
A SAT Solver + Computer Algebra Attack on the
Minimum Kochen–Specker Problem

Zhengyu Li1 , Curtis Bright2 , Vijay Ganesh1

1School of Computer Science, Georgia Institute of Technology, United States
2School of Computer Science, University of Windsor, Canada

brian.li@gatech.edu, cbright@uwindsor.ca, vganesh45@gatech.edu

Abstract

One of the fundamental results in quantum founda-
tions is the Kochen–Specker (KS) theorem, which
states that any theory whose predictions agree with
quantum mechanics must be contextual, i.e., a
quantum observation cannot be understood as re-
vealing a pre-existing value. The theorem hinges
on the existence of a mathematical object called a
KS vector system. While many KS vector systems
are known, the problem of finding the minimum
KS vector system in three dimensions (3D) has re-
mained stubbornly open for over 55 years.
To address the minimum KS problem, we present
a new verifiable proof-producing method based on
a combination of a Boolean satisfiability (SAT)
solver and a computer algebra system (CAS) that
uses an isomorph-free orderly generation technique
that is very effective in pruning away large parts
of the search space. Our method shows that a
KS system in 3D must contain at least 24 vectors.
We show that our sequential and parallel Cube-
and-Conquer (CnC) SAT+CAS methods are sig-
nificantly faster than SAT-only, CAS-only, and a
prior CAS-based method of Uijlen and Westerbaan.
Further, while our parallel pipeline is somewhat
slower than the parallel CnC version of the recently
introduced Satisfiability Modulo Theories (SMS)
method, this is in part due to the overhead of proof
generation. Finally, we provide the first computer-
verifiable proof certificate of a lower bound to the
KS problem with a size of 40.3 TiB in order 23.

1 Introduction
Quantum Mechanics (QM) is often described as one of the
most successful physical theories of all time, and yet many
questions regarding the foundations of QM continue to be
hotly contested. Many interpretations of QM, i.e., mappings
from mathematical formalisms of QM to physical phenom-
ena, have been proposed in order to resolve these quantum
foundational questions. Hidden-variable theories are attempts
at understanding counterintuitive QM phenomena through a
deterministic lens by positing the existence of unobservable

entities or hidden variables [Held, 2000] that the standard QM
theory does not account for.

The Kochen–Specker (KS) theorem, a fundamental result
in quantum foundations, rules out non-contextual hidden-
variable theories by establishing the existence of a finite set
of three-dimensional (3D) vectors (a KS system) witnessing a
contradiction between non-contextuality (i.e., the assumption
that observables can be assigned values prior to measurement
and independent of measurement context) and the SPIN ax-
iom of QM. KS systems are also a crucial ingredient in the
proof of the “Free Will Theorem” of [Conway and Kochen,
2006]. The very first KS vector system, discovered in 1967,
contains 117 vectors [Kochen and Specker, 1967].

Since the publication of Kochen and Specker’s theorem
in 1967, physicists and mathematicians have wondered how
many vectors the smallest-sized KS vector system contains
(see Table 1 and Section 3). Finding the minimum KS sys-
tem (the KS problem) is not only of scientific and histori-
cal interest, but also has applications in quantum information
processing [Cañas et al., 2014].

1.1 The SAT+CAS Paradigm for Hard
Combinatorial Problems

Despite the impressive achievements of SAT solvers [Ganesh
and Vardi, 2020], they struggle on certain problems such as
those containing many symmetries [Metin et al., 2018] or
those requiring the usage of more advanced mathematical the-
ories than propositional logic [Bright et al., 2022]. Much
work has been done to remedy these drawbacks, including
the development of sophisticated symmetry breaking tech-
niques [Aloul et al., 2003] and the development of solvers
that support richer logic such as “SAT modulo theories” or
SMT solvers [Barrett et al., 2016]. However, the mathemati-
cal support of SMT solvers is more focused on program anal-
ysis and verification. By contrast, computer algebra systems
(CAS) provide rich mathematical functionality and are vast
storehouses of mathematical knowledge that are particularly
suitable for hard combinatorial problems that come from var-
ied areas of math, physics, and computer science.

In response to this need for combining the efficient
search capabilities of SAT solvers with the mathematical
knowledge available in computer algebra systems, a new
kind of “SAT+CAS” solving methodology was developed
by [Zulkoski et al., 2015; Bright et al., 2016] and inde-

Discoverers Year Bound
Kochen and Specker 1967 ≤ 117
Jost 1976 ≤ 109
Conway and Kochen 1990 ≤ 31
Arends et al. 2009 ≥ 18
Uijlen and Westerbaan 2016 ≥ 22
Li et al. 2022 ≥ 23
Kirchweger et al. 2023 ≥ 24

Table 1: A chronology of the bounds on the size of the minimum KS
vector system in three dimensions.

pendently by [Ábrahám, 2015]. This SAT+CAS solving
methodology has been successfully applied to many diverse
problems, including verification [Kaufmann and Biere, 2023;
Mahzoon et al., 2022], computing directed Ramsey num-
bers [Neiman et al., 2022], and finding Williamson matri-
ces [Bright et al., 2020b].

1.2 Isomorph-free Exhaustive Orderly Generation

In this paper, we use the SAT+CAS solving methodology to
dramatically improve the performance of searching for KS
systems compared to a SAT-only, CAS-only (based on the
program nauty [McKay and Piperno, 2014]), and many pre-
vious approaches developed to prove lower bounds to the
minimum KS problem (Section 1.3). This is made possible
by combining the powerful search algorithms used in mod-
ern SAT solvers with an “isomorph-free exhaustive gener-
ation” approach, implemented via CAS, preventing dupli-
cate exploration of isomorphic parts of the search space.
This approach was recently used to resolve Lam’s prob-
lem from projective geometry [Bright et al., 2021]. Al-
though isomorph-free exhaustive generation has been used
extensively in combinatorial enumeration, it has only re-
cently been combined with SAT solving [Junttila et al., 2020;
Savela et al., 2020].

The traditional approach to prevent a SAT solver from
repeatedly exploring isomorphic parts of a search space is
via the use of symmetry breaking techniques [Metin et al.,
2018]. One such symmetry breaking approach is to add
“static” constraints prior to the search that reduces the size of
the search space [Crawford et al., 1996; Heule, 2019]. An-
other approach is to “dynamically” break symmetries dur-
ing the search [Sellmann and Hentenryck, 2005; Metin et
al., 2018] such as in the SAT Modulo Symmetries (SMS)
paradigm [Kirchweger and Szeider, 2021]. Our approach is
related in that it also dynamically adds constraints to the prob-
lem during the solving process.

