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Abstract
In this report we use arguments from the geometry of numbers to show

that there are infinitely many coprime natural numbers a, b, c for which
a+ b = c and c > rad(abc) exp(k

√
log c/ log log c) for some constant k, and

provide a connection between this constant and Hermite’s lattice constant.

1 Introduction

Three natural numbers a, b, c are said to be an abc triple if they do not share a
common factor and satisfy the equation

a+ b = c.

Informally, the abc conjecture says that large abc triples cannot be ‘very com-
posite’, in the sense of abc having a prime factorization containing large powers
of small primes.

For the formal statement, we define the radical of abc to be the product of
the primes in the prime factorization of abc,

rad(abc) :=
∏
p|abc

p.

The abc conjecture then states that abc triples satisfy

c = O
(
rad(abc)1+ε

)
(1)

for every ε > 0, where the implied big-O constant may depend on ε.
Presently, the conjecture is far from being proved; not a single ε is known for

which (1) holds. The best known result [5] says that abc triples satisfy

c = O
(
exp(rad(abc)1/3(log rad(abc))3)

)
.

On the other hand, it is also known [2] that there are infinitely many abc
triples for which

c > rad(abc) exp(6.07
√

log c/ log log c).

Such abc triples are exceptional in the sense that their radical is relatively small
in comparison to c, and while this does not contradict (1), it provides a lower
bound on its best possible form. Note that the function exp(k

√
log c/ log log c)

grows faster than any power of log c, but slower than any nontrivial power of c.
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1.1 Preliminaries

Let S be a set of prime numbers. An S-unit is defined to be a rational number
whose numerator and denominator in lowest terms are divisible by only the
primes in S. That is, one has

S-units :=

{
±
∏
pi∈S

peii : ei ∈ Z
}
.

This generalizes the notion of units of Z; in particular, the ∅-units are ±1.
The height of a rational number p/q in lowest terms is h(p/q) := max{|p|, |q|}.

This provides a convenient way of measuring the ‘size’ of an S-unit.
Finally, if x = (x1, . . . , xn) is a vector in Rn, we let

‖x‖k :=
( n∑
i=1

|xi|k
)1/k

be its standard k-norm, with k = 2 if not explicitly specified.

2 The geometry of numbers

The existence of exceptional abc triples will follow from some basic results in
the geometry of numbers. In particular, we will require the existence of a short
nonzero vector in a suitably chosen lattice.

2.1 The odd prime number lattice

The result involves in an essential way the odd prime number lattice Ln generated
by the rows b1, . . . , bn of the matrix

b1
b2
b3
...
bn

 =


log 3

log 5
log 7

. . .

log pn


where pi denotes the ith odd prime number.

The importance of this lattice stems from the fact its elements have a close
link with the {p1, . . . , pn}-units. In particular, there is an obvious isomorphism
between the points of Ln and the positive {p1, . . . , pn}-units, as given by

n∑
i=1

eibi ↔
n∏
i=1

peii .

Furthermore, this relationship works well with a natural notion of ‘size’, as the
following lemma shows.
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Lemma 1. ‖x‖1 ≥ log h(p/q) where x =
∑n
i=1 eibi and p/q =

∏n
i=1 p

ei
i is

expressed in lowest terms.

Proof. By the definition of the one-norm, we have:

‖x‖1 =

n∑
i=1

∣∣ei log pi
∣∣

=
∑
ei>0

ei log pi −
∑
ei<0

ei log pi

= log p+ log q

= log h(p/q) + log min{p, q}

The result follows since log min{p, q} is nonnegative.

It will also be important to know the determinant (or volume) of the lattice Ln.
Since its defining basis was a diagonal matrix, the lattice determinant is simply
the product of the entries on the diagonal of the basis matrix.

Lemma 2. The determinant of the lattice Ln is
∏n
i=1 log pi.

2.2 The kernel sublattice

Let P be the set of positive {p1, . . . , pn}-units, and consider the map ϕ reducing
the elements of P modulo 2m. Since each p1, . . . , pn is odd, ϕ : P → (Z/2mZ)∗

is well-defined. The odd prime number lattice Ln has an important sublattice
which we call the kernel sublattice Ln,m. It consists of those vectors whose
associated {p1, . . . , pn}-units lie in the kernel of ϕ. Formally, we define

Ln,m :=

{ n∑
i=1

eibi :

n∏
i=1

peii ≡ 1 (mod 2m)

}
.

