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Abstract—We use integer programming (IP) and constraint
programming (CP) to search for graeco-latin squares. We im-
prove the performance of the solvers by formulating an extended
symmetry breaking method and provide an alternative CP
encoding which performs much better in practice. Using state-
of-the-art solvers as black boxes we are able to quickly find
graeco-latin squares (or prove their nonexistence) in all orders
up to and including eleven.

I. INTRODUCTION

A latin square of order n is an n× n array, X , of symbols
{0, 1, . . . , n− 1} in which each symbol appears exactly once
in each row and column. Each of the squares in Figure 1 is
an example of a latin square of order 4. The entry in row i
and column j of a square X is denoted Xij . Two latin squares
of the same order, X and Y , are said to be orthogonal if
there is a unique solution Xij = a, Yij = b for every pair of
a, b ∈ {0, 1, . . . , n − 1}. A set of latin squares of order n is
called a set of mutually orthogonal latin squares if all squares
are pairwise orthogonal. A pair of orthogonal latin squares
are also known as a graeco-latin square. Latin squares, sets
of mutually orthogonal latin squares, and a myriad of related
objects have numerous applications in statistics, reliability
testing, coding theory, and recreational mathematics [6], [10],
[25].

There is a long history of using “automated reasoning” tools
like constraint and integer programming solvers to search for
and construct latin squares [14]. Since latin square problems
can be easily expressed in the language of these solvers
they are a popular source of benchmarks in the artificial
intelligence, constraint programming, and satisfiability solving
communities [17]. There has been much work developing
improved solvers for such problems [9], [11], [37]. In this paper,
we focus on developing improved encodings for constructing
latin squares and use off-the-shelf constraint programming
(CP) and integer programming (IP) solvers to find graeco-latin
squares. General background for IP and CP solvers is reviewed
in Section II and the IP and CP models that we use in our
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Fig. 1. A set of three mutually orthogonal latin squares of order four.

searches is outlined in Section III. Using IP and CP solvers
on a single desktop computer we find graeco-latin squares
(or disprove their existence) in all orders up to and including
eleven. We also develop two main improvements to the basic
models.

First, we develop an improved constraint programming
encoding which we show performs significantly better than
the standard constraint programming encoding—using a CP
solver we were able to find or prove the nonexistence of graeco-
latin squares for orders n ≤ 11 with this improved encoding
compared to n ≤ 8 with the traditional encoding and symmetry
breaking. Our improved constraint programming formulation
is described in Section III-B.

Second, we develop an improved symmetry breaking method
that removes more symmetry from the search space than the
“domain reduction” symmetry breaking method used in previous
searches [1], [2]. We show that our symmetry breaking method
reduces the amount of symmetry present in the search by an
exponential factor in the order n when compared with domain
reduction symmetry breaking. The new symmetry breaking
method performs well in practice, particularly with the integer
programming model—using an IP solver we were able to find
or prove the nonexistence of graeco-latin squares for orders
n ≤ 10 with our improved symmetry breaking compared
to n ≤ 8 with domain reduction symmetry breaking. Our
improved symmetry breaking is described in Section III-C.

Lastly, we give timings for each method in Section IV.
Related work and a summary of the extensive literature on
latin squares is given in Section V.

II. BACKGROUND

Integer linear programming (IP) and constraint programming
(CP) are two paradigms for solving combinatorial optimization
and search problems. IP solvers depend heavily on numerical
solutions to linear programming problems whereas CP solvers
are based on search techniques such as domain reduction. The
two approaches offer complementary strengths and there has
been a significant amount of research on integrating the two to
solve difficult combinatorial optimization search problems [19].

Both approaches use the “divide and conquer” paradigm of
splitting a problem into subproblems by choosing a variable
and then branching on each possible value for that variable.
Each subproblem formed in this way is called a node of the
search. A branch of the search is formed by assigning a fixed
value to the branching variable selected in each node. IP and



CP solvers typically report the number of nodes and/or the
number of branches that they explore during the search.