The key difference between these previous approaches and
ours is that we query a CAS in the inner loop of a SAT solver,
and this permits learning more general constraints. For exam-
ple, we call a CAS to detect the presence of certain subgraphs
that are known to not be contained in any KS system; if such a
subgraph is detected, it is dynamically blocked. Most impor-
tantly, our method produces independently verifiable proofs
in a simple extension of the DRAT format [Wetzler et al.,
2014].

CaDiCaL
Preprocessor

Simplifier

Orderly Generation
via SAT+CAS

Embeddability
Checker

CNF
Instance

CaDiCaL +
CAS

Simplified
Instance

KS
Candidates

Z3 SMT
Solver

KS Vector System

MapleSAT

CAS

Partial
Solution

Blocking
Clause

Figure 1: A flowchart of our SAT+CAS tool MATHCHECK for solv-
ing the KS problem in the sequential setting. The CNF instance
encoding the KS problem (see Section 4) is simplified using CaDi-
CaL+CAS. The simplified instance is passed to the MapleSAT+CAS
tool (see Section 5) either sequentially or in parallel using Cube-and-
Conquer (CnC). Finally, an embeddability checker applies the SMT
solver Z3 to determine whether the candidates are embeddable.

1.3 Our Contributions
Proof-producing SAT+CAS with Orderly Generation:
In this paper, we present the design and implementation of
a verifiable proof-producing SAT+CAS system with orderly
generation (OG) aimed at combinatorial problems (as part of
the SAT+CAS tool, MATHCHECK1), thus showing that the
minimum KS system must contain at least 24 vectors. Also,
we extend our work to complex vectors in three dimensions
(3D), and thus establish a lower bound of 24 for both the real
and complex KS problem.

Speedup over Competing Methods: We show that our se-
quential and parallel Cube-and-Conquer (CnC) SAT+CAS
methods are significantly faster than SAT-only and CAS-
based methods [Uijlen and Westerbaan, 2016]. Further,
while our pipeline is somewhat slower than the recently in-
troduced SMS method [Kirchweger et al., 2023], this is in
part due to the generation of verifiable proofs by our methods
which added additional complexity and slowed down MATH-
CHECK.

Formal Verification of Results: Finally, our approach pro-
vides a formal verification of the lower bound of 24 for the
minimum KS problem in 3D by verifying all certificates com-
puted by MATHCHECK in all orders up to and including or-
der 23 (see Section 9). By contrast, Kirchweger et al. describe
a method to verify their result, but they only report having
verified 5% of the proofs in order 23.

2 Background
We introduce several fundamental concepts here from quan-
tum foundations such as the SPIN axiom, 010-colorability,
the KS theorem, and the KS vector system. For a deeper dive,
we refer the reader to the Stanford Encyclopedia of Philoso-
phy [Held, 2000]. Regarding SAT solvers, we refer the reader
to the Handbook of Satisfiability [Biere et al., 2021].

1Code at https://github.com/BrianLi009/MathCheck

https://github.com/BrianLi009/MathCheck

−2.0
−1.5

−1.0
−0.5

0.0
0.5

1.0
1.5

2.0

X

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Y

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Z

Figure 2: The 31 vectors of the smallest known KS system in
3D (discovered by Conway and Kochen circa 1990). For simplic-
ity, the vectors have been scaled to lie on the cube with vertices
(±2,±2,±2) instead of the unit sphere.

2.1 The KS Theorem
Informally, the KS theorem states that there is a contradiction
between the SPIN axiom of standard QM and the assumption
of non-contextuality. The Stanford Encyclopedia of Philoso-
phy provides a comprehensive background to the KS theorem
and stresses its importance in the foundations of QM [Held,
2000]. The proof of the KS theorem crucially relies on the
existence of a KS vector system (see Figure 2). More pre-
cisely, exhibiting the existence of a KS vector system proves
the KS theorem, which essentially states that the unit sphere
is not 010-colorable (defined below).

Spin of an Elementary Particle: Spin is an intrinsic
form of angular momentum of elementary particles whose
existence can be inferred from the Stern–Gerlach experi-
ment [Gerlach and Stern, 1922]. In our context, a spin-1 par-
ticle is shot through a magnetic field in a given direction and
it will continue undisturbed, deflect up, or deflect down—
corresponding to the three possible angular momentum states
0, 1, and −1. Thus, the square of this measurement is 0 or 1.

SPIN axiom: The SPIN axiom of QM states that the
squared spin measurements of a spin-1 particle are 1, 0, 1
in any three pairwise orthogonal directions of measurement.
Thus, the observable corresponding to the question “is the
squared spin 0?” measured in three mutually orthogonal di-
rection always produces yes in exactly one direction and no
in the other two orthogonal directions. We use the dual of
the above form in the present work, i.e., the ‘010’ conven-
tion rather than ‘101’, following Uijlen and Westerbaan. The
SPIN axiom follows from the postulates of QM and is exper-
imentally verifiable [Huang et al., 2003].

KS Vector System: A KS vector system can be represented
in multiple ways and we describe it as a finite set of points
on a sphere. As a consequence of the SPIN axiom, the
squared-spin measurements along opposite directions must
yield the same outcome. Therefore, two collinear vectors
are considered to be equivalent. To define a KS vector sys-
tem, we first formally define a vector system and the notion
of 010-colorability. For the purposes of this paper, we limit

ourselves to the 3D version of the KS problem as the size
of the minimum KS system in higher dimensions is already
known [Pavičić et al., 2005].
Definition 1 (Vector System). A vector system is a finite set
of non-collinear points on the unit sphere in R3.

A {0, 1}-coloring of a vector system is an assignment of 0
and 1 to each vector in the system. The colorings of interest
to us are described in the following definition.
Definition 2 (010-Colorability of Vector Systems). A vec-
tor system is 010-colorable if there exists an assignment of 0
and 1 to each point such that:

1. No two orthogonal points are assigned 1.

2. Three mutually orthogonal points are not all assigned 0.

Definition 3 (KS Vector System). A KS vector system is one
that is not 010-colorable.

Definition 4 (Orthogonality Graph). For a vector system K,
define its orthogonality graph GK = (V,E), where V = K,
E = { (v1, v2) : v1, v2 ∈ K and v1 · v2 = 0 }.

