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Abstract
We present a method and an associated system,
called MATHCHECK, that embeds the functional-
ity of a computer algebra system (CAS) within the
inner loop of a conflict-driven clause-learning SAT
solver. SAT+CAS systems, à la MATHCHECK,
can be used as an assistant by mathematicians to
either counterexample or finitely verify open uni-
versal conjectures on any mathematical topic (e.g.,
graph and number theory, algebra, geometry, etc.)
supported by the underlying CAS system. Such
a SAT+CAS system combines the efficient search
routines of modern SAT solvers, with the expres-
sive power of CAS, thus complementing both. The
key insight behind the power of the SAT+CAS
combination is that the CAS system can help cut
down the search-space of the SAT solver, by pro-
viding learned clauses that encode theory-specific
lemmas, as it searches for a counterexample to the
input conjecture. We demonstrate the efficacy of
our approach on a long-standing open conjecture
regarding matchings of hypercubes.

1 Introduction
Boolean conflict-driven clause-learning (CDCL) SAT and
SAT-Modulo Theories (SMT) solvers have become some of
the leading tools for solving complex problems expressed
as logical constraints [Biere et al., 2009]. This is particu-
larly true in software engineering, broadly construed to in-
clude testing, verification, analysis, synthesis, and security.
Modern SMT solvers such as Z3 [De Moura and Bjørner,
2008], CVC4 [Barrett et al., 2011], STP [Ganesh and Dill,
2007], and VeriT [Bouton et al., 2009] contain efficient de-
cision procedures for a variety of first-order theories, such as
uninterpreted functions, quantified linear integer arithmetic,
bitvectors, and arrays. However, even with the expressive-
ness of SMT, many constraints, particularly ones stemming
from mathematical domains such as graph theory, topology,
algebra, or number theory are non-trivial to solve using to-
day’s state-of-the-art SAT and SMT solvers.

Computer algebra systems (e.g., Maple, Mathematica, and
SAGE), on the other hand, are powerful tools that have been
used for decades by mathematicians to perform symbolic

computation over problems in graph theory, topology, alge-
bra, number theory, etc. However, computer algebra systems
(CAS) lack the search capabilities of SAT/SMT solvers.

In this paper, we present a method and a prototype tool,
called MATHCHECK, that combines the search capability of
SAT solvers with powerful domain knowledge of CAS sys-
tems. The users of MATHCHECK write predicates in the lan-
guage of the CAS, which then interacts with the SAT solver
through a controlled SAT+CAS interface. The user’s goal is
to finitely check or find counterexamples to a Boolean combi-
nation of predicates (somewhat akin to a quantifier-free SMT
formula). The SAT solver searches for counterexamples in
the domain over which the predicates are defined, and in-
vokes the CAS to learn clauses that help cutdown the search
space (akin to the “T” in DPLL(T)). MATHCHECK can be
used by mathematicians to finitely check or counterexample
open conjectures. It can also be used by engineers who want
to readily leverage the joint capabilities of both CAS systems
and SAT solvers to model and solve problems that are other-
wise too difficult with either class of tools alone.

In this work, we focus on constraints from the domain of
graph theory, although our approach is equally applicable to
other areas of mathematics. Constraints such as connectivity,
Hamiltonicity, acyclicity, etc. are non-trivial to encode with
standard solvers [Velev and Gao, 2009]. We believe that the
method described in this paper is a step in the right direction
towards making SAT/SMT solvers useful to a broader class
of mathematicians and engineers than before.1

2 Background
We assume standard definitions for propositional logic, ba-
sic mathematical logic concepts such as satisfiability, and
solvers. We denote a graph G = 〈V,E〉 as a set of vertices
V and edges E, where an edge eij connects the pair of ver-
tices vi and vj . We only consider undirected graphs in this
work. The order of a graph is the number of vertices it con-
tains. For a given vertex v, we denote its neighbors – vertices
that share an edge with v – as N(v). The hypercube of di-
mension d, denoted Qd, consists of 2d vertices and 2d−1 · d
edges, and can be constructed in the following way (see Fig-

