A2).

This implies that resum(A) = u0 since resum(A) = resum(A1) + resum(A2). Similarly,
we derive imsum(A) = u1, resum(i ? A) = u2, and imsum(i ? A) = u3, as required.
Conversely, resum(A) = u0 implies that the first entries of V1 and V2 are equal and the
other equations from (1) imply that their other entries are also equal.

Therefore we have translated the problem of finding the sequences A that satisfy (1)
into the problem of finding A1 ∈ Lodd and A2 ∈ Leven that have matching vectors
V1 and V2. We can efficiently solve this problem using a string sorting algorithm as
described by (for example) Kotsireas, Koukouvinos, and Seberry (2009). First, we sort
the list Lodd so that the vectors V1 formed above appear in lexicographically increasing
order when iterating through L1 ∈ Lodd. Similarly, we sort Leven in the same way so that
the V2 appear in lexicographically increasing order.

We can then find all V1 that match with V2 by a linear scan through the lists L1
and L2 and this requires only one pass through each list. For example, if at some point
we find that V1 is lexicographically greater than V2 then we try the next L2 in the list
Leven and if we instead find that V2 is lexicographically greater than V1 then we try the
next L1 in the list Lodd. If instead we find V1 = V2 we iterate through the L1 and L2 that
share the same value of V1 and V2 and save the A formed by joining all such A1 and A2
in a new list LA.

It remains to determine the appropriate values of (u0, u1, u2, u3) to use in (1). To
do this we use a quadratic Diophantine equation solver and find all solutions of the
Diophantine equation

u2 + v2 + x2 + y2 = 2n in integers u, v, x, y.

Let U be the set of all pairs (u, v) for which this equation is solvable. By Lemma 16 and
operation E5 we know that if A is a complex Golay pair then (resum(A), imsum(A)) and
(resum(i ? A), imsum(i ? A)) must be members of U. Therefore, we apply the above
joining procedure for all ((u0, u1), (u2, u3)) ∈ U2.

11

At the conclusion of this stage we will have a list of sequences LA that could
potentially be a member of a complex Golay pair. By construction, the first member of
all complex Golay pairs (up to the equivalence described in Lemma 10) of length n will
be in LA. To decrease the size of LA even further we perform additional filtering before
adding sequences into LA, for example, we ensure that(

resum(−1 ? A), imsum(−1 ? A)
)

and
(
resum(−i ? A), imsum(−i ? A)

)
are both in U for each A added to LA. We also filter those A with |A(z)|2 > 2n for some z
on the unit circle (see Section 3.5 for optimization details).

3.3. Stage 2: Construct the second sequence B from A

In the second stage we take as input the list LA generated in the first stage, i.e., a list
of the sequences A that were not filtered by any of the filtering theorems we applied. For
each A ∈ LA we attempt to construct a second sequence B such that (A, B) is a complex
Golay pair. We do this by generating a SAT instance that encodes the property of (A, B)
being a complex Golay pair where the entries of A are known and the entries of B are
unknown and encoded using Boolean variables. Because there are four possible values
for each entry of B we use two Boolean variables to encode each entry. Although the
exact encoding used is arbitrary, we fixed the following encoding in our implementation,
where the variables v2k and v2k+1 represent bk, the kth entry of B:

v2k v2k+1 bk

F F 1
F T −1
T F i
T T −i

To encode the property that (A, B) is a complex Golay pair in our SAT instance we
add the conditions that define (A, B) to be a complex Golay pair, i.e.,

NA(s) + NB(s) = 0 for s = 1, . . . , n − 1.

These equations could be encoded using clauses in conjunctive normal form (for example
by constructing logical circuits to perform complex multiplication and addition and
then converting those circuits into CNF clauses). However, we found that a much more
efficient and convenient method was to use a programmatic SAT solver.

The concept of a programmatic SAT solver was first introduced by Ganesh et al.
(2012) where a programmatic SAT solver was shown to be more efficient than a standard
SAT solver when solving instances derived from RNA folding problems. More recently,
a programmatic SAT solver was also shown to be useful when searching for Williamson
matrices and good matrices by Bright et al. (2018a, 2019). Generally, programmatic
SAT solvers perform well when there is additional domain-specific knowledge known
about the problem being solved. Often this knowledge cannot easily be encoded into a
SAT instance directly but can be given to a programmatic SAT solver to help guide the
solver in its search.

12

Concretely, a programmatic SAT solver is compiled with a piece of code that encodes
a property any solution must satisfy. Periodically the SAT solver will run this code
while performing its search, and if the current partial assignment violates a property that
is expressed in the provided code then a conflict clause is generated encoding this fact.
The conflict clause is added to the SAT solver’s database of learned clauses where it
is used to increase the efficiency of the remainder of the search. The reason that these
clauses can be so useful is because they can encode facts that the SAT solver would have
no way of learning otherwise, since the SAT solver has no knowledge of the domain of
the problem.