Essentially, the vertices of GK are the vectors in K, and
there is an edge between two vertices exactly when their cor-
responding vectors are orthogonal. Similarly, the notion of
010-colorability can be translated from a vector system to an
orthogonality graph.
Definition 5 (010-colorability of Graphs). A graph G is
010-colorable if there is a {0, 1}-coloring of the vertices such
that the following conditions are satisfied simultaneously:

1. No two adjacent vertices are colored 1.

2. For each triangle, the vertices are not all colored 0.

It is not always the case that an arbitrary graph has a corre-
sponding vector system, but if one does exist then we say that
such a graph is embeddable.

Definition 6 (Embeddable Graph). A graph G = (V,E) is
embeddable if it is a subgraph of an orthogonality graph for
some vector system.

The embeddability of a graph G implies the existence of
a vector system K whose vectors have a one-to-one corre-
spondence with the vertices of G, such that adjacent vertices
are assigned to orthogonal vectors. An example of an unem-
beddable graph is the cyclic graph C4 on 4 vertices, as the
orthogonality constraints force a pair of opposite vertices in
C4 to be mapped to collinear vectors (which are not allowed
in a vector system).

Definition 7 (KS Graph). An embeddable and non-010-
colorable graph is called a KS graph.

Observation 1. There exists a KS vector system if and only
if there exists a KS graph.

In our work, we search for KS graphs using MATHCHECK,
but because it is nontrivial to enforce the embeddability of
a graph, we do not require solutions produced by MATH-
CHECK to be embeddable. Instead, we add a post-processing
step ensuring solutions found by MATHCHECK (known as KS
candidates) are in fact embeddable (see Figure 1). However,

MATHCHECK does ensure that KS candidates will not con-
tain any unembeddable subgraphs of order less than or equal
to 12 (see Section 6).

2.2 The Minimum KS Problem
The minimum KS problem is to find a KS vector system of
minimum cardinality, that is, a system with the fewest num-
ber of vectors in 3D space (or equivalently a KS graph with
the fewest number of vertices). Every KS system has an as-
sociated KS graph, so if a KS graph with cardinality n does
not exist then a lower bound on the minimum KS problem is
at least n+ 1.

3 Previous Work
Over the last 55+ years, many mathematicians and physicists
such as Roger Penrose, Asher Peres, and John Conway have
attempted to find a minimum 3D KS system (see Table 1).
The first KS system was constructed in 1967 and it contained
117 vectors [Kochen and Specker, 1967]. A KS system with
109 vectors was found in 1976 [Jost, 1976]. Peres found a KS
system of size 33 in 1991 [Peres, 1991], and Schütte found a
KS system of size 33 in 1996.

The current smallest known KS system in 3D contains 31
vectors and was discovered by Conway and Kochen circa
1990 [Conway and Kochen, 2002]. All these discoveries were
made analytically, without the use of computational methods.
Recently, an automated generation approach to robustly gen-
erate KS systems in odd dimensions was introduced [Pavičić
and Megill, 2022], which led to the discovery of many more
3D KS systems.

In 2011, Arends et al. proved several interesting properties
of KS graphs and leveraged them to computationally establish
that a KS system must contain at least 18 vectors [Arends et
al., 2011]. Seven years later, Uijlen and Westerbaan showed
that a KS system must have at least 22 vectors [Uijlen and
Westerbaan, 2016]. This computational effort used around
300 CPU cores for three months and relied on the nauty soft-
ware package [McKay and Piperno, 2014] to exhaustively
search for KS graphs.

At the 2022 SC-Square workshop, Li et al. presented
searches for KS systems with up to 22 vectors. The searches
were exhaustive and no KS systems were found, thus estab-
lishing for the first time a lower bound on the minimum KS
problem of at least 23 vectors.

Following Li et al., Kirchweger, Peitl, and Szeider [Kirch-
weger et al., 2023] also completed a search for KS systems
and established a lower bound of 24 vectors, but using an
SMS solver and an alternate definition of canonicity. They do
not use OG, as their definition of canonicity does not satisfy
property (2) from Sec. 5, but otherwise the SMS approach
is similar in that it combines a SAT solver with a canonical
checking routine. Their approach can also be used to gener-
ate proof certificates, though they only report verifying 5% of
the certificates in the order 23 search and do not report veri-
fying the clauses dynamically learned by SMS. By contrast,
our approach formally verifies all results without trusting the
SAT solver or CAS.

4 SAT Encoding of the Minimum KS Problem
As stated earlier, every KS vector system K can be converted
into a KS graph GK. Each vector in K is assigned to a ver-
tex in GK, so that if two vectors are orthogonal, then their
corresponding vertices are connected. We say a KS graph is
minimal if the only subgraph that is also a KS graph is itself.
In 2011, Arends et al. proved that a 3D minimal KS graph
must satisfy the following properties:

1. The graph does not contain a square subgraph (C4).
2. Each vertex of the graph has a minimum degree 3.
3. Each vertex of the graph is part of a triangle (C3).

Below we describe encoding these properties and the non-
010-colorability of KS graphs in conjunctive normal form
(CNF). If a SAT solver produces solutions for such an en-
coding, then these solutions correspond to graphs satisfying
all of the above-mentioned constraints.

A simple undirected graph of order n has
(
n
2

)
potential

edges, and we represent each edge as a Boolean variable. The
edge variable eij is true exactly when the vertices i and j
are connected, where 1 ≤ i < j ≤ n. For convenience,
we let both eij and eji denote the same variable since the
graphs we consider are undirected. We also use the

(
n
3

)
tri-

angle variables tijk denoting that distinct vertices i, j, and k
are mutually connected. In Boolean logic this is expressed
as tijk ↔ (eij ∧ eik ∧ ejk) which in conjunctive normal
form is expressed via the four clauses ¬tijk∨eij , ¬tijk∨eik,
¬tijk ∨ejk, and ¬eij ∨¬eik ∨¬ejk ∨ tijk. Again, the indices
i, j, and k of the variable tijk may be reordered arbitrarily for
notational convenience.

4.1 Encoding the Squarefree Constraint
To encode the property that a KS graph must be squarefree,
we construct encodings that block all squares in the graph.
Observe that three squares can be formed on four vertices.
Therefore, for every choice of four vertices i, j, k, l, we use
clauses ¬eij ∨¬ejk ∨¬ekl∨¬eli, ¬eij ∨¬ejl∨¬elk ∨¬eki,
and ¬eil ∨ ¬elj ∨ ¬ejk ∨ ¬eki to encode the fact that a solu-
tion produced by the solver must be squarefree. By enumer-
ating all possible choices of four vertices and constructing the
above CNF formula, we force the graph to be squarefree. The
total number of clauses needed to encode this is 3 ·

(
n
4

)
.