1An extended version of this work is available in
[Zulkoski et al., 2015]. All code and data is available at
https://bitbucket.org/ezulkosk/sagesat.
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Figure 1: High-level overview of the MATHCHECK architec-
ture. MATHCHECK takes as input a formula over fragments
of mathematics supported by the underlying CAS system, and
produces either a counterexample or a proof that none exists.

ure 2): label each vertex with a unique binary string of length
d, and connect two vertices with an edge if and only if the
Hamming distance of their labels is 1. A matching of a graph
is a subset of its edges that mutually share no vertices. A
vertex is matched (by a matching) if it is incident to an edge
in the matching, else it is unmatched. A maximal matching
M is a matching such that adding any additional edge to M
violates the matching property. A perfect matching (resp. im-
perfect matching) M is a matching such that all (resp. not
all) vertices in the graph are incident with an edge in M . A
forbidden matching is a matching such that some unmatched
vertex v exists and every v′ ∈ N(v) is matched.

3 SAT+CAS Combination Architecture
This section describes the combination architecture of a CAS
system with a SAT solver, the method underpinning the
MATHCHECK tool. Figure 1 provides a schematic of MATH-
CHECK. The key idea behind such combinations is that the
CAS system is integrated in the inner loop of a conflict-driven
clause-learning SAT solver, akin to how a theory solver T is
integrated into a DPLL(T) system [Nieuwenhuis et al., 2004].

Here we provide a very high-level overview of the system,
as displayed to Figure 1. A more detailed explanation is given
in [Zulkoski et al., 2015]. MATHCHECK allows the user to
define predicates in the language of CAS that express some
mathematical conjecture. The input mathematical conjecture
is expressed as a set of assertions and queries, such that a
satisfying assignment to the conjunction of the assertions and
negated queries constitute a counterexample to the conjec-
ture. We refer to this conjunction simply as the input formula
in the remainder of the paper. First, the formula is translated
into a Boolean constraint that describes the set of structures
(e.g., graphs or numbers) referred to in the conjecture. Sec-
ond, the SAT solver enumerates these structures in an attempt
to counterexample the input conjecture. The solver routinely
queries the CAS system during its search (given that the CAS
system is integrated into its inner loop) to learn clauses (akin
to callback plugins in programmatic SAT solvers [Ganesh et
al., 2012] or theory plugins in DPLL(T) [Nieuwenhuis et al.,
2004]). Clauses thus learned can dramatically cutdown the
search space of the SAT solver.

Combining the solver with CAS extends each of the in-
dividual tools in the following ways. First, off-the-shelf SAT
(or SMT) solvers contain efficient search techniques and deci-
sion procedures, but lack the expressiveness to easily encode
many complex mathematical predicates. Even if a problem

can be easily reduced to SAT/SMT, the choice of encoding
can be very important in terms of performance, which is typ-
ically non-trivial to determine, especially for non-experts on
solvers. For example, Velev et al. [Velev and Gao, 2009] in-
vestigated 416 ways to encode Hamiltonian cycles to SAT as
permutation problems to determine which encodings were the
most effective. Further, such a system can take advantage of
many built-in common structures in a CAS (e.g., graph fam-
ilies such as hypercubes), which can greatly simplify speci-
fying structures and complex predicates. On the other side,
CAS’s contain many efficient functions for a broad range of
mathematical properties, but often lack the robust search rou-
tines available in SAT.

3.1 Input Language of MATHCHECK
The input to MATHCHECK is a tuple 〈S, φ〉, where S is
a set of graph variables and φ is a formula over S as de-
fined by the grammar LG described below. A graph variable
G = 〈GV , GE〉 indicates the vertices and edges that can po-
tentially occur in its instantiation, denoted GI . A graph vari-
able G is essentially a set of |V | Boolean variables (one for
each vertex), and |E| Boolean variables for edges. Setting an
edge eij (resp. vertex vi) to True means that eij (resp. vi) is
a part of the graph instantiation GI . Through a slight abuse
of notation, we often define a graph variable G = Qd, indi-
cating that the sets of Booleans in GV and GE correspond to
the vertices and edges in the hypercube Qd, respectively.
LG is essentially defined as propositional logic, extended

to allow predicates over graph variables. Predicates can be
defined by the user, and are classified as either SAT predi-
cates or CAS predicates. SAT predicates are blasted to propo-
sitional logic, using a mapping from graph components (i.e.,
vertices and edges) to Boolean variables.2 As an example,
for any graph variable G used in an input formula, we add an
EImpliesV(G) constraint, indicating that an edge cannot
exist without its corresponding vertices:

EImpliesV(G):
∧
{eij ⇒ (vi ∧ vj) | eij ∈ GE}. (1)

CAS predicates, which are essentially Python code inter-
preted by the CAS, check properties of instantiated (non-
variable) graphs and are defined as pieces of code in the lan-
guage of the CAS. In our case, we use the SAGE CAS [Stein
and others, 2010], which for now can be thought of as a col-
lection of Python modules for mathematics.

3.2 Implementation
We have prototyped our system adopting the lazy-SMT solver
approach (as in [Sebastiani, 2007]), specifically combining
the Glucose SAT solver [Audemard and Simon, 2009] with
the SAGE CAS [Stein and others, 2010]. Minor modifi-
cations to Glucose were made to call out to SAGE when-
ever an assignment was found (of the Boolean abstraction).
The SAT+CAS interface extends the existing SAT interface
in SAGE. We further performed extensive checks on our re-
sults, including verifying the SAT solver’s resolution proofs
using DRUP-trim [Heule et al., 2013] as well as checking the
learned clauses produced by CAS predicates.

2For notational convenience, we often use existential quantifiers
when defining constraints; these are unrolled in the implementation.
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Figure 2: The dashed edges denote a generated matching, and
the vertex 000 is restricted to be unmatched, as discussed in
Section 4. A Hamiltonian cycle that includes the matching is
indicated by the arrows.

4 Matchings Extend to Hamiltonian Cycles
We use our system to prove a long-standing open conjecture
up to a certain parameter (dimension) related to hypercubes.
Hypercubes have been studied for theoretical interest, due to
their properties such as regularity and symmetry, but also for
practical uses, such as in networks and parallel systems [Chen
and Li, 2010].

The conjecture we look at was posed by Ruskey and Sav-
age on matchings of hypercubes in 1993 [Ruskey and Savage,
1993]; although it has inspired multiple partial results [Fink,
2007; Gregor, 2009] and extensions [Fink, 2009], the general
statement remains open:

Conjecture 1 (Ruskey and Savage, [Ruskey and Savage,
1993]). For every dimension d, any matching of the hyper-
cube Qd can be extended to a Hamiltonian cycle.

Consider Figure 2. The dashed edges correspond to a
matching and the arrows depict a Hamiltonian cycle extend-
ing the matching. Intuitively, the conjecture states that for
any d-dimensional hypercube Qd, no matter which match-
ing M we choose, we can find a Hamiltonian cycle of Qd

that goes through M . Our encoding searches for matchings,
and checks a sufficient subset of the full set of matchings of
Qd (specifically maximal forbidden matchings) to ensure that
the conjecture holds for a given dimension. As we will show,
constraints such as ensuring that a potential model is a match-
ing are easily encoded with SAT predicates, while constraints
such as “extending to a Hamiltonian cycle” are expressed eas-
ily as CAS predicates.

Previous results have shown this conjecture true for d ≤ 4,3
however the combinatorial explosion of matchings on higher
dimensional hypercubes makes analysis increasingly chal-
lenging, and a general proof has been evasive. We demon-
strate using our approach the first result that Conjecture 1
holds for Q5 – the 5-dimensional hypercube. We use a con-
junction of SAT predicates to generate a sufficient set of
matchings of the hypercube, which are further verified by a
CAS predicate to check if the matching can not be extended

3We were unable to find the original source of the results for d ≤
4, however the result is asserted in [Fink, 2007]. We also verified
these results using our system.

to a Hamiltonian cycle (such that a satisfying model would
counterexample the conjecture).