Not only does this paradigm allow the SAT solver to perform its search more
efficiently, it also allows instances to be much more expressive. Under this framework
SAT instances do not have to consist solely of Boolean formulas in conjunctive normal
form (the typical format of SAT instances) but can consist of clauses in conjunctive
normal form combined with a piece of code that programmatically expresses clauses.
Increased expressiveness is also a feature of SMT (SAT modulo theories) solvers, though
SMT solvers typically require additional overhead and only support a fixed number of
theories such as those specified in the SMT library (Barrett et al., 2016). Additionally,
one can compile instance-specific programmatic SAT solvers that are tailored to perform
searches for a specific class of problems.

For our purposes we use a programmatic SAT solver tailored to search for se-
quences B that when paired with a given sequence A form a complex Golay pair. Each
instance will contain the 2n variables v0, . . . , v2n−1 that encode the entries of B as
previously specified. In detail, the code given to the SAT solver does the following:

1. Compute and store the values NA(k) for k = 1, . . . , n − 1.
2. Initialize s to n − 1. This will be a variable that controls which autocorrelation

condition we are currently examining.
3. Examine the current partial assignment to v0, v1, v2n−2, and v2n−1. If all these

values have been assigned then we can determine the values of b0 and bn−1. From
these values we compute NB(s) = b0bn−1. If NA(s) + NB(s) , 0 then (A, B) cannot
be a complex Golay pair (regardless of the values of b1, . . . , bn−2) and therefore
we learn a conflict clause saying that b0 and bn−1 cannot both be assigned to their
current values. More explicitly, if vcur

k represents the literal vk when vk is currently
assigned to true and the literal ¬vk when vk is currently assigned to false we learn
the clause

¬vcur
0 ∨ ¬vcur

1 ∨ ¬vcur
2n−2 ∨ ¬vcur

2n−1

that says that at least one of {v0, v1, v2n−2, v2n−1} must have their value changed.
4. Decrement s by 1 and repeat the previous step, computing NB(s) if the all the bk

that appear in its definition have known values. If NA(s) + NB(s) , 0 then learn
a clause preventing the values of bk that appear in the definition of NB(s) from
being assigned the way that they currently are. Continue to repeat this step until
s = 0.

5. If all values of B are assigned but no clauses have been learned in steps 3–4 then
output the complex Golay pair (A, B). If an exhaustive search is desired, learn a
clause preventing the values of B from being assigned the way they currently are;
otherwise learn nothing and return control to the SAT solver.

13

For each A in the list LA from stage 1 we run a SAT solver with the above programmatic
code. The list of all outputs (A, B) in step 5 shown above now form a complete list of
complex Golay pairs of length n up to the equivalence given in Lemma 10. In fact, since
Lemma 10 says that we can set b0 = 1 we can assume that both v0 and v1 are always
set to false. In other words, we can add the two unit clauses ¬v0 and ¬v1 into our SAT
instance without omitting any complex Golay pairs up to equivalence.

3.4. Postprocessing: Enumerating all complex Golay pairs

At the conclusion of the second stage we have obtained a list of complex Golay
pairs of length n such that every complex Golay pair of length n is equivalent to some
pair in our list. However, because we have not accounted for all the equivalences in
Section 2.2 some pairs in our list may be equivalent to each other. In some sense such
pairs should not actually be considered distinct, so to count how many distinct complex
Golay pairs exist in length n we would like to find and remove pairs that are equivalent
from the list. Additionally, to verify the counts given by Gibson and Jedwab (2011) it is
necessary to produce a list that contains all complex Golay pairs. We now describe an
algorithm that does both, i.e., it produces a list of all complex Golay pairs as well as a
list of all inequivalent complex Golay pairs.

In detail, our algorithm performs the following steps:

1. Initialize Ωall to be the empty set. This variable will be a set that will be populated
with and eventually contain all complex Golay pairs of length n.

2. Initialize Ωinequiv to be the empty set. This variable will be a set that will be
populated with and eventually contain all inequivalent complex Golay pairs of
length n.

3. For each (A, B) in the set of complex Golay pairs generated in stage 2:
(a) If (A, B) is already in Ωall then skip this (A, B) and proceed to the next pair.
(b) Initialize Γ to be the set containing (A, B). This variable will be a set that will

be populated with and eventually contain all complex Golay pairs equivalent
to (A, B).

(c) For every γ in Γ add E1(γ), . . . , E5(γ) to Γ. Continue to do this until every
pair in Γ has been examined and no new pairs are added to Γ.

(d) Add (A, B) to Ωinequiv and add all pairs in Γ to Ωall.

Additionally, pseudocode for this algorithm is given in Algorithm 3.1.

Algorithm 3.1 Pseudocode for our postprocessing algorithm. Note that the sets being
iterated through will update during each iteration.

1: Ωall B ∅, Ωinequiv B ∅
2: for ω ∈ { list of generated complex Golay pairs } \Ωall do
3: Γ B {ω}
4: for γ ∈ Γ do
5: Γ B Γ ∪ {E1(γ), . . . ,E5(γ)}
6: Ωinequiv B Ωinequiv ∪ {ω}
7: Ωall B Ωall ∪ Γ

14

After running this algorithm listing the members of Ωall gives a list of all complex
Golay pairs of length n and listing the members of Ωinequiv gives a list of all inequivalent
complex Golay pairs of length n. At this point we can also construct the complete list of
sequences that appear in any complex Golay pair of length n. To do this it suffices to
add A and B to a new set Ωseqs for each (A, B) ∈ Ωall.