4.2 Encoding the Minimum Degree Constraint
To ensure that vertex i is connected to at least three other ver-
tices, we take each subset S of {1, . . . , n}\{i} with cardinal-
ity n− 3 and construct the clause

∨
j∈S eij . By enumerating

over all such subsets we enforce a minimum degree of 3 on
vertex i. Thus, constructing similar formulae for all vertices
1 ≤ i ≤ n, enforces that any vertex in the graph has a degree
of at least 3. The total number of clauses needed is therefore
n ·

(
n−1
n−3

)
= n ·

(
n−1
2

)
.

4.3 Encoding the Triangle Constraint
We encode the property that every vertex is part of a triangle
as follows: for each vertex i, we require 2 other distinct ver-
tices to form a triangle, and there are

(
n−1
2

)
possible triangles

containing i. At least one of those triangles must be present

in the KS graph—this is encoded by the clause
∨

j,k∈S tijk
where S is {1, . . . , n} \ {i} and j < k. Using this clause for
each 1 ≤ i ≤ n ensures that every vertex is part of a triangle
and hence there are n triangle clauses.

4.4 Encoding the Noncolorability Constraint
Recall that the key property of a KS graph is that it is non-
010-colorable. As stated earlier, a graph is non-010-colorable
if and only if for all {0, 1}-colorings of the graph, a pair of
color-1 vertices is connected or a set of three color-0 vertices
are mutually connected. For each {0, 1}-coloring, a graph has
a set V0 of color-0 vertices and a set V1 of color-1 vertices.
Given a specific such coloring, the clause∨

i,j∈V1
i<j

eij ∨
∨

i,j,k∈V0
i<j<k

tijk

encodes that this coloring is not a 010-coloring of the graph
defined by the variables eij and tijk—since either a pair of
color-1 vertices is connected or three color-0 vertices are mu-
tually connected. Note that we have to generate such a clause
for all possible colorings, and conjunct them together to ob-
tain a non-colorability constraint for graphs of order n. An as-
signment satisfying such a constraint corresponds to a graph
that is not 010-colorable under any possible coloring. In or-
der n, the total number of such clauses is 2n.

An empirical observation allows cutting the number of
clauses by a factor of two: {0, 1}-colorings with more than
⌈n
2 ⌉ color-1 vertices are unlikely to be 010-colourings, and in

practice are not useful in blocking 010-colourable graphs. Put
differently, by dropping the constraints with |V1| ≥ ⌈n

2 ⌉ we
reduce the formula size (making the formula easier to solve)
and the corresponding increase in the number of satisfying as-
signments is small enough that these candidates can be ruled
out via post-processing (Section 9). In fact, for graphs up to
order 23, no additional satisfying assignments (or candidate
KS graphs) were generated.

4.5 Encoding Isomorphism Blocking Clauses
Following [Codish et al., 2019], we use symmetry breaking
constraints enforcing a lexicographical order among the rows
of the graph’s adjacency matrix. These small number of ad-
ditional constraints enable us to statically block many iso-
morphic graphs. Given an adjacency matrix A of a graph,
we define Ai,j as the ith row of A without columns i and j.
Codish et al. prove that up to isomorphism every graph can
be represented by an adjacency matrix A for which Ai,j is
lexicographically equal or smaller than Aj,i for all 1 ≤ i <
j ≤ n.

We express that Ai,j = [x1, x2, . . . , xn] is lexicographi-
cally equal or less than Aj,i = [y1, y2, . . . , yn] using 3n − 2
clauses and auxiliary variables a1, . . . , an−1 [Knuth, 2015].
The clauses are ¬xk ∨ yk ∨ ¬ak−1, ¬xk ∨ ak ∨ ¬ak−1, and
yk ∨ ak ∨ ¬ak−1 for k = 1, . . . , n − 1. The literal ¬a0 is
omitted and the clause ¬xn ∨ yn ∨ ¬an−1 is also included.

5 Orderly Generation via SAT+CAS
The symmetry breaking constraints described in Section 4.5
do not block all isomorphic copies of adjacency matrices.

Thus, a crucial part of the MATHCHECK pipeline is the
use of a SAT+CAS combination of a SAT solver and an
isomorph-free generation routine (the CAS part). The orderly
isomorph-free generation approach was developed indepen-
dently by [Read, 1978] and [Faradžev, 1978]. It relies on the
notion of a canonical representation of an adjacency matrix.

Definition 8 (Canonical Graph). An adjacency matrix M
of a graph is canonical if every permutation of the graph’s
vertices produces a matrix lexicographically greater than or
equal to M , where the lexicographical order is defined by
concatenating the above-diagonal entries of the columns of
the adjacency matrix starting from the left.

An intermediate matrix of A is a square upper-left subma-
trix of A. If A is of order n then its intermediate matrix of
order n − 1 is said to be its parent, and A is said to be a
descendant of its intermediate matrices. The OG method is
based on the following two consequences of Definition 8:

(1) Every isomorphic class of graphs has exactly one canon-
ical representative.

(2) If a matrix is canonical, then its parent is also canonical.

Note that the contrapositive of the second property implies
that if a matrix is not canonical, then all of its descendants
are not canonical. The OG process only generates canoni-
cal matrices and they are built starting from the upper-left.
Therefore, any noncanonical intermediate matrix that is en-
countered during an OG exhaustive search can be discarded,
as none of its descendants are canonical.

As described in Figure 1, in our SAT+CAS implemen-
tation, when the SAT solver finds an intermediate matrix
the canonicity of this matrix is determined by a canonicity-
checking routine implemented in the MATHCHECK system.
If the matrix is noncanonical, then a “blocking” clause is
learned which removes this matrix (and all of its descen-
dants) from the search, thus dramatically pruning the search
space. Otherwise, the matrix may be canonical and the SAT
solver proceeds as normal. When a matrix is noncanonical,
the canonicity-checking routine also provides a “witness” of
this fact (a permutation of the vertices producing a lex-smaller
adjacency matrix). We combine this process with the symme-
try breaking clauses of Codish et al. that canonical matrices
can be shown to satisfy [Codish et al., 2019, Def. 8].