Figure 1 demonstrates the kernel sublattice in two dimensions for varying m.

Lemma 3. Ln,m is a sublattice of Ln with index 2m−1 when n ≥ 2.

Proof. Note that Ln,m is discrete (as it is a subset of Ln) and closed under
addition and subtraction since if

∑n
i=1 eibi,

∑n
i=1 fibi ∈ Ln,m then

n∏
i=1

pei±fii ≡
n∏
i=1

peii ·
n∏
i=1

p±fii ≡ 1 (mod 2m).

Ln,m also contains the n linearly independent vectors ord2m(pi)bi for 1 ≤ i ≤ n,
so this demonstrates that Ln,m is a full-rank sublattice of Ln.

Since 3 and 5 generate (Z/2mZ)∗, when n ≥ 2 we have ϕ(P ) = (Z/2mZ)∗.
Since Ln ∼= P and Ln,m ∼= kerϕ it follows that

Ln/Ln,m ∼= (Z/2mZ)∗

by the first isomorphism theorem. Thus the index of Ln,m in Ln is |(Z/2mZ)∗| =
2m−1.
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Figure 1: L2,m for 1 ≤ m ≤ 8

Since det(Ln,m) = |Ln/Ln,m| · det(Ln), the following corollary follows by
Lemmas 2 and 3.

Corollary 1. det(Ln,m) = 2m−1
∏n
i=1 log pi when n ≥ 2.

2.3 Hermite’s constant

The Hermite constant γn is defined to be the smallest positive number such that
every lattice of dimension n contains some nonzero vector x which satisfies

‖x‖2 ≤ γn det(L)2/n.

The existence of such a constant was first shown by Hermite, who proved the
exponential bound γn ≤

√
4/3

n−1
. However, it is now known that γn essentially

grows linearly in n. By Minkowski’s theorem applied to a sphere of sufficiently
large volume, it follows that

γn ≤ 4ω−2/nn ∼ 2n

πe
≈ 0.234n

where ωn is the volume of the n-dimensional unit sphere.
Improving on this, Kabatiansky & Levenshtein [3] showed that

γn ≤
2n

40.599πe
≈ 0.102n

for sufficiently large n.
Since we are interested in the one-norm instead of the usual Euclidean norm,

so we define the related constants δn by the smallest positive number such that
every full-rank lattice of dimension n contains some nonzero vector x which
satisfies

‖x‖1 ≤ δn det(L)1/n.
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By Minkowski’s theorem applied to a generalized octahedron (a ‘sphere’ in the
one-norm), one has that every full-rank lattice of dimension n contains some
nonzero vector x which satisfies

‖x‖1 ≤ (n! det(L))1/n,

from which it follows that

δn ≤ (n!)1/n ∼ n

e
≈ 0.368n.

It is also possible to use the bounds on γn to derive bounds on δn. By the
relationship between the one-norm and two-norm, we have that every lattice of
dimension n contains some nonzero vector x which satisfies

‖x‖1 ≤
√
n‖x‖2 ≤

√
nγn det(L)1/n.

Therefore δn ≤
√
nγn and so by the result of Kabatiansky–Levenshtein,

δn ≤
√

2n2

40.599πe
≈ 0.320n

for large enough n.
However, better bounds on δn are known. Blichfeldt [1] showed that

δn ≤

√
4(n+ 1)(n+ 2)

3π(n+ 3)

(
2(n+ 1)

n+ 3

(n
2

+ 1
)

!

)1/n

∼
√

2

3πe
n ≈ 0.279n,

where x! := Γ (x+ 1). Improving this, Rankin [4] showed that

δn ≤
(2− x

1− x

)x−1(1 + xn

x · x!n
(xn)!

)1/n
n1−x ∼

(2− x
1− x

)x−1 (x/e)x

x!
n

for any x ∈ [1/2, 1]. This attains a minimum for x ≈ 0.645, so that the expression
on the right becomes approximately 0.273n.

For convenience, we define δ to be a constant so that δn ≤ n/δ holds for all
sufficiently large n. In light of Rankin’s result, we can take δ ≈ 3.659.

3 Exceptional abc triples

The real importance of the kernel sublattice is that it lets us show the existence
of abc triples in which c is fairly large relative to rad(abc). The following lemma
is the first result along these lines.