3.5. Optimizations
Although the method described will correctly enumerate all complex Golay pairs of a

given length n, for the benefit of potential implementors we mention a few optimizations
that we found helpful.

In the preprocessing step and stage 1 it is necessary to evaluate a polynomial at
points on the unit circle and determine its squared absolute value. The fastest way we
found to do this used the discrete Fourier transform (DFT). For example, let A′ be the
sequence Aeven, Aodd, or A under consideration but padded with trailing zeros so that A′

is of length N. By definition of the discrete Fourier transform we have that the jth entry
of DFT(A′) is exactly A′(z j) where z j B exp(2πi j/N). Thus, we determine the values of
|A′(z j)|2 by taking the squared absolute values of the entries of DFT(A′). If |A′(z)|2 > 2n
for some z then by Lemma 11 or Corollary 14 we can discard A′ from consideration.
To guard against potential inaccuracies introduced by the algorithms used to compute
the DFT we actually ensure that |A′(z)|2 > 2n + ε for some tolerance ε that is small but
larger than the accuracy of the DFT (e.g., ε = 10−3).

In stage 1 we solve the quadratic Diophantine equation u2 + v2 + x2 + y2 = 2n in
integers u, v, x, y. In fact, we can also add the constraints

u + v ≡ n (mod 2) and x + y ≡ n (mod 2)

(the second is unnecessary, being implied by the first) because of the following lemma.

Lemma 18. Suppose R and I are the resum and imsum of a sequence A ∈ {±1,±i}n.
Then R + I ≡ n (mod 2).

Proof. Let #c denote the number of entries in A with value c. Then

R + I = (#1 − #−1) + (#i − #−i) ≡ #1 + #−1 + #i + #−i (mod 2)

since −1 ≡ 1 (mod 2). The quantity on the right is n since there are n entries in A.

In the final filtering step of stage 1 we ensure that Diophantine equations of the form
R2 + I2 + x2 + y2 = 2n are solvable in integers (x, y) where R and I are given. This can
be efficiently done by precomputing a Boolean two dimensional array D such that D|R|,|I|
is true if and only if this equation has a solution, making the check for solvability a fast
lookup. At this point we also check if we can find a z on the unit circle with |A(z)|2 > 2n.
Because the joining process is the bottleneck of our algorithm it is important to make
this filtering step as efficient as possible; we did this by computing the values of |A(z)|2

via the expression |A1(z) + A2(z)|2 and precomputing the values of A1(z) and A2(z) for
A1 ∈ Lodd and A2 ∈ Leven on points of the form z = exp(2πi j/32) with j = 0, . . . , 31.

We found that it was more efficient to not check the condition for each j in ascending
order (i.e., for each z in ascending complex argument) but to first perform the check

15

on points z with larger spacing between them. In our implementation we checked the
condition for z of the form exp(2πi j/N) with j odd and N = 8, 16, and 32 in that
order. (This ignores checking the condition when z ∈ {±1,±i} but that is desirable since
|A(ik)|2 = resum(ik?A)2 + imsum(ik?A)2 and the sums-of-squares condition is a strictly
stronger filtering method.)

The downside of precomputing the values of A1(z) and A2(z) for A1 ∈ Lodd and
A2 ∈ Leven is that when the lists Lodd and Leven are large this requires a significant
amount of memory. In our implementation storing the values of A2(z) for all A2 ∈ Leven
in the lengths 27 and 28 each required about 8GB of RAM, the searches in lengths
25 and 26 each required about 2GB of RAM, and the searches in lengths 23 and 24
each required about 0.5GB of RAM. However, the amount of precomputation could be
increased or decreased depending on the amount of memory available.

In stage 1 we make a pass through the lists Lodd and Leven for each valid possibility
of the values (u0, u1, u2, u3). However, it is possible to reuse some work between passes.
For example, it is only necessary to sort the lists Lodd and Leven once. Even though
the values of V2 depend on the values (u0, u1, u2, u3) the relative ordering of Leven is
unaffected since all V2 are shifted by the same amount in each pass. It is even possible
to do some parts of the passes simultaneously: for example, if the first coordinate of V1
is greater than the first coordinate of V2 for some u0 then V1 is lexicographically greater
than V2 in all passes with that value of u0 and so we can iterate to the next L2 in all such
passes.

At the conclusion of stage 1 we added an additional round of filtering to the se-
quences in LA that was not in our previous work. Since this step was not a bottleneck
we used a more involved filtering process here; in our implementation we ensured that
|A(z)|2 ≤ 2n for the 210 points of the form z j = exp(2πi j/210). Additionally, we keep
track of the local maxima found by this process and use the quadratic interpolation
method described in Section 3.1 to find more accurate approximations to the local
maxima of |A(z)|2.

In stage 2 one can also include properties that complex Golay sequences must satisfy
in the SAT instances. As an example of this, we state the following proposition that was
published by Bright et al. (2018b) at ISSAC 2018.

Proposition 19. Let (A, B) be a complex Golay pair. Then

akan−k−1bkbn−k−1 = ±1 for k = 0, . . . , n − 1.

To prove this, we use the following simple lemma.