Note that the simple approach of generating all matchings
of Qd does not scale, and the approach would take too long,
even for d = 5. We prove several lemmas to reduce the num-
ber of matchings analyzed. In the following, we use the graph
variable G = Qd, such that its vertex and edge variables cor-
respond to the vertices and edges in Qd.

It is straightforward to encode matching constraints as a
SAT predicate. For every pair of incident edges e1, e2, we
ensure that only one can be in the matching (i.e., at most one
of the two Booleans may be True), which can be encoded as:

Matching(G):
∧
{(¬e1 ∨ ¬e2) | e1, e2 ∈ GE

∧ incident?(e1, e2)}.
(2)

The number of clauses generated by the above translation
is 2d ·

(
d
2

)
, which can be understood as: for each of the 2d

vertices in Qd, ensure that each of the d incident edges to that
vertex are pairwise not both in the matching.

A previous result from Fink [Fink, 2007] demonstrated that
any perfect matching of the hypercube for d ≥ 2 can be ex-
tended to a Hamiltonian cycle. Our search for a counterexam-
ple to Conjecture 1 should therefore only consider imperfect
matchings, and even further, only maximal forbidden match-
ings as shown below. To encode this, we ensure that at least
one vertex is not matched by any generated matching. Since
all vertices are symmetric in a hypercube, we can, without
loss of generality, choose a single vertex v0 that we ensure is
not matched. We encode that all edges incident to v0 cannot
be in the matching:

Forbidden(G):
∧
{¬e | e ∈ GE ∧ incident?(v0, e)}. (3)

A further key observation to reduce the matchings search
space is that, if a matching M extends to a Hamiltonian cy-
cle, then any matching M ′ such that M ′ ⊆ M can also be
extended to a Hamiltonian cycle.
Observation 1. All matchings can be extended to a Hamil-
tonian cycle if and only if all maximal forbidden matchings
can be extended to a Hamiltonian cycle (proof included in
[Zulkoski et al., 2015]).

We encode this by adding the following constraints:

EdgeOn(G):
∧
{v ⇒ ∃e∈X e | v ∈ GV },

s.t. X = {e | e ∈ GE ∧ incident?(v, e)}
(4)

Maximal(G):
∧
{(vi ∨ vj) | eij ∈ GE}. (5)

Equation 4 states that if a vertex is on, then one of its incident
edges must be in the matching. Equation 5 ensures that we
only generate maximal matchings.
Proposition 1. The conjunction of Constraints 1 – 5 encode
exactly the set of maximal forbidden matchings of the hyper-
cube in which a designated vertex v0 is prevented from being
matched (proof included in [Zulkoski et al., 2015]).

To check if each matching extends to a Hamiltonian cycle,
we create the CAS predicate ExtendsToHamiltonian



1: EXTENDSTOHAMILTONIAN()
2: g ← s.getGraph(G)
3: q ← CubeGraph(5)
4: for e in q.edges() do
5: if e in g
6: q.setEdgeLabel(e, 1)
7: else
8: q.setEdgeLabel(e, 2)
9: 〈cycle,weight〉 ← TSP(q)

10: return weight == 2 · q.order()− |g|

Figure 3: A CAS-defined predicate. Variable g corresponds
to the matching found by the SAT solver.

(see Figure 3), which reduces the formula to an instance of
the traveling salesman problem (TSP). Let M be a matching
of Qd. We create a TSP instance 〈Qd,W 〉, where Qd is our
hypercube, and W are the edge weights, such that edges in
the matching (dashed edges in Figure 2) have weight 1, and
otherwise weight 2 (black edges).
Proposition 2. A Hamiltonian cycle exists through M in Qd

if and only if TSP(〈Qd,W 〉) = 2 ∗ |V | − |M |, where |V | is
the number of vertices in Qd (proof included in [Zulkoski et
al., 2015]).