Lemma 4. For all m ≥ 1 and sufficiently large n, there exists an abc triple
satisfying

2m−1∏n
i=1 pi

rad(abc) ≤ c and log c ≤ n

δ

(
2m−1

n∏
i=1

log pi

)1/n
.
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Proof. By the definition of δ applied to the kernel sublattice Ln,m, we have that
for all sufficiently large n there exists some nonzero x ∈ Ln,m with

‖x‖1 ≤
n

δ
det(Ln,m)1/n. (2)

Say x =
∑n
i=1 eibi, and let

∏n
i=1 p

ei
i = p/q be expressed in lowest terms. By

construction of the kernel sublattice, we have that

p/q ≡ 1 (mod 2m).

Let c := max{p, q}, b := min{p, q}, and a := c − b, so that a, b, c form an abc
triple. Furthermore, we see that

c ≡ b (mod 2m)

so that c = b+ k2m for some positive integer k ≤ c/2m. Note that a is divisible
by 2 and any other prime which divides it also divides k, so that rad(a) ≤ 2k ≤
c/2m−1. Furthermore, by construction of b and c, rad(bc) ≤

∏n
i=1 pi. Thus

rad(abc) ≤ c

2m−1

n∏
i=1

pi

from which the first bound follows. The second bound follows using our previous
results:

log c = log h(p/q) since c = h(p/q)

≤ ‖x‖1 by Lemma 1

≤ n
δ det(Ln,m)1/n by (2)

= n
δ

(
2m−1

∏n
i=1 log pi

)
1/n by Corollary 1

4 Asymptotic formulae

Let x := pn and let π(x) be the prime counting function, so that n = π(x)− 1.
The prime number theorem states that π(x) ∼ li(x), and by the asymptotic
expansion of the logarithmic integral,

n =
x

log x
+

x

log2 x
+

2x

log3 x
+O

( x

log4 x

)
. (3)

Rearranging this to find an expression for x, we have

x = n log x− x

log x
− 2x

log2 x
+O

( x

log3 x

)
= n log x− n− x

log2 x
+O

( x

log3 x

)
.
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An alternative form of the prime number theorem states
∑
p≤x log p ∼ x, so we

have that
n∑
i=1

log pi = x+O
( x

log3 x

)
.

Putting these together, we derive the following lemma.

Lemma 5.
∑n
i=1 log pi = n log pn − n− pn/ log2 pn +O(pn/ log3 pn)

Additionally, we’ve seen that to estimate det(Ln,m) we need an estimate of
the product of log pi over the first n odd primes. The following lemma gives an
asymptotic formula for the logarithm of this quantity.

Lemma 6.
∑n
i=1 log log pi = n log log pn − pn/ log2 pn +O(pn/ log3 pn)

Proof. By Abel’s summation formula with f(k) := log log k and

ak :=

{
1 if k is an odd prime

0 otherwise

for k up to x := pn, we have

n∑
i=1

log log pi = n log log x−
∫ x

2

π(t)− 1

t log t
dt.

We have π(t)− 1 = t/ log t+O(t/ log2 t) by the prime number theorem, so that∫ x

2

π(t)− 1

t log t
dt =

∫ x

2

dt

log2 t
+O

(∫ x

2

dt

log3 t

)
.

The first integral on the right works out to∫ x

2

dt

log2 t
= li(x)− x

log x
+O(1) =

x

log2 x
+O

( x

log3 x

)
by the asymptotic expansion of the logarithmic integral. The second integral on
the right can split in two (around

√
x) and then estimated by∫ √x

2

dt

log3 t
+

∫ x

√
x

dt

log3 t
≤
√
x

log3 2
+
x−
√
x

log3√x
= O

( x

log3 x

)
.

Putting everything together gives

n∑
i=1

log log pi = n log log x− x

log2 x
+O

( x

log3 x

)
.
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5 Optimal choice of m

The first bound in Lemma 4 allows us to show the existence of infinitely many
abc triples whose ratio of c to rad(abc) grows arbitrarily large. Using the second
bound, we can even show that this ratio grows faster than some function of c.
The construction allows us the freedom to choose m in terms of n, though it is
not immediately clear how to choose m optimally, i.e., to maximize the ratio
c/ rad(abc).

For convenience, let R := n
δ det(Ln,m)1/n denote the upper bound on the

second inequality in Lemma 4. Then 2m−1 = (δR/n)n/
∏n
i=1 log pi, so the

bounds of Lemma 4 can be rewritten in terms of R:

(δR/n)n∏n
i=1 pi log pi

rad(abc) ≤ c

log c ≤ R
(4)

The question now becomes how to choose R in terms of n so that c/ rad(abc) is
maximized.