The OG technique provides a speedup that seems to in-
crease exponentially in the order n of the KS graph—see Ta-
ble 2, which provides experimental running times comparing
the SAT+CAS approach against SAT-only and CAS-only ap-
proaches. The CAS compared against was the nauty graph
generator [McKay and Piperno, 2014] with the same config-
uration from [Uijlen and Westerbaan, 2016]. More details on
our experimental setup can be found in Section 8.

Further, as described in Figure 1, we simplify the SAT in-
stance using the SAT solver CaDiCaL [Biere et al., 2020]
before solving the instance using MapleSAT [Liang et al.,
2016]. We implemented the OG technique in both solvers
(using IPASIR-UP in CaDiCaL [Fazekas et al., 2023]),
and thus both the simplification and solving incorporate the
knowledge derived from OG.

n SAT+CAS SMS CAS-only SAT-only
17 0.3 m 0.2 m 25.2 m 9.0 m
18 1.8 m 1.2 m 455.4 m 266.4 m
19 9.0 m 8.4 m 9506.4 m 11,705.8 m
20 140.5 m 100.8 m timeout timeout
21 1945.0 m 1574.4 m timeout timeout

Table 2: SAT+CAS vs. SMS, CAS-only (nauty), and SAT-only:
The total CPU time (in minutes) compared on orders 17 ≤ n ≤ 21.
All tools are sequential. For higher orders, CAS-only and SAT-only
time out at 12,000 minutes.

6 Embeddability Checking
Every KS candidate must be embeddable in order to qualify
as a KS graph. Hence, we perform an embeddability check
on every KS candidate generated by the SAT+CAS solver of
MATHCHECK. Operationally, a graph G is said to be embed-
dable when every pair of adjacent G-vertices can be mapped
to two orthogonal vectors on the unit sphere in R3.

Our embeddability checking algorithm consists of two
parts. The first part is an integration of the vector assignment
algorithm that finds all possible vector assignments describ-
ing the orthogonal relations between the vectors vi in a KS
candidate defined by a set of edges [Uijlen and Westerbaan,
2016]. The second part of the algorithm applies an SMT
solver to determine the satisfiability of a system of nonlin-
ear equations generated from a particular vector assignment
as described below.

More precisely, an assignment generated by Uijlen and
Westerbaan’s algorithm is converted into a set of cross and
dot product equations, and these equations are passed to the
theorem prover Z3 [de Moura and Bjørner, 2008] to solve the
equations over the real numbers.

To check whether a graph is embeddable, we use Z3 to
determine whether these nonlinear arithmetic constraints are
satisfiable over the real numbers. If a solution is found, it
is an assignment of vertices to vectors satisfying all orthogo-
nality constraints and the graph is therefore embeddable. We
further optimized the pipeline by precomputing minimal un-
embeddable graphs, as defined below.

Definition 9 (Minimal Unembeddable Graph). A graph G
is said to be a minimal unembeddable graph if any proper
subgraph of G is embeddable, but G itself is unembeddable.

A graph is unembeddable if and only if it contains a min-
imal unembeddable subgraph. To optimize embeddability
checking, we precomputed all minimal unembeddable graphs
of orders up to and including 12. It was only necessary to con-
sider squarefree graphs with a minimum vertex degree of 2,
as the square graph C4 is minimally unembeddable itself, and
a graph containing a vertex of degree 0 or 1 is not minimally
unembeddable.

We implement the unembeddable subgraph blocking tech-
nique as part of MATHCHECK. If a graph contains one of
the 17 minimal unembeddable graphs up to order 12 as a sub-
graph, the graph is blocked dynamically and is not considered
as a satisfying assignment by MATHCHECK. This technique
leads to a significant reduction of the number of satisfying
assignment (candidates) generated by the SAT+CAS solver.

Number of Cubes Total CPU time
n SAT+CAS SMS SAT+CAS SMS
22 26,646 18,659 932 h 628 h
23 173,097 313,665 12,116 h 11,922 h

Table 3: Parallel CnC SAT+CAS vs. parallel SMS: The number
of cubes and total CPU time for the parallel versions of SAT+CAS
and the SAT Modulo Symmetries tool on orders 22 ≤ n ≤ 23.

7 Parallelization
In prior applications of the CnC technique [Heule et al., 2017;
Heule et al., 2016], the cubing solver generates a collection
of cubes before the conquering solver is invoked. Subse-
quently, each of these subproblems is solved using the con-
quering solver in parallel. However, this approach presents
two primary challenges. Firstly, the generated cubes might
exhibit imbalanced solving times, especially since the cub-
ing solver does not have the ability to call the CAS to in-
corporate isomorph-free generation. Secondly, the proof size
for each subproblem also varies, making it difficult to allo-
cate an appropriate amount of memory to individual cores.
In MATHCHECK, we implement a slight modification of tra-
ditional CnC practices to resolve the above challenges. In
addition, we use a new CnC solver ALPHAMAPLESAT [Jha
et al., 2024] that provides significant speedup for the cubing
process.

In our proposed method, the cubing solver of ALPHA-
MAPLESAT operates on a much smaller CNF instance
obtained by omitting all non-colorability constraints (Sec-
tion 4.4). This approach is substantiated by empirical ev-
idence suggesting that the same set of cubes can be ob-
tained even without the non-colorability constraints. ALPHA-
MAPLESAT iteratively generates cubes until the total num-
ber of cubes surpasses a predefined cutoff, which is based on
available computational resources.

Following cube generation, each subproblem is processed
by the simplification solver (CaDiCaL with OG), and then it
is passed to the conquering solver (MapleSAT with OG) and
solved in parallel. To efficiently manage the termination of
each subproblem, a termination strategy is implemented: if
the proof size for a subproblem exceeds 7 GiB, the problem
is further divided into more cubes and solved accordingly.
This iterative process continues until every subproblem can
be resolved with proof sizes under 7 GiB. We overcome the
challenges posed by varying proof sizes by implementing this
slight modification and it allows us to verify all generated
proof certificates with at most 4 GiB of memory allocation.

8 Experimental Results
Results in Table 2 were conducted on a cluster of Intel E5-
2683 v4 Broadwell @ 2.1GHz CPUs, each with access to 4
GiB of RAM and running 64-bit CentOS Linux 7. Results in
Table 3 were conducted on a cluster of Dual Intel Xeon Gold
6226 CPUs @ 2.7 GHz (24 cores/node). We used the g++
compiler version 9.3.0 with option -O3 to compile the SAT
solvers used. 24 CPUs were used to solve and verify order 22
(in about 4 days wall clock time), and 240 CPUs were used
for order 23 (in about 7 days wall clock time).

