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Abstract

We employ tools from the fields of symbolic computation and satisfiability checking—namely, computer algebra
systems and SAT solvers—to study the Williamson conjecture from combinatorial design theory and increase
the bounds to which Williamson matrices have been enumerated. In particular, we completely enumerate all
Williamson matrices of orders divisible by 2 or 3 up to and including 70. We find one previously unknown set of
Williamson matrices of order 63 and construct Williamson matrices in every even order up to and including 70.
This extended abstract outlines a preprint currently under submission [4].

1 Introduction
In recent years SAT solvers have been used to solve or make progress on mathematical conjectures which have
otherwise resisted solution [10, 11, 13] and in this work we apply a SAT solver to the Williamson conjecture from
combinatorial design theory. Our work is similar in spirit to the aforementioned works but we would like to highlight
two main differences. Firstly, we employ a programmatic SAT solver as introduced by [9]. A programmatic SAT
solver is able to learn conflict clauses programmatically, through a piece of code compiled with the SAT solver. This
code is specifically tailored to the problem domain and encodes domain-specific knowledge that an off-the-shelf SAT
solver would otherwise not be able to exploit. This framework is not limited to any specific domain; any external
library or function can be used as long as it is callable by the SAT solver. We show that the clauses that are learned
in this fashion can enormously cut down the search space as well as the solver’s runtime.

Secondly, similar in style to [17] we incorporate functionality from computer algebra systems to increase the
efficiency of the search in what we call the “SAT+CAS” paradigm. This approach of combining computer algebra
systems with SAT or SMT solvers was also independently proposed at the conference ISSAC [1]. More recently,
it has been argued by the SC2 project [2] that the fields of satisfiability checking and symbolic computation are
complementary and combining the tools of both fields (i.e., SAT solvers and computer algebra systems) in the right
way can solve problems more efficiently than could be done by applying the tools of either field in isolation, and our
work provides evidence for this view. Specifically, our work uses the Maple CAS function nsoks [14] and the C
library FFTW [8].

Previously [5] we enumerated Williamson matrices of even order up to order 64 and this work extends the
enumeration to order 70 and extends the method to enumerate Williamson matrices with orders divisible by 3. In
doing so, we find a previously undiscovered set of Williamson matrices of order 63, the first new set of Williamson
matrices of odd order discovered since one of order 43 was found over ten years ago [12].

2 The Williamson Conjecture
Williamson introduced the matrices which now bear his name while developing a method of constructing Hadamard
matrices—square matrices with ±1 entries and pairwise orthogonal rows [16]. The Hadamard conjecture states that
Hadamard matrices exist for all orders divisible by 4 and Williamson’s construction has been extensively used to
construct Hadamard matrices in many different orders. Four matrices A, B, C, D ∈ {±1}n×n are Williamson matrices
if they are symmetric, circulant, and A2 +B2 + C2 +D2 is the scalar matrix 4nI. The Williamson conjecture states
that Williamson matrices can be used to construct Hadamard matrices in any order divisible by 4; Turyn states it as
follows [15]:
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Only a finite number of Hadamard matrices of Williamson type are known so far; it has been conjectured
that one such exists of any order 4t.

Williamson matrices have also found use in digital communication systems and this motivated mathematicians from
NASA’s Jet Propulsion Laboratory to construct Williamson matrices of order 23 while developing codes allowing
the transmission of signals over a long range [3]. These Williamson matrices were consequently used to construct a
Hadamard matrix of order 4 · 23 = 92 [6].

The Williamson conjecture was shown to be false by Ðoković [7] who showed that such matrices do not exist in
order 35. Later, when an enumeration of Williamson matrices for odd orders up to 59 was completed [12] it was found
that Williamson matrices also do not exist for orders 47, 53, and 59 but exist for all other odd orders under 65 since
Turyn’s construction [15] works in orders 61 and 63. Our work provides for the first time a complete enumeration of
Williamson matrices in the orders 63, 66, 68, 69, and 70. In particular, we show that Williamson matrices exist in
every even order up to 70.

3 Conclusion
Our work shows the power of the SAT+CAS paradigm (i.e., the technique of applying the tools from the fields
of satisfiability checking and symbolic computation) as well as the power and flexibility of the programmatic SAT
approach. Our focus was applying the SAT+CAS paradigm to the Williamson conjecture from combinatorial design
theory, but we believe the SAT+CAS paradigm shows promise to be applicable to other problems and conjectures.
However, the SAT+CAS paradigm is not something that can be effortlessly applied to problems or expected to be
effective on all types of problems and our work gives some guidance about the typical kind of problems in which the
SAT+CAS paradigm can be expected to work particularly well.
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