Taking the logarithm of the first inequality in (4) gives

n log
(δR
n

)
−

n∑
i=1

log pi −
n∑
i=1

log log pi + log rad(abc) ≤ log c.

Using the asymptotic formulae in Lemmas 5 and 6, this becomes

n log
( eδR

npn log pn

)
+

2pn

log2 pn
+O

( pn

log3 pn

)
+ log rad(abc) ≤ log c. (5)

By the prime number theorem (3) the leftmost term becomes

n log

(
eδR

p2n
(
1 + 1/ log pn +O(1/ log2 pn)

)),
and with log(1 + 1/x) = 1/x+O(1/x2) as x→∞, this becomes

n log
(eδR
p2n

)
− n

log pn
+O

( n

log2 pn

)
.

Using (3) again on the last two terms and putting this back into (5), we get

n log
(eδR
p2n

)
+

pn

log2 pn
+O

( pn

log3 pn

)
+ log rad(abc) ≤ log c, (6)

and our goal becomes to choose R to maximize n log(eδR/p2n).
Clearly, we must take R > p2n/(eδ) for the logarithm to be positive. In order

to maximize the leading factor n in terms of R, we will choose R in terms of n as
asymptotically slow-growing as possible (subject to the above constraint). With
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the choice R := kp2n for some constant k we have that n log(eδR/p2n) simplifies
down to

n log(eδk) ∼ pn
log pn

log(eδk) =

√
R/k

log
√
R/k

log(eδk) ∼
2
√
R/k

logR
log(eδk).

For fixed R this is maximized when k := e/δ. Using R = ep2n/δ in our
previous result (6),

2n+
pn

log pn
+O

( pn

log3 pn

)
+ log rad(abc) ≤ log c.

By the prime number theorem (3),

2pn
log pn

+
3pn

log2 pn
+O

( pn

log3 pn

)
+ log rad(abc) ≤ log c.

Rewriting in terms of R,

2
√
δR/e

log
√
δR/e

+
3
√
δR/e

log2
√
δR/e

+O
( √R

log3R

)
+ log rad(abc) ≤ log c.

Simplifying,

4
√
δR/e

log(δR/e)
+

12
√
δR/e

log2(δR/e)
+O

( √R
log3R

)
+ log rad(abc) ≤ log c.

Using 1/(x+ y) = 1/x− y/x2 +O(x−3) as x→∞ this gives

4
√
δR/e

logR
+

(12− 4 log(δ/e))
√
δR/e

log2R
+O

( √R
log3R

)
+ log rad(abc) ≤ log c.

Using that δ < e4 the second term on the left is positive, and so for sufficiently
large R the middle two terms are necessarily positive. Therefore for sufficiently
large R this can be simplified to

4
√
δR/e

logR
+ log rad(abc) ≤ log c.

Using that log c ≤ R from (4) and the increasing monotonicity of
√
R/ logR for

sufficiently large R, we finally achieve that

4
√

(δ/e) log c

log log c
+ log rad(abc) ≤ log c.

Taking the exponential, this proves the following theorem.

Theorem 1. There are infinitely many abc triples which satisfy

exp
(4
√

(δ/e) log c

log log c

)
rad(abc) ≤ c.

Using Rankin’s result on δ, the constant in the exponent becomes approxi-
mately 4.641.
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6 Improvements

One way of viewing the prime number lattice is to think of each coordinate as
encoding a different valuation. Indeed, the ith entry of x ∈ Ln is − log|p/q|pi ,
where p/q is the S-unit associated to x and |·|pi is the pi-adic valuation. From
this viewpoint, one might wonder if there would be any advantage to include
the real valuation as well. To do this, we can add an extra column to the basis
defining Ln:

B :=


b1
b2
b3
...
bn

 =


log 3 k log 3

log 5 k log 5
log 7 k log 7

. . .
...

log pn k log pn

 .

Scaling the final column by the constant k > 0 allows us to increase the ‘weight’
of the real valuation, should that prove desirable. Of course, the modification of
the lattice Ln requires us to update the previous lemmas.

Modified Lemma 1. If k ≥ 1 then ‖x‖1 ≥ 2 log h(p/q) where x =
∑n
i=1 eibi

and p/q =
∏n
i=1 p

ei
i is expressed in lowest terms.