To compare MATHCHECK against other approaches, we
computed the total CPU time used by all processes in the
solving process, including simplification, cubing, SAT solv-
ing, CAS queries, and embeddability checking.

8.1 Key Findings
Tables 2 and 3 contain our experimental results. As can be
seen from Table 2, the sequential version of MATHCHECK
outperforms the sequential SAT-only (MapleSAT) and CAS-
only (nauty) tools. Further, the sequential MATHCHECK is
comparable to sequential SMS on orders 17 to 21, even with
proof production switched on. (Note that we are using the
results reported by the SMS authors [Kirchweger et al., 2023]
which did not include generating proofs.)

The sequential MATHCHECK also outperforms the parallel
tool of [Uijlen and Westerbaan, 2016]. For example, for or-
der 21, sequential MATHCHECK takes about 32.4 hours while
their tool took 3 months on 300 CPUs in 2014 (the exact kind
of CPUs used are not specified). Further, their tool did not
solve orders 22 or greater due to time constraints.

For higher orders of KS (i.e., 22 and 23), we do not expect
the sequential versions of MATHCHECK and SMS to scale
in a reasonable amount of time, and hence we compare only
their parallel CnC versions (Table 3). The authors of SMS
also do not report on the performance of their sequential ver-
sion for orders 22 and 23. In order 22, SMS is about 1.5×
faster than SAT+CAS, while in order 23, the two approaches
have comparable runtime.

Our approach was hindered due to our generating and veri-
fying all proof certificates—requiring us to ensure each proof
certificate did not grow too large in order to permit effective
verification. Such an approach requires splitting each cube
whose proof certificate grows too large, and this additional
splitting slows down the solver.

Our method benefits from dynamically blocking mini-
mal unembeddable subgraphs up to order 12, which enables
MATHCHECK to generate significantly fewer KS candidates
compared to Kirchweger et al. Specifically, we generate a
single candidate in order 22 and 41 candidates in order 23,
while Kirchweger et al. generates 88,282 and 3,747,950 can-
didates respectively.

Another notable question we address is the existence of a
complex KS vector system. Specifically, is there a KS graph
that can be embedded over the complex sphere? We employ a
similar embeddability verification pipeline as mentioned ear-
lier, with the distinction that vectors now may possess com-
plex number coordinates. We discover that each KS graph
up to order 23 either contains a complex unembeddable sub-
graph or is determined to be unembeddable over the complex
numbers via Z3. Therefore, we conclude that the minimum
size for both the real and complex KS systems are at least 24.

9 Verification of Results
In order to verify the computations produced by MATH-
CHECK, we use DRAT proof logging which is standard in
all modern SAT solvers. This makes it possible for a third-
party proof verifier to provide an independent certification of
the correctness of the solver’s conclusion (assuming the input

Boolean formula correctly encodes the minimum KS prob-
lem).

A DRAT proof consists of a trace of the clauses learned
by the solver during its execution. A proof verifier checks
that each clause can be derived from the previous clauses us-
ing simple rules known to be logically consistent. The CAS-
derived noncanonical blocking clauses cannot be verified us-
ing the normal rules, so we specially tag them to be verified
separately. Specifically, they are justified via a CAS-derived
permutation that, when applied to the blocked adjacency ma-
trix, produces a lex-smaller adjacency matrix—and therefore
provides a witness that the blocked matrix is noncanonical
and is safe to block. Similarly, the unembeddable subgraph
blocking clauses are justified by a CAS-derived permutation
that when applied to the blocked subgraph transforms it into
one of the minimal unembeddable subgraphs (see Section 6).

The CAS-derived clauses in the DRAT proof are prefixed
by the character ‘t’ to signify they should be trusted and
we modified DRAT-trim [Wetzler et al., 2014] to trust such
clauses following the approach first used in [Bright et al.,
2020a]. The trusted CAS-derived clauses are separately veri-
fied by a permutation-applying Python script that applies the
witnesses produced by the CAS to verify the blocked matri-
ces are noncanonical or unembeddable.

Similarly, when a KS candidate is found, the solver learns a
trusted clause blocking the candidate (so that the search con-
tinues until all candidates have been found). The DRAT proof
ends with the empty clause, which by definition is not satisfi-
able. If the verifier is indeed able to verify the empty clause,
then we can have confidence that the SAT solver’s search
missed no candidates without needing to trust the solver.

All results have been certified. The uncompressed proofs
for order 22 are about 6.1 TiB in total and 40.3 TiB in or-
der 23. The certification for orders 22 and 23 required using
CnC (see Section 7) to ensure that each DRAT proof could be
verified with at most 4 GiB of memory.

All KS candidates produced by our method have been
extensively checked. For example, each KS candidate is
passed into a verification script implemented using the Net-
workX [Hagberg et al., 2008] graph package to verify that
they satisfy all encoded constraints (see Section 4).

Further, we test the embeddability pipeline by performing
verification on all squarefree graphs of order up to 12 with
minimal vertex degree 2. Specifically, if a graph is embed-
dable and corresponds to a set of vectors, we check that no
pair of vectors in the set are collinear, and a pair of vectors
are orthogonal if their corresponding vertices are connected.

10 Conclusion
We present a new proof-producing SAT+CAS method, im-
plemented in MATHCHECK, using orderly generation to give
a computer-assisted verifiable proof showing that the mini-
mum KS vector system in 3D contains at least 24 vectors.
Further, our sequential version is orders of magnitude faster
than SAT-only, CAS-only (nauty), and prior CAS-only meth-
ods, and our parallel version is comparable to a SAT modulo
symmetries approach.

References
[Ábrahám, 2015] Erika Ábrahám. Building bridges between

symbolic computation and satisfiability checking. In Pro-
ceedings of the 2015 ACM on ISSAC, pages 1–6, 2015.

[Aloul et al., 2003] Fadi A. Aloul, Karem A. Sakallah, and
Igor L. Markov. Efficient symmetry breaking for Boolean
satisfiability. In Proceedings of IJCAI, IJCAI’03, page
271–276, San Francisco, CA, USA, 2003. Morgan Kauf-
mann Publishers Inc.

[Arends et al., 2011] Felix Arends, Joël Ouaknine, and
Charles W Wampler. On searching for small Kochen-
Specker vector systems. In International Workshop on
Graph-Theoretic Concepts in Computer Science, pages
23–34. Springer, 2011.