IP solvers also solve the linear programming “relaxation”
of the problem by dropping the constraint that the variables
must be integers. If the relaxation has no solution over the
rationals then the original problem must also be infeasible. If
the relaxation has a solution then the solver examines if it
violates any inequalities that can be derived from the original
set of linear constraints assuming that the variables must take on
integer values. Such inequalities are known as cutting planes
and they can be effective at pruning the search space and
forcing the solution of the linear program to integer values. If
no cutting planes can be derived and the relaxation solution
has non-integral values then a variable is chosen to branch on
and new nodes are created.

Intuitively, a CP solver is effective at enumerating solutions
quickly as it is not required to solve linear programs during
its search. However, the relaxation solutions provided by the
IP solver—despite being relatively expensive to compute—
help provide a “global” perspective of the search space. In
particular, Appa et al. present IP and CP models to search for
orthogonal latin squares and develop sophisticated techniques
for combining solvers in ways that exploit each solver’s
strengths [1], [2].

III. MODELS

In this section we describe the models that we use when
searching for graeco-latin squares using integer programming
(see Section III-A) and constraint programming (see Sec-
tion III-B) as well as the symmetry breaking methods that
we use (see Section III-C).

A. Integer Programming Model

One straightforward method of approaching the graeco-
latin square problem is to express it as a pure binary linear
program and use integer programming (IP) solvers to generate
solutions [7, §26.3.IV]. Our IP model for finding a graeco-latin
square pair X and Y contains the n4 binary variables

xijkl :=

{
1 if Xij = k and Yij = l

0 otherwise

for all i, j, k, l ∈ {0, 1, . . . , n− 1}.
We encode the latin and orthogonality constraints as

(
4
2

)
= 6

sets of n2 equalities grouped by which two subscripts of
xijkl are fixed. For example, fixing i and j leads to the
constraint

∑
0≤k,l<n xijkl = 1 which says that cell (i, j) only

contains a single value. Fixing k and l leads to the constraint∑
0≤i,j<n xijkl = 1 which when taken over all 0 ≤ k, l < n

says that X and Y are orthogonal.

B. Constraint Programming Model

A CP solver allows a more natural formulation of the graeco-
latin square problem using the 2n2 integer-valued variables
Xij and Yij (for 0 ≤ i, j < n) directly encoding the values
appearing in cell (i, j) of squares X and Y . The squares can be
forced to be latin squares via “AllDifferent” constraints which

specify that the rows and columns of the squares each contain
different values. One natural way of encoding orthogonality
(c.f. [1]) is to use a set of n2 variables Zij defined by the
linear constraints

Zij := Xij + nYij ∈ {0, 1, . . . , n2 − 1}.

The squares X and Y are orthogonal exactly when the variables
Zij contain no duplicate values and therefore the single
constraint AllDifferent(Zij ∀i, j) ensures that X and Y are
orthogonal; we call this the CP-linear encoding. The variables
Zij may equivalently be defined via the modulo and division
constraints Xij = Zij mod n and Yij = bZij/nc and we call
this the CP-moddiv encoding.

We also used an alternative formulation of ensuring or-
thogonality that uses no arithmetic and shorter AllDifferent
constraints. In order to describe it, note that each row of a latin
square may be considered as a permutation of {0, . . . , n− 1}.
Denote by AB the square whose ith row consists of the
composition of the permutations Ai and Bi (the ith rows
of A and B). Composition is performed left-to-right following
the standard convention in the field,i.e., fg denotes the function
x 7→ g(f(x)) and so the (i, j)th entry of AB is Bi(Ai(j)).
Additionally, A−1 denotes the square where each row consists
of the inverse of the permutation formed by the corresponding
row of A.

Our alternative orthogonality encoding is based on [25,
Theorem 6.6] which implies that two latin squares X and Y
are orthogonal if and only if there is a latin square Z such
that XZ = Y . The additional variables in our alternative
orthogonality encoding are

Zij := value of cell (i, j) in square Z = X−1Y,

where Zij ∈ {0, 1, . . . , n − 1}. In order to ensure Y = XZ
the (i, j)th entry of Y is set equal to the (i,Xij)th entry of Z.
This is accomplished with the “element indexing” constraint
Zi[Xij ] = Yij where Zi is the vector of variables corresponding
to the ith row of Z. Some CP solvers such as OR-Tools [36]
have native support for such constraints via what are called
“VariableElement” constraints. The constraints encoding that the
squares X and Y are orthogonal are then AllDifferent(Zij ∀j)
and AllDifferent(Zij ∀i). We call this the CP-index encoding
and altogether it uses 6n AllDifferent constraints together with
n2 element indexing constraints.