Lemma 20. Let ck ∈ Z4 for k = 0, . . . , n − 1. Then

n−1∑
k=0

ick = 0 implies
n−1∑
k=0

ck ≡ 0 (mod 2).

Proof. Let #c denote the number of ck with value c. Note that the sum on the left implies
that #0 = #2 and #1 = #3 because the 1s must cancel with the −1s and the is must cancel
with the −is. Then

∑n−1
k=0 ck = #1 + 2#2 + 3#3 = 4#1 + 2#2 ≡ 0 (mod 2).

We now prove Proposition 19.

16

Proof. Let ck, dk ∈ Z4 be such that ak = ick and bk = idk . Using this notation the
multiplicative equation from Proposition 19 becomes the additive congruence

ck + cn−k−1 + dk + dn−k−1 ≡ 0 (mod 2). (2)

Since (A, B) is a complex Golay pair, the autocorrelation equations give us

n−s−1∑
k=0

(
ick−ck+s + idk−dk+s

)
= 0

for s = 1, . . . , n − 1. Using Lemma 20 and the fact that −1 ≡ 1 (mod 2) gives

n−s−1∑
k=0

(
ck + ck+s + dk + dk+s

)
≡ 0 (mod 2)

for s = 1, . . . , n − 1. With s = n − 1 (or s = 1) one immediately derives (2) for k = 0.
Adding together these congruences for s = n − 1 and s = n − 2 derives (2) for k = 1.
The congruences for s = n − 2 and s = n − 3 give (2) for k = 2 and proceeding in this
manner one derives (2) for all k.

In short, Proposition 19 tells us that an even number of ak, an−k−1, bk, and bn−k−1 are
real for each k = 0, . . . , n − 1. For example, if exactly one of ak and an−k−1 is real then
exactly one of bk and bn−k−1 must also be real. In this case, using our encoding from
Section 3.3 we add the two binary clauses

v2k ∨ v2(n−k−1) and ¬v2k ∨ ¬v2(n−k−1)

to our SAT instance. These clauses say that exactly one of v2k and v2(n−k−1) is true.
Conversely, if an even number of ak and an−k−1 are real then an even number of bk and
bn−k−1 must also be real. In this case we add the two binary clauses

v2k ∨ ¬v2(n−k−1) and ¬v2k ∨ v2(n−k−1)

to our SAT instance.

4. Results

In order to provide a verification of the counts given by Fiedler (2013), Gibson and
Jedwab (2011), and Craigen, Holzmann, and Kharaghani (2002) we implemented the
enumeration method described in Section 3. The preprocessing step was performed by
a C program and used the mathematical library FFTW by Frigo and Johnson (2005)
for computing the values of f0, . . . , f127 as described in Section 3.5. Stage 1 was
performed by a C++ program, used FFTW for computing the values of A1(z) and A2(z),
and a MAPLE script by Riel (2006) for determining the solvability of the Diophantine
equations given in Section 3.3. Stage 2 was performed by the programmatic SAT solver
MAPLESAT by Liang et al. (2017). The postprocessing step was performed by a Python
script.

17

Total CPU Time in hours
n Preproc. Stage 1 Stage 2

17 0.00 0.00 0.00
18 0.00 0.01 0.01
19 0.00 0.01 0.01
20 0.00 0.08 0.04
21 0.00 0.71 0.13
22 0.00 0.88 0.15
23 0.01 4.67 0.19
24 0.01 7.09 1.24
25 0.03 97.86 1.37
26 0.06 234.43 4.72
27 0.12 3255.56 49.56
28 0.22 2543.34 25.73

Table 1: The time used to run the various stages of our algorithm in lengths 17 ≤ n ≤ 28.

We ran our implementation on a cluster of machines running CentOS 7 and using
Intel Xeon E5-2683V4 processors running at 2.1 GHz and using at most 8.5GB of RAM.
The lengths up to 22 were run on a single core, the lengths 23 and 24 were run on 10
cores, the lengths 25 and 26 were run on 100 cores, and the lengths 27 and 28 were
run on 1000 cores. The work was parallelized across N cores by partitioning the list
Lodd into N sublists of approximately equal size. Everything in the stages proceeded
exactly as before except that in stage 1 the list Lodd was about N times shorter than it
would have been otherwise. In practice, this allowed us to complete the search nearly N
times faster; for example, our search in length 28 required about 3.5 months of CPU
time but completed in about 3 hours when distributed across 1000 cores. The timings
for the preprocessing step and the two stages of our algorithm are given in Table 1;
the timings for the postprocessing step were negligible. The times are given as the
total amount of CPU time used across all cores. Our code is available online as a
part of the MATHCHECK project (see uwaterloo.ca/mathcheck) and the resulting
enumeration of complex Golay pairs is available from https://doi.org/10.5281/
zenodo.1246337.

The sizes of the lists Leven and Lodd computed in the preprocessing step and the size
of the list LA computed in stage 1 are given in Table 2 for all lengths n ≤ 28. Without
applying any filtering LA would have size 4n so Table 2 demonstrates the power of the
criteria we used to perform filtering; for example in length 28 less than 10−8% of the
possible sequences A were added to LA. A result of Gersho et al. (1979) implies that
for z on the unit circle the maximum value of |A(z)|2 is n log n + O(n log log n) for almost
all {±1,±i}-polynomials A of degree n. In particular, the number of polynomials that do
not satisfy this is at most 4n/(log n)4, implying that the size of LA will be o(4n) though
in practice we even have |LA| ≤ 2n.