[Barrett et al., 2016] Clark Barrett, Pascal Fontaine, and Ce-
sare Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org, 2016.

[Biere et al., 2020] Armin Biere, Katalin Fazekas, Mathias
Fleury, and Maximillian Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT
Competition 2020. In Tomas Balyo, Nils Froleyks, Marijn
Heule, Markus Iser, Matti Järvisalo, and Martin Suda, ed-
itors, Proc. of SAT Competition 2020 – Solver and Bench-
mark Descriptions, volume B-2020-1 of Department of
Computer Science Report Series B, pages 51–53, Helsinki,
2020. University of Helsinki.

[Biere et al., 2021] Armin Biere, Marijn Heule, Hans van
Maaren, and Toby Walsh, editors. Handbook of Satisfi-
ability. IOS Press, Amsterdam, February 2021.

[Bright et al., 2016] Curtis Bright, Vijay Ganesh, Albert
Heinle, Ilias Kotsireas, Saeed Nejati, and Krzysztof Czar-
necki. MATHCHECK2: A SAT+CAS verifier for combina-
torial conjectures. In International Workshop on Computer
Algebra in Scientific Computing, pages 117–133. Springer,
2016.

[Bright et al., 2020a] Curtis Bright, Kevin K. H. Cheung,
Brett Stevens, Ilias Kotsireas, and Vijay Ganesh. Nonex-
istence certificates for ovals in a projective plane of order
ten. In Lecture Notes in Computer Science, volume 12126,
pages 97–111. Springer International Publishing, Cham,
2020.

[Bright et al., 2020b] Curtis Bright, Ilias Kotsireas, and Vi-
jay Ganesh. Applying computer algebra systems with SAT
solvers to the Williamson conjecture. JSC, 100:187–209,
2020.

[Bright et al., 2021] Curtis Bright, Kevin K. H. Cheung,
Brett Stevens, Ilias Kotsireas, and Vijay Ganesh. A SAT-
based resolution of Lam’s problem. In Proceedings of the
Thirty-Fifth AAAI Conference on Artificial Intelligence,
pages 3669–3676, California USA, 2021. AAAI Press.

[Bright et al., 2022] Curtis Bright, Ilias Kotsireas, and Vijay
Ganesh. When satisfiability solving meets symbolic com-
putation. Communications of the ACM, 65(7):64–72, July
2022.

[Cañas et al., 2014] Gustavo Cañas, Mauricio Arias, Se-
bastián Etcheverry, Esteban S Gómez, Adán Cabello,
Guilherme B Xavier, and Gustavo Lima. Applying the
simplest Kochen-Specker set for quantum information
processing. Physical review letters, 113(9):090404, 2014.

[Codish et al., 2019] Michael Codish, Alice Miller, Patrick
Prosser, and Peter J. Stuckey. Constraints for symmetry
breaking in graph representation. Constraints, 24(1):1–24,
August 2019.

[Conway and Kochen, 2002] John Conway and Simon
Kochen. The Geometry of the Quantum Paradoxes, page
257–269. Springer Berlin Heidelberg, 2002.

[Conway and Kochen, 2006] John Conway and Simon
Kochen. The free will theorem. Foundations of Physics,
36(10):1441–1473, July 2006.

[Crawford et al., 1996] James M. Crawford, Matthew L.
Ginsberg, Eugene M. Luks, and Amitabha Roy.
Symmetry-breaking predicates for search problems. In
Proceedings of the Fifth International Conference on
Principles of Knowledge Representation and Reasoning,
KR’96, page 148–159, San Francisco, CA, USA, 1996.
Morgan Kaufmann Publishers Inc.

[de Moura and Bjørner, 2008] Leonardo de Moura and
Nikolaj Bjørner. Z3: An efficient SMT solver. In TACAS,
pages 337–340. Springer, 2008.

[Faradžev, 1978] I A Faradžev. Constructive enumeration
of combinatorial objects. In Problèmes combinatoires et
théorie des graphes, pages 131–135, 1978.

[Fazekas et al., 2023] Katalin Fazekas, Aina Niemetz, Math-
ias Preiner, Markus Kirchweger, Stefan Szeider, and
Armin Biere. IPASIR-UP: user propagators for CDCL.
In SAT 2023. Schloss Dagstuhl-Leibniz-Zentrum für In-
formatik, 2023.

[Ganesh and Vardi, 2020] Vijay Ganesh and Moshe Y. Vardi.
On the Unreasonable Effectiveness of SAT Solvers, page
547–566. Cambridge University Press, December 2020.

[Gerlach and Stern, 1922] Walther Gerlach and Otto Stern.
Der experimentelle nachweis der richtungsquantelung im
magnetfeld. Zeitschrift für Physik, 9:349–352, 1922.

[Hagberg et al., 2008] Aric A. Hagberg, Daniel A. Schult,
and Pieter J. Swart. Exploring network structure, dynam-
ics, and function using NetworkX. In Gaël Varoquaux,
Travis Vaught, and Jarrod Millman, editors, Proceedings
of the 7th Python in Science Conference, pages 11 – 15,
Pasadena, CA USA, 2008.

[Held, 2000] Carsten Held. The Kochen-Specker Theo-
rem. https://plato.stanford.edu/entries/kochen-specker/,
2000. Accessed: 2024-05-28.

[Heule et al., 2016] Marijn J H Heule, Oliver Kullmann, and
Victor W Marek. Solving and verifying the boolean
Pythagorean triples problem via cube-and-conquer. In SAT
Conference, pages 228–245, Cham, 2016. Springer.

[Heule et al., 2017] Marijn J H Heule, Oliver Kullmann, and
Victor W Marek. Solving very hard problems: Cube-and-

www.SMT-LIB.org
https://plato.stanford.edu/entries/kochen-specker/

conquer, a hybrid SAT solving method. In IJCAI, vol-
ume 17, pages 228–245, 2017.

[Heule, 2019] Marijn J. H. Heule. Optimal symmetry break-
ing for graph problems. Mathematics in Computer Sci-
ence, 13(4):533–548, May 2019.

[Huang et al., 2003] Yun-Feng Huang, Chuan-Feng Li,
Yong-Sheng Zhang, Jian-Wei Pan, and Guang-Can Guo.
Experimental test of the Kochen-Specker theorem with
single photons. Physical Review Letters, 90(25), June
2003.

[Jha et al., 2024] Piyush Jha, Zhengyu Li, Zhengyang Lu,
Curtis Bright, and Vijay Ganesh. Alphamaplesat: An
MCTS-based cube-and-conquer SAT solver for hard com-
binatorial problems. arXiv preprint arXiv:2401.13770,
2024.