C. Symmetry Breaking

There are a large number of symmetries in the graeco-latin
square problem. If X and Y form a graeco-latin square then
X and Y can be permuted, the rows of X and Y can be
permuted simultaneously, the columns of X and Y can be
permuted simultaneously, the symbol sets within X and Y can
be permuted independently, and the squares may be replaced
with their transposes. All of these operations preserve the
latin properties and orthogonality of the squares [6]. This
group of possible symmetries has order 4(n!)4 and the search
space can be reduced significantly for any elimination of
possible symmetries that still permits finding an isomorphic



representative of any solution. Appa et al. fix the first row of
every square to be in lexicographic order which eliminates the
permutations of the columns and fixes the symbol permutations
to be the same in each square. They fix the first column of X to
be in lexicographic order which eliminates permutations of the
rows. This reduces the possible symmetries to 4 ·n!. With these
cells fixed, the first column of Y must be a permutation where
Yi0 6= i for 1 ≤ i < n. The number of such permutations is
approximately (n− 1)!/e [18].

Appa et al. [1], [2] further show that every possible solution
is isomorphic to one satisfying Yi0 6= i and Yi0 ≤ i + 1 for
1 ≤ i < n. In other words, in addition to fixing the values
of certain variables they also incorporate domain reduction of
entries in the first column of Y . To understand the magnitude
of this reduction of the search space we must count the number
of these solutions. Let P (n) be the set of all permutations of
{0, 1, . . . , n− 1} and A(n) be {ρ ∈ P (n) : ρ(0) = 0, ρ(i) 6=
i, ρ(i) ≤ i+ 1}, and a(n) = |A(n)|.

Proposition 1. Let F (n) be the nth Fibonacci number. Then
a(n) = F (n− 2).

With this reduction in cases, Appa et al. have reduced the
number of first columns for Y from around (n− 1)!/e to

a(n) = F (n− 2) ≈
√
5

5

(
1 +
√
5

2

)n−2
choices. By exploiting the disjoint cycle structure of these
permutations, we have been able to reduce this number to b(n),
the number of partitions of n − 1 into parts of size greater
than 1. The values of b(n) are sequence A002865 at the Online
Encyclopedia of Integer Sequences and the value of b(n) is
approximately [35]

b(n) ≈ πeπ
√

2(n−1)/3

12
√
2(n− 1)3/2

.

This growth rate is exponentially slower than the Fibonacci
numbers.

We say that a graeco-latin square (X,Y ) of order n is in
standard form if the first rows of X and Y are in lexicographic
order and the first column of X is in lexicographic order. The
first column permutation of Y is the permutation of the symbols
{1, 2, . . . , n − 1} defined by ρ(i) = Yi0. The ordered cycle
of Y is the representation of ρ as a product of disjoint cycles

(a0,0, . . . , a0,l0−1)(a1,0, . . . , a1,l1−1) · · · (ac,0, . . . , ac,lc−1)

where each cycle is the lexicographic least cyclic shift and
the cycles are in lexicographic order [8]. The ordered cycle
type of Y is (l0, l1, . . . , lc). The following theorem captures
our symmetry breaking method.

Theorem 1. Let X and Y be a graeco-latin square. They
are isomorphic to a pair X ′, Y ′ in standard form where the
ordered cycle type of Y ′ is non-decreasing.

Proofs of Proposition 1 and Theorem 1 can be found
online [38].

Model 5 6 7 8 9 10
IP 0.1 Timeout 3.2 6.4 344.5 3,046.4

CP-linear 0.0 Timeout 7.4 1,721.7 50,753.7 Timeout
CP-moddiv 0.4 Timeout 7.7 509.9 1,672.5 Timeout
CP-index 0.0 Timeout 3.5 82.4 1,552.1 11,971.3

TABLE I
BASELINE TIMINGS (IN SECONDS) FOR ORDERS 5 ≤ n ≤ 10 WITH NO

SYMMETRY BREAKING AND A TIMEOUT OF 60,000 SECONDS.