The generated SAT instances had 2n variables (encoding the entries b0, . . . , bn−1),
two unit clauses (encoding b0 = 1), 2bn/2c binary clauses (encoding Proposition 19),

18

https://uwaterloo.ca/mathcheck
https://doi.org/10.5281/zenodo.1246337
https://doi.org/10.5281/zenodo.1246337

and n − 1 programmatic constraints (encoding Definition 2). Once the values of bk

are known for k = 0, . . . , bn/2c, the programmatic constraints uniquely determine the
remaining values of bk. Thus 4n/2 is a crude upper bound on the number of possible
assignments to the values of b0, . . . , bn−1.

We now give an upper bound on the complexity of the parts of our algorithm that do
not run in polynomial time. The preprocessing and postprocessing costs are dominated
by the costs of stage 1 and 2. The cost of stage 1 is at most 4n, an upper bound on the
number of generated SAT instances. The cost of stage 2 is difficult to specify rigorously
since it may depend on the specific SAT solver that is used. However, there are at
most 4n/2 possible assignments for each instance, so using a solver that checks each
assignment once gives an overall cost of 43n/2. The running time is better in practice,
though seemingly still exponential.

Finally, we provide counts of the total number of complex Golay pairs of length
n ≤ 28 in Table 3. The sizes of Ωseqs match those given by Fiedler (2013) in all cases,
the sizes of Ωall match those given by Gibson and Jedwab (2011) for all n ≤ 26 (the
largest length they included) and the sizes of Ωinequiv match those given by Craigen et al.
(2002) for all n ≤ 19 (the largest length they exhaustively solved).

Because Fiedler (2013), Gibson and Jedwab (2011), and Craigen et al. (2002)
do not provide implementations or timings for the enumerations they completed it is
not possible for us to compare the efficiency of our algorithm to previous algorithms.
However, in Table 4 we compare our implementation’s timings to the timings we
previously presented (Bright et al., 2018b). Table 4 shows that the improved version of
our algorithm performs about an order of magnitude faster in general.

5. Future Work

Besides increasing the length to which complex Golay pairs have been enumerated
there are a number of avenues for improvements that could be made in future work. As
one example, we remark that we have not exploited the algebraic structure of complex
Golay pairs revealed by Craigen, Holzmann, and Kharaghani (2002). In particular,
their work contains a theorem implying that if p ≡ 3 (mod 4) is a prime dividing n
and A is a member of a complex Golay pair of length n then A(z) is not irreducible
over Fp(i). Ensuring that this property holds could be added to the filtering conditions
used in stage 1. In fact, the authors relate the factorization of A(z) over Fp(i) to the
factorization of B(z) over Fp(i) for any complex Golay pair (A, B). This factorization
could potentially be used to perform stage 2 more efficiently, possibly supplementing or
replacing the SAT solver entirely, though it is unclear if such a method would perform
better than our method in practice. In any case, it would not be possible to apply their
theorem in all lengths since the length n might only be divisible by primes p = 2 or
p ≡ 1 (mod 4).

A second possible improvement could be to use the symbolic form of f (θ) defined in
Section 3.1 to help find the maximum of f (θ). For example, a consequence of Lemma 6
and Euler’s identity is that

f (θ) = NA′ (0) + 2
n−1∑
s=1

Re(NA′ (s)) cos(sθ) + 2
n−1∑
s=1

Im(NA′ (s)) sin(sθ)

19

n |Leven| |Lodd| |LA|

1 1 − 1
2 3 1 3
3 3 1 1
4 3 4 3
5 12 4 5
6 12 16 14
7 39 16 12
8 48 64 36
9 153 64 44
10 153 204 118
11 561 252 99
12 645 860 445
13 2121 884 279
14 2463 3284 294
15 8340 3572 1650
16 9087 12116 829
17 31275 12824 3233
18 34560 46080 11159
19 117597 50944 10918
20 130215 173620 26876
21 446052 194004 81941
22 500478 667304 90163
23 1694871 732232 118747
24 1886562 2515416 200138
25 6447250 2727452 709584
26 7183879 9578506 737891
27 24426370 10591928 7618474
28 27265578 36354113 3687209

Table 2: The number of sequences Aeven, Aodd, and A that passed the filtering conditions of our algorithm in
lengths up to 28.

20

n |Ωseqs| |Ωall| |Ωinequiv|

1 4 16 1
2 16 64 1
3 16 128 1
4 64 512 2
5 64 512 1
6 256 2048 3
7 0 0 0
8 768 6656 17
9 0 0 0

10 1536 12288 20
11 64 512 1
12 4608 36864 52
13 64 512 1
14 0 0 0
15 0 0 0
16 13312 106496 204
17 0 0 0
18 3072 24576 24
19 0 0 0
20 26880 215040 340
21 0 0 0
22 1024 8192 12
23 0 0 0
24 98304 786432 1056
25 0 0 0
26 1280 10240 16
27 0 0 0
28 0 0 0

Table 3: The number complex Golay pairs in lengths up to 28. The table counts the number of individual
sequences, the number of pairs, and the number of pairs up to equivalence.