Finally, after each check of ExtendsToHamiltonian
that evaluates to True, we add a learned clause, based on
computations performed in the predicate, to prune the search
space. Since a TSP instance is solved we obtain a Hamilto-
nian cycle C of the cube. Clearly, any future matchings that
are subsets of C can be extended to a Hamiltonian cycle; our
learned constraint prevents these subsets (below h refers to
the Boolean variable abstracting the CAS predicate):∨

{e | e ∈ QdE\C} ∪ {h} (6)

Our full formula for Conjecture 1 is therefore:

assert EImpliesV(G) ∧Matching(G)∧
Forbidden(G) ∧ EdgeOn(G) ∧Maximal(G)

query ExtendsToHamiltonian(G)
(7)

5 Performance Analysis of MATHCHECK
We ran Formula 7 with d = 5 until completion. Since the run
returned UNSAT, we conclude that the conjecture holds for
the given dimension, improving upon known results.

All experiments were performed on a 2.4 GHz 4-core
Lenovo Thinkpad laptop with 8GB of RAM, running 64-
bit Linux Mint 17. We used SAGE version 6.3 and Glu-
cose version 3.0. Formula 7 required 348,150 checks of
the ExtendsToHamiltonian predicate, thus learning an
equal number of Hamiltonian cycles in the process, and took
just under 8 hours. We note that for lower dimensional cubes
solving time was far less (< 20 seconds). We find it unlikely
that this approach can be used for higher-dimensions, without
further lemmas to reduce the search space. The approach we
have described significantly dominates naı̈ve brute-force ap-
proaches; learned clauses greatly reduce the search space and
cut the number of necessary CAS predicate checks.

One of our motivations for this work was to allow compli-
cated predicates to be easily expressed, so it is worth com-
menting on the size of the actual predicates. Since predicates
were written using SAGE (which is built on top of Python),
the pseudocode written in Figure 3 matches almost exactly
with the actual code. All other function calls correspond
to built-in functions of the CAS. Learn-functions were also
short, requiring less than 10 lines of code each.

6 Related Work
Our approach of combining a CAS system within the in-
ner loop of a SAT solver most closely resembles and is in-
spired by the DPLL(T) [Nieuwenhuis et al., 2004]. There
are also similarities with the idea of programmatic SAT
solver Lynx [Ganesh et al., 2012], which is an instance-
specific version of DPLL(T). Our work is inspired by the re-
cent SAT-based results on the Erdős discrepancy conjecture
[Konev and Lisitsa, 2014]. Other works [Dooms et al., 2005;
Gebser et al., 2014; Soh et al., 2014] have extended solvers
to handle graph constraints, by either creating solvers for spe-
cific graph predicates [Gebser et al., 2014; Soh et al., 2014],
or by defining a core set of constraints with which to build
complex predicates [Dooms et al., 2005]. Our approach con-
tains positive aspects from both: state-of-the-art algorithms
from the CAS can be used to define new predicates easily,
and the methodology is general, in that new predicates can
be defined using the CAS. Several tools have combined a
CAS with SMT solvers for various purposes, mainly focus-
ing on the non-linear arithmetic algorithms provided by many
CAS’s. For example, the VeriT SMT solver [Bouton et al.,
2009] also uses functionality of the REDUCE CAS4 for non-
linear arithmetic support. Our work is more in the spirit of
DPLL(T), rather than modifying the decision procedure for a
single theory.

7 Conclusions and Future Work
In this paper, we present MATHCHECK, a combination
of a CAS in the inner-loop of a conflict-driven clause-
learning SAT solver, and we show that this combination al-
lows for highly expressive predicates that are otherwise non-
trivial/infeasible to encode as purely Boolean formulas. Our
approach combines the well-known domain-specific abilities
of CAS with the search capabilities of SAT solvers thus en-
abling us to verify long-standing open mathematical conjec-
tures over hypercubes (up to to particular dimension), not fea-
sible by either kind of tool alone. We further discussed how
our system greatly dominates naı̈ve brute-force search tech-
niques for the case study. We stress that the approach is not
limited to this domain, and we intend to extend our work to
other branches of mathematics supported by CAS’s, such as
number theory. Another direction we plan to investigate is in-
tegration with a proof-producing SMT solver, such as VeriT.
In addition to taking advantage of the extra power of an SMT
solver, the integration with VeriT will allow us to more easily
produce proof certificates. A more extensive version of this
work can be found in [Zulkoski et al., 2015].

4http://www.reduce-algebra.com/index.htm
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