Proof. For simplicity, say p > q (the other case is analogous). By the definition
of the one-norm, we have:

‖x‖1 =

n∑
i=1

∣∣ei log pi
∣∣+

∣∣∣∣k n∑
i=1

ei log pi

∣∣∣∣
= log p+ log q + k(log p− log q)

= (k + 1) log p− (k − 1) log q

= 2 log p+ (k − 1)(log p− log q)

The result follows since (k − 1)(log p− log q) is nonnegative.

We remark that with k = 1 the inequality in this lemma becomes an equality.
Taking k > 1 could potentially improve the bound, however in that case one
would need a nontrivial lower bound on log p− log q, which is not straightforward.

The addition of another column in the lattice does cause its volume to increase,
however ultimately the amount it increases will be irrelevant asymptotically.

Modified Lemma 2. The volume of the lattice Ln is
√
nk2 + 1

∏n
i=1 log pi.

Proof. By definition, we have det(Ln) =
√

det(BBT ). Factoring out log pi from
row i of B and column i of BT for each 1 ≤ i ≤ n and letting k ∈ Rn be the
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column vector consisting of all k entries, we get

det(Ln) =

√
det

([
In k

][ In
kT

])
·
n∏
i=1

log pi

=
√

det(In + kkT ) ·
n∏
i=1

log pi.

From Sylvester’s determinant theorem one has

det(In + kkT ) = det(I1 + kTk) = 1 + nk2,

and it follows that

det(Ln) =
√
nk2 + 1 ·

n∏
i=1

log pi.

Adapting the proof of Lemma 4 to the modified lattice presents a problem,
since the new lattice is not full-rank, and the definition of δ was with respect to
full-rank lattices. At first glance this shouldn’t be a problem, since one could
apply a rotation to the lattice of rank n to zero out its final column, and then
consider the rotated lattice as a full-rank lattice in Rn.

However, the act of rotation does not preserve distances in the one-norm,
so the short vector which must exist in the full-rank rotation of Ln,m may not
actually be short in Ln,m itself. Conceivably, one could measure how much
the rotation could affect the one-norm of the short vector, and still apply the
previous argumentation to derive a modified Lemma 4. Another possibility is to
work with the two-norm, which is preserved by rotation.

Toward this end, define γ to be a constant so that γn ≤ n/γ2 holds for all
sufficiently large n. By Kabatiansky–Levenshtein we can take γ ≈ 3.13. The
updated Lemma 4 can then be stated as follows.

Modified Lemma 4. For all m ≥ 1 and sufficiently large n, there exists an
abc triple satisfying

2m−1∏n
i=1 pi

rad(abc) ≤ c and 2 log c ≤ n

γ

(
2m−1

√
n+ 1

n∏
i=1

log pi

)1/n
.

Proof. By the definition of γ applied to the kernel sublattice Ln,m (which has
rank n, and can be thought of as a rotated lattice in Rn), we have that for all
sufficiently large n there exists some nonzero x ∈ Ln,m with

‖x‖2 ≤ n

γ2
det(Ln,m)2/n.

By the relationship between the one-norm and two-norm, we have

‖x‖1 ≤
√
n‖x‖2 ≤

n

γ
det(Ln,m)1/n.
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The proof now proceeds exactly as before; we take k := 1 in the definition of Ln
so that by the modified Lemmas 1 and 2 we have

2 log h(p/q) = ‖x‖1 and det(Ln,m) = 2m−1
√
n+ 1

n∏
i=1

log pi.

The optimal choice of m also proceeds as before, but (4) now becomes:

(γR/n)n√
n+ 1

∏n
i=1 pi log pi

rad(abc) ≤ c

2 log c ≤ R

The extra factor of (n+1)−1/2 in the first inequality has no affect in the argument
since − 1

2 log(n+ 1) is O(pn/ log3 pn). Fortunately, the extra factor of 2 in the
second inequality improves the constant in the exponent of the final result by
a factor of

√
2. Taking R := ep2n/γ and using that 2γ < e4 one derives the

following theorem.

Theorem 2. There are infinitely many abc triples which satisfy

exp
(4
√

(2γ/e) log c

log log c

)
rad(abc) ≤ c.

Using the Kabatiansky–Levenshtein result on γ, the constant in the exponent
becomes slightly larger than 6.07.
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