21

Total CPU Time in hours
n ISSAC’18 This paper

17 0.07 0.00
18 0.27 0.02
19 0.26 0.02
20 0.80 0.12
21 3.86 0.84
22 10.77 1.03
23 45.18 4.87
24 86.97 8.34
25 702.39 99.26
26 − 239.21
27 − 3305.24
28 − 2569.29

Table 4: A comparison between the method presented at ISSAC 2018 (Bright et al., 2018b) and the method
used in this paper. The times measure the total amount of computation time that was used to run a complete
search in the lengths 17 ≤ n ≤ 28 when run on the same hardware.

showing that f has a simple form as a sum of sines and cosines. Finding the real roots
of the derivative of f would reveal the locations of the local maxima and minima of f .
However, again it is unclear if this method would perform better than our approximation
method in practice. Note that our method is not guaranteed to find the global maximum
of f since we only apply the quadratic interpolation optimization method to ranges that
we know contain a local maximum by examining the initial sampling of f . With a more
careful branch-and-bound algorithm it would be possible to guarantee that the global
maximum was found but the approximations that we found were effective enough that
we did not pursue this.

Another possible improvement could be obtained by deriving further properties
like Proposition 19 that complex Golay pairs must satisfy. For example, consider the
following property that could be viewed as a strengthening of Proposition 19:

akan−k−1 = (−1)n+1bkbn−k−1 for k = 1, . . . , n − 2.

An examination of all complex Golay pairs up to length 28 reveals that they all satisfy
this property except for a single complex Golay pair up to equivalence. The only pairs
that don’t satisfy this property are equivalent to(

[1, 1, 1,−1, 1, 1,−1, 1], [1, i, i,−1, 1,−i,−i,−1]
)

and were already singled out by Fiedler, Jedwab, and Parker (2008b) for being the
only known examples of what they call “cross-over” Golay sequence pairs. Since a
counterexample exists to this property there is no hope of proving it in general, but
perhaps a suitable generalization could be proven.

Lastly, the running time analysis of our algorithm could be improved. We have
given a crude upper bound of 43n/2 = 8n for the complexity of the parts of our algorithm

22

that do not run in polynomial time. However, this running time would be improved by
tighter bounds on either the size of LA or the number of possible assignments that the
SAT solver will try.

Acknowledgements

This work was made possible by the facilities of the Shared Hierarchical Academic
Research Computing Network (SHARCNET) and Compute/Calcul Canada. The authors
would also like to thank the anonymous reviewers for their comments on this paper and
on our ISSAC 2018 submission. Their careful reviews improved our work’s clarity and
presentation.

References

Ábrahám, E., 2015. Building bridges between symbolic computation and satisfiability
checking. In: Proceedings of the 2015 ACM on International Symposium on Symbolic
and Algebraic Computation. ACM, New York, pp. 1–6.
URL https://doi.org/10.1145/2755996.2756636

Ábrahám, E., Abbott, J., Becker, B., Bigatti, A. M., Brain, M., Buchberger, B., Cimatti,
A., Davenport, J. H., England, M., Fontaine, P., Forrest, S., Griggio, A., Kroening,
D., Seiler, W. M., Sturm, T., 2016. SC2: Satisfiability Checking meets Symbolic
Computation. In: Intelligent Computer Mathematics: 9th International Conference,
CICM 2016, Bialystok, Poland, July 25–29, 2016, Proceedings. Springer International
Publishing, Cham, pp. 28–43, http://www.sc-square.org/.
URL https://doi.org/10.1007/978-3-319-42547-4_3

Barrett, C., Fontaine, P., Tinelli, C., 2016. The Satisfiability Modulo Theories Library
(SMT-LIB).
URL http://www.SMT-LIB.org

Bright, C., 2017. Computational methods for combinatorial and number theoretic
problems. Ph.D. thesis, University of Waterloo.
URL http://hdl.handle.net/10012/11761

Bright, C., Ganesh, V., Heinle, A., Kotsireas, I. S., Nejati, S., Czarnecki, K., 2016.
MATHCHECK2: A SAT+CAS Verifier for Combinatorial Conjectures. In: Com-
puter Algebra in Scientific Computing - 18th International Workshop, CASC 2016,
Bucharest, Romania, September 19–23, 2016, Proceedings. pp. 117–133.
URL https://doi.org/10.1007/978-3-319-45641-6_9

Bright, C., Kotsireas, I., Ganesh, V., 2018a. A SAT+CAS method for enumerating
Williamson matrices of even order. In: Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, New Orleans, Louisiana, USA, February 2–7,
2018. pp. 6573–6580.
URL https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/
16625

23

https://doi.org/10.1145/2755996.2756636
http://www.sc-square.org/
https://doi.org/10.1007/978-3-319-42547-4_3
http://www.SMT-LIB.org
http://hdl.handle.net/10012/11761
https://doi.org/10.1007/978-3-319-45641-6_9
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16625
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16625

Bright, C., Kotsireas, I. S., Heinle, A., Ganesh, V., 2018b. Enumeration of complex
Golay pairs via programmatic SAT. In: Proceedings of the 2018 ACM on International
Symposium on Symbolic and Algebraic Computation, ISSAC 2018, New York, NY,
USA, July 16–19, 2018. pp. 111–118.
URL https://doi.org/10.1145/3208976.3209006

Bright, C., Ðoković, D. Ž., Kotsireas, I., Ganesh, V., 2019. A SAT+CAS approach to
finding good matrices: New examples and counterexamples. In: Proceedings of the
Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, Hawaii, USA,
January 27 – February 1, 2019. pp. 1435–1442.
URL https://doi.org/10.1609/aaai.v33i01.33011435

Craigen, R., 1994. Complex Golay sequences. Journal of Combinatorial Mathematics
and Combinatorial Computing 15, 161–169.