IV. RESULTS

In this section we provide running times for our implemen-
tations. All times were recorded using a single thread on an
Intel Core i9-9900K processor running at 3.6 GHz and with
32 GiB of memory. The models were compiled into executable
code using Microsoft Visual C++ 2019. The IP models were
solved using Gurobi version 9 [16] and the CP models were
solved using OR-Tools version 8 [36] whose CP solver uses
lazy clause generation in tandem with a conflict-driven SAT
solver [40]. All default solver parameters were used with the
exception of disabling multi-threading.

By default OR-Tools uses a branching strategy that chooses
the first unassigned variable. We declared the variables so the
values of the entries of X and Y are ordered by row and then
by column (i.e., in the order X00, Y00, X01, Y01, . . . ) and the
variables ensuring orthogonality are ordered last. Our code is
publicly available at github.com/noahrubin333/CP-IP.

As a “baseline” we first present timings for the models
without any symmetry breaking included. The default symmetry
breaking performed by Gurobi was also disabled for these times.
The instances in order six are infeasible and required symmetry
breaking to solve; in every other order 5 ≤ n ≤ 11 the solver
either explicitly found a graeco-latin square or timed out after
60,000 seconds. In Table I we compare the IP model along
with the three CP models—one with linear constraints encoded
directly (CP-linear), one with linear constraints encoded via
modulo and division constraints (CP-moddiv), and one with
indexing constraints (CP-index). The timings show that the
encoding based on indexing constraints generally outperformed
the traditional encoding based on linear constraints.

One reason why the CP-linear model is particularly slow
may be due to OR-Tools not achieving a strong level of
local consistency on its linear constraints during constraint
propagation. In order to fairly compare the traditional “linear”
orthogonality encoding with our “indexing” orthogonality
encoding we implemented the CP-moddiv model using indexing
constraints—this way the level of propagation achieved in
the orthogonality constraints of the CP-moddiv and CP-index
models should be the same. In detail, the orthogonality variables
Zij = Xij + nYij in the CP-moddiv model were specified
through the indexing constraints

Xij =
[
k mod n : 0 ≤ k < n2

]
[Zij ], and

Yij =
[
bk/nc : 0 ≤ k < n2

]
[Zij ]

for 0 ≤ i, j < n. The fact that the CP-index model tends
to outperform the CP-moddiv model we believe is evidence

https://github.com/noahrubin333/CP-IP


Fig. 2. A comparison of the running times for the various models and symmetry
breaking methods that we considered in the orders 5 ≤ n ≤ 11.

for the effectiveness of the orthogonality encoding based on
realizing the latin square Z = X−1Y .

Figure 2 compares the minimum recorded running time
across the orders 5 ≤ n ≤ 11 for each symmetry breaking
method and each model that we considered. For the “cycle type”
symmetry breaking method the first column of X was fixed
in sorted order and the first column of Y randomly assigned—
only subject to the constraint that Yi0 6= i for i > 0. In the IP
model the appropriate variables were assigned to 1 to encode
the values in the first columns of X and Y . In the CP model
the variables in the first column were set by restricting their
domains to a single element.

A Python script was used to determine the cycle type of
the first column permutation of Y and then categorize that
instance into one of the b(n) cycle type equivalence classes
described in Section III-C. For each cycle type of each order,
three independent runs were made in order to determine a
“typical” running time for that cycle type. For the IP model the
cycle type symmetry breaking method performed much better
than the domain reduction method. For the CP model the cycle
type symmetry breaking method often performed better but
there were certain cycle types whose runs completed slower
than the runs using domain reduction symmetry breaking. We
were unable to determine the cycle types which would perform
well or poorly in advance. This makes the cycle type method
particularly appropriate for a machine with many cores—as it
easily admits parallelization by running an instance for each
cycle type on a separate core.