[Jost, 1976] Res Jost. Measures on the finite dimensional
subspaces of a Hilbert space: remarks to a theorem by A.
M. Gleason. Studies in Mathematical Physics: Essays in
Honour of Valentine Bergmann, pages 209–228, 1976.

[Junttila et al., 2020] Tommi Junttila, Matti Karppa, Petteri
Kaski, and Jukka Kohonen. An adaptive prefix-assignment
technique for symmetry reduction. JSC, 99:21–49, July
2020.

[Kaufmann and Biere, 2023] Daniela Kaufmann and Armin
Biere. Improving AMulet2 for verifying multiplier cir-
cuits using SAT solving and computer algebra. Interna-
tional Journal on Software Tools for Technology Transfer,
January 2023.

[Kirchweger and Szeider, 2021] Markus Kirchweger and
Stefan Szeider. SAT modulo symmetries for graph
generation. In CP 2021, volume 210, pages 34:1–34:16,
Dagstuhl, Germany, 2021. Schloss Dagstuhl.

[Kirchweger et al., 2023] Markus Kirchweger, Tomáš Peitl,
and Stefan Szeider. Co-certificate learning with sat modulo
symmetries. In Proceedings of the Thirty-Second Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-
2023. International Joint Conferences on Artificial Intelli-
gence Organization, August 2023.

[Knuth, 2015] Donald E Knuth. The art of computer pro-
gramming, Volume 4, Fascicle 6: Satisfiability. Addison-
Wesley Professional, Massachusetts, 2015.

[Kochen and Specker, 1967] Simon Kochen and E. P.
Specker. The Problem of Hidden Variables in Quantum
Mechanics. JMM, 17:59–87, 1967.

[Li et al., 2022] Zhengyu Li, Curtis Bright, and Vijay
Ganesh. An SC-Square approach to the minimum
Kochen–Specker problem. In Ali Kemal Uncu and Haniel
Barbosa, editors, Proceedings of the 7th SC-Square Work-
shop, volume 3458 of CEUR Workshop Proceedings,
pages 55–66. CEUR-WS.org, 2022.

[Liang et al., 2016] Jia Hui Liang, Vijay Ganesh, Pascal
Poupart, and Krzysztof Czarnecki. Learning rate based
branching heuristic for SAT solvers. In SAT 2016 - 19th
International Conference, Bordeaux, France, July 5–8,
2016, Proceedings, pages 123–140, 2016.

[Mahzoon et al., 2022] Alireza Mahzoon, Daniel Große,
Christoph Scholl, Alexander Konrad, and Rolf Drechsler.
Formal verification of modular multipliers using symbolic
computer algebra and boolean satisfiability. In Proceed-
ings of the 59th ACM/IEEE Design Automation Confer-
ence, New York, July 2022. ACM.

[McKay and Piperno, 2014] Brendan D. McKay and Adolfo
Piperno. Practical graph isomorphism, II. JSC, 60:94–112,
2014.

[Metin et al., 2018] Hakan Metin, Souheib Baarir, Maximi-
lien Colange, and Fabrice Kordon. CDCLSym: Introduc-
ing effective symmetry breaking in SAT solving. In Tools
and Algorithms for the Construction and Analysis of Sys-
tems, pages 99–114, New York, 2018. Springer Interna-
tional Publishing.

[Neiman et al., 2022] David Neiman, John Mackey, and
Marijn Heule. Tighter bounds on directed Ramsey number
R(7). Graphs and Combinatorics, 38(5), September 2022.

[Pavičić et al., 2005] Mladen Pavičić, Jean-Pierre Merlet,
Brendan McKay, and Norman D. Megill. Kochen–Specker
vectors. Journal of Physics A: Mathematical and General,
38(7):1577–1592, February 2005.

[Pavičić and Megill, 2022] Mladen Pavičić and Norman D.
Megill. Automated generation of arbitrarily many Kochen-
Specker and other contextual sets in odd-dimensional
Hilbert spaces. Physical Review A, 106(6), December
2022.

[Peres, 1991] Asher Peres. Two simple proofs of the
Kochen–Specker theorem. Journal of Physics A: Math-
ematical and General, 24(4):L175, 1991.

[Read, 1978] Ronald C Read. Every one a winner or how
to avoid isomorphism search when cataloguing combina-
torial configurations. Annals of Discrete Mathematics,
2:107–120, 1978.

[Savela et al., 2020] Jarkko Savela, Emilia Oikarinen, and
Matti Järvisalo. Finding periodic apartments via Boolean
satisfiability and orderly generation. In EPiC Series in
Computing, UK, 2020. EasyChair.

[Sellmann and Hentenryck, 2005] Meinolf Sellmann and
Pascal Van Hentenryck. Structural symmetry breaking. In
Leslie Pack Kaelbling and Alessandro Saffiotti, editors,
IJCAI-05, pages 298–303, California, 2005.

[Uijlen and Westerbaan, 2016] Sander Uijlen and Bas West-
erbaan. A Kochen-Specker system has at least 22 vectors.
New Generation Computing, 34(1):3–23, 2016.

[Wetzler et al., 2014] Nathan Wetzler, Marijn J. H. Heule,
and Warren A. Hunt. DRAT-trim: Efficient checking
and trimming using expressive clausal proofs. In Lecture
Notes in Computer Science, volume 8561, pages 422–429.
Springer International Publishing, Cham, 2014.

[Zulkoski et al., 2015] Edward Zulkoski, Vijay Ganesh, and
Krzysztof Czarnecki. MathCheck: A math assistant via
a combination of computer algebra systems and SAT
solvers. In CADE-25, volume 9195 of Lecture Notes in
Computer Science, pages 607–622, Cham, 2015. Springer.

	Introduction
	The SAT+CAS Paradigm for Hard Combinatorial Problems
	Isomorph-free Exhaustive Orderly Generation
	Our Contributions

	Background
	The KS Theorem
	The Minimum KS Problem

	Previous Work
	SAT Encoding of the Minimum KS Problem
	Encoding the Squarefree Constraint
	Encoding the Minimum Degree Constraint
	Encoding the Triangle Constraint
	Encoding the Noncolorability Constraint
	Encoding Isomorphism Blocking Clauses

	Orderly Generation via SAT+CAS
	Embeddability Checking
	Parallelization
	Experimental Results
	Key Findings

	Verification of Results
	Conclusion