Craigen, R., Holzmann, W., Kharaghani, H., 2002. Complex Golay sequences: structure
and applications. Discrete Math. 252 (1–3), 73–89.
URL https://doi.org/10.1016/S0012-365X(01)00162-5

Davis, J. A., Jedwab, J., 1999. Peak-to-mean power control in OFDM, Golay com-
plementary sequences, and Reed–Muller codes. IEEE Transactions on Information
Theory 45 (7), 2397–2417.
URL https://doi.org/10.1109/18.796380

Donato, P. G., Urena, J., Mazo, M., Alvarez, F., June 2004. Train wheel detection without
electronic equipment near the rail line. In: IEEE Intelligent Vehicles Symposium,
2004. pp. 876–880.
URL https://doi.org/10.1109/IVS.2004.1336500

Fiedler, F., 2013. Small Golay sequences. Advances in Mathematics of Communications
7 (4).
URL http://doi.org/10.3934/amc.2013.7.379

Fiedler, F., Jedwab, J., Parker, M. G., 2008a. A framework for the construction of Golay
sequences. IEEE Transactions on Information Theory 54 (7), 3114–3129.
URL https://doi.org/10.1109/TIT.2008.924667

Fiedler, F., Jedwab, J., Parker, M. G., 2008b. A multi-dimensional approach to the
construction and enumeration of Golay complementary sequences. Journal of Combi-
natorial Theory, Series A 115 (5), 753–776.
URL https://doi.org/10.1016/j.jcta.2007.10.001

Frank, R., 1980. Polyphase complementary codes. IEEE Transactions on Information
theory 26 (6), 641–647.
URL https://doi.org/10.1109/TIT.1980.1056272

Frigo, M., Johnson, S. G., 2005. The design and implementation of FFTW3. Proceedings
of the IEEE 93 (2), 216–231.
URL https://doi.org/10.1109/JPROC.2004.840301

24

https://doi.org/10.1145/3208976.3209006
https://doi.org/10.1609/aaai.v33i01.33011435
https://doi.org/10.1016/S0012-365X(01)00162-5
https://doi.org/10.1109/18.796380
https://doi.org/10.1109/IVS.2004.1336500
http://doi.org/10.3934/amc.2013.7.379
https://doi.org/10.1109/TIT.2008.924667
https://doi.org/10.1016/j.jcta.2007.10.001
https://doi.org/10.1109/TIT.1980.1056272
https://doi.org/10.1109/JPROC.2004.840301

Ganesh, V., O’Donnell, C. W., Soos, M., Devadas, S., Rinard, M. C., Solar-Lezama, A.,
2012. Lynx: A programmatic SAT solver for the RNA-folding problem. In: Interna-
tional Conference on Theory and Applications of Satisfiability Testing. Springer, pp.
143–156.
URL https://doi.org/10.1007/978-3-642-31612-8_12

Gersho, A., Gopinath, B., Odlyzko, A., 1979. Coefficient inaccuracy in transversal
filtering. Bell System Technical Journal 58 (10), 2301–2316.
URL https://doi.org/10.1002/j.1538-7305.1979.tb02968.x

Gibson, R. G., Jedwab, J., 2011. Quaternary Golay sequence pairs I: Even length.
Designs, Codes and Cryptography 59 (1-3), 131–146.
URL https://doi.org/10.1007/s10623-010-9471-z

Golay, M., 1961. Complementary series. IRE Transactions on Information Theory 7 (2),
82–87.
URL https://doi.org/10.1109/TIT.1961.1057620

Golay, M. J., 1949. Multi-slit spectrometry. JOSA 39 (6), 437–444.
URL https://doi.org/10.1364/JOSA.39.000437

Holzmann, W. H., Kharaghani, H., 1994. A computer search for complex Golay se-
quences. Australasian Journal of Combinatorics 10, 251–258.

Kotsireas, I. S., 2013. Algorithms and metaheuristics for combinatorial matrices. In:
Handbook of Combinatorial Optimization. Springer, pp. 283–309.
URL https://doi.org/10.1007/978-1-4419-7997-1_13

Kotsireas, I. S., Koukouvinos, C., Seberry, J., 2009. Weighing matrices and string
sorting. Annals of Combinatorics 13 (3), 305–313.
URL https://doi.org/10.1007/s00026-009-0027-8

Krone, S., Sarwate, D., 1984. Quadriphase sequences for spread-spectrum multiple-
access communication. IEEE Transactions on Information Theory 30 (3), 520–529.
URL https://doi.org/10.1109/TIT.1984.1056913

Li, S., Chen, J., Zhang, L., Zhou, Y., 2008. Construction of quadri-phase complete com-
plementary pairs applied in MIMO radar systems. In: ICSP 2008: 9th International
Conference on Signal Processing. IEEE, pp. 2298–2301.
URL https://doi.org/10.1109/ICOSP.2008.4697608

Li, Y., Chu, W. B., 2005. More golay sequences. IEEE Transactions on Information
Theory 51 (3), 1141–1145.
URL https://doi.org/10.1109/TIT.2004.842775

Liang, J. H., Poupart, P., Czarnecki, K., Ganesh, V., 2017. An empirical study of branch-
ing heuristics through the lens of global learning rate. In: International Conference
on Theory and Applications of Satisfiability Testing. Springer, pp. 119–135.
URL https://doi.org/10.1007/978-3-319-66263-3_8

25

https://doi.org/10.1007/978-3-642-31612-8_12
https://doi.org/10.1002/j.1538-7305.1979.tb02968.x
https://doi.org/10.1007/s10623-010-9471-z
https://doi.org/10.1109/TIT.1961.1057620
https://doi.org/10.1364/JOSA.39.000437
https://doi.org/10.1007/978-1-4419-7997-1_13
https://doi.org/10.1007/s00026-009-0027-8
https://doi.org/10.1109/TIT.1984.1056913
https://doi.org/10.1109/ICOSP.2008.4697608
https://doi.org/10.1109/TIT.2004.842775
https://doi.org/10.1007/978-3-319-66263-3_8

Lomayev, A., Gagiev, Y., Maltsev, A., Kasher, A., Genossar, M., Cordeiro, C., Nov. 9
2017. Golay sequences for wireless networks. US Patent App. 15/280,635.
URL https://www.google.com/patents/US20170324461

Monagan, M. B., Geddes, K. O., Heal, K. M., Labahn, G., Vorkoetter, S. M., McCarron,
J., DeMarco, P., 2005. Maple 10 Programming Guide. Maplesoft, Waterloo ON,
Canada.

Nazarathy, M., Newton, S. A., Giffard, R., Moberly, D., Sischka, F., Trutna, W., Foster,
S., 1989. Real-time long range complementary correlation optical time domain
reflectometer. Journal of Lightwave Technology 7 (1), 24–38.
URL https://doi.org/10.1109/50.17729

Nowicki, A., Secomski, W., Litniewski, J., Trots, I., Lewin, P., 2003. On the applica-
tion of signal compression using Golay’s codes sequences in ultrasound diagnostic.
Archives of Acoustics 28 (4).
URL http://acoustics.ippt.gov.pl/index.php/aa/article/view/460

Popović, B. M., 1991. Synthesis of power efficient multitone signals with flat amplitude
spectrum. IEEE transactions on Communications 39 (7), 1031–1033.
URL https://doi.org/10.1109/26.87205

Riel, J., 2006. NSOKS: A MAPLE script for writing n as a sum of k squares.
URL https://www.swmath.org/software/21060

Seberry, J. R., Wysocki, B. J., Wysocki, T. A., 2002. On a use of Golay sequences
for asynchronous DS CDMA applications. In: Advanced Signal Processing for
Communication Systems. Springer, pp. 183–196.
URL https://doi.org/10.1007/0-306-47791-2_14

Sivaswamy, R., 1978. Multiphase complementary codes. IEEE Transactions on Infor-
mation Theory 24 (5), 546–552.
URL https://doi.org/10.1109/TIT.1978.1055936

Sun, W., Yuan, Y., 2006. Optimization theory and methods: nonlinear programming.
Springer Science & Business Media.
URL https://doi.org/10.1007/b106451

Tseng, C. C., 1971. Signal multiplexing in surface-wave delay lines using orthogonal
pairs of Golay’s complementary sequences. IEEE Transactions on Sonics and Ultra-
sonics 18 (2), 103–107.
URL https://doi.org/10.1109/T-SU.1971.29599

Zulkoski, E., Bright, C., Heinle, A., Kotsireas, I. S., Czarnecki, K., Ganesh, V., 2017.
Combining SAT solvers with computer algebra systems to verify combinatorial
conjectures. Journal of Automated Reasoning 58 (3), 313–339.
URL https://doi.org/10.1007/s10817-016-9396-y

26

https://www.google.com/patents/US20170324461
https://doi.org/10.1109/50.17729
http://acoustics.ippt.gov.pl/index.php/aa/article/view/460
https://doi.org/10.1109/26.87205
https://www.swmath.org/software/21060
https://doi.org/10.1007/0-306-47791-2_14
https://doi.org/10.1109/TIT.1978.1055936
https://doi.org/10.1007/b106451
https://doi.org/10.1109/T-SU.1971.29599
https://doi.org/10.1007/s10817-016-9396-y

	Introduction
	Background on Complex Golay Pairs
	Alternative definition
	Equivalence operations
	Filtering properties
	Sum-of-squares decomposition types

	Enumeration Method
	Preprocessing: Enumerate possibilities for Aeven and Aodd
	Stage 1: Enumerate possibilities for A
	Stage 2: Construct the second sequence B from A
	Postprocessing: Enumerating all complex Golay pairs
	Optimizations

	Results
	Future Work