V. RELATED WORK AND HISTORY

Graeco-latin squares of order 4 were known to medieval
Muslim mathematicians. In 1700, the Korean mathematician
Choi Seok-jeong presented a graeco-latin square of order 9
and reported being unable to find a pair of order 10 [6]. Euler
could construct graeco-latin squares for all odd n and for n
divisible by 4 [13]. He knew that graeco-latin squares of order
2 did not exist and failed to construct a pair of order 6 using
any of the methods for which he had success for other n. He
verified that none of his construction methods could succeed
when n ≡ 2 (mod 4) and conjectured that graeco-latin squares
of order n exist if and only if n 6≡ 2 (mod 4).

Many mathematical methods for constructing sets of mu-
tually orthogonal latin squares (MOLS) exist. These range
from algebraic to the recursive [6]. On the computational side,
there have been exhaustive searches and non-exhaustive search
using various metaheuristics. Lam, Thiel, and Swiercz’s proof
showing the non-existence of nine MOLS of order ten was an
exhaustive backtracking search aided by powerful theorems
from coding theory and permutation groups to eliminate finding
structures isomorphic to those already found [24]. McKay,
Meynert, and Myrvold use the orderly generation method
to enumerate all non-isomorphic latin squares of orders up
to nine [30]. They use the library nauty [29] to compute
automorphisms and canonical representatives in each class
and enumerate the different numbers of equivalence classes
of these squares. McKay and Wanless are able to enumerate
all latin squares of order 11 [31] at the cost of not computing
the additional data reported by McKay, Meynert, and Myrvold.
They proceed by generating the squares row by row using
an algorithms of Sade [31], [39]. Niskanen and Östergård’s
clique finding software, cliquer has been successfully used
to find mutually orthogonal latin cubes [23], [34]. Kidd [22]
and Benadé, Burger, and van Vuuren [3] use custom-written
backtracking searches to enumerate all triples of MOLS up to
order 8. Using satisfiability (SAT) solvers with an interface
to nauty, the nonexistence of nine MOLS of order ten was
confirmed by Bright et al. [4] by producing nonexistence proof
certificates.

Colbourn and Dinitz [5] implemented many of the com-
binatorial constructions to aid generating the tables given in
the Handbook of Combinatorial Designs [6]; strictly speaking,
these computational methods are not metaheuristics but neither
are they exhaustive searches. Elliott and Gibbons [12] use the
simulated annealing metaheuristic to construct latin squares of
orders up to 18 which contain no subsquares. Magos [27] has
used the Tabu metaheuristic to construct latin squares. Mariot
et al. [28] have used evolutionary algorithms and cellular
automata to generate orthogonal latin squares.

An alternative approach to constructing latin squares is
to formulate the problem in a declarative way and use an
automated reasoning solver to search for feasible solutions. For
example, Moura [32], [33] uses integer programming (IP) to
search for certain combinatorial designs that are related to latin
squares. Huang et al. [20] use constraint programming (CP) to
search for orthogonal golf designs. FeiFei and Jian [26] use a
first-order logic model generator to search for orthogonal latin
squares while Zaikin and Kochemazov [41] use a propositional
logic solver (i.e., SAT solver) to search for orthogonal diagonal
latin squares and Jin et al. [21] use a SAT solver to search for
Costas latin squares. Gomes, Regis, and Shmoys [15] employ
a hybrid CP/IP approach to the problem of completing partial
latin squares and Appa, Mourtos, and Magos [1], [2] investigate
using IP and CP algorithms for generating pairs and triples
of mutually orthogonal latin squares. They report encouraging
results and propose that a hybrid IP/CP strategy of integrating
the two techniques might have some success at finding three
MOLS of order ten if such a triple exists.



VI. CONCLUSION

In this paper we use integer and constraint programming
solvers in the search for graeco-latin squares. We demonstrate
that modern state-of-the-art solvers are able to find graeco-latin
squares (or demonstrate their nonexistence) in a reasonable
amount of time for all orders n ≤ 11 but struggle with higher
orders. We continue the work of Appa et al. [1] by extending
their symmetry breaking method and providing an alternative
CP formulation that performs better in our implementation